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ESTIMATION OF MULTIVARIATE MODELS FOR TIME SERIES
OF POSSIBLY DIFFERENT LENGTHS
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SUMMARY

We consider the problem of estimating parametric multivariate density models when unequal amounts of data
are available on each variable. We focus in particular on the case that the unknown parameter vector may
be partitioned into elements relating only to a marginal distribution and elements relating to the copula. In
such a case we propose using a multi-stage maximum likelihood estimator (MSMLE) based on all available
data rather than the usual one-stage maximum likelihood estimator (1ISMLE) based only on the overlapping
data. We provide conditions under which the MSMLE is not less asymptotically efficient than the 1SMLE,
and we examine the small sample efficiency of the estimators via simulations. The analysis in this paper is
motivated by a model of the joint distribution of daily Japanese yen—US dollar and euro—US dollar exchange
rates. We find significant evidence of time variation in the conditional copula of these exchange rates, and
evidence of greater dependence during extreme events than under the normal distribution. Copyright © 2006
John Wiley & Sons, Ltd.

1. INTRODUCTION

The economy cannot be relied upon to generate data in neatly overlapping samples. In financial
economics, for instance, cases of unequal amounts of data arise in many interesting applications:
the analysis of developed markets and emerging markets; collections of assets that include
recently floated companies or companies that went bankrupt; any collection of assets with some
denominated in euros and some not.

In this paper we consider the estimation of parametric multivariate density models involving
variables with histories of differing lengths. Motivation in economics and finance for multivariate
density models beyond the multivariate normal distribution has been provided by the plethora of
papers presenting evidence against the assumption of normality for economic variables, starting
with Mills (1927) and continuing through to today.! Parametric density models are used widely
in financial risk management, see Jorion (1997), Duffie and Pan (1997) and Diebold et al. (1999),
and in macroeconomic forecasting, see Tay and Wallis (2000), Clements (2002) and Wallis (2003).

We consider multivariate models with an unknown parameter vector that may be partitioned
into elements relating only to the marginal distributions and elements only relating to the copula.
This partition is possible in many common multivariate models, such as vector autoregressions
and some multivariate GARCH models. If such a partition is not possible, the familiar one-stage
maximum likelihood estimator (ISMLE) using only the overlapping data is the natural estimator to
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employ. When this partitioning is possible, however, great computational savings may be achieved
by employing a multi-stage maximum likelihood estimator (MSMLE) using all available data.
Furthermore, under conditions provided in Section 2, the MSMLE may not be less efficient than
the 1ISMLE. Essentially this result relies on the information in the non-overlapping data on one or
more of the variables offsetting the loss of information from estimating elements of the parameter
vector separately rather than simultaneously. If the differences in the sample sizes available for
each variable are asymptotically negligible then, as expected, our results simplify to the standard
MSMLE case, see Pagan (1986), Newey and McFadden (1994) or White (1994).

Numerous other authors have considered the problem of non-overlapping data and missing
observations. Harvey et al. (1998) suggest using the Kalman filter, while Kofman and Sharpe
(2000) discuss using the EM algorithm and its Bayesian alternative, the imputation posterior
method, for general estimation problems. Little and Rubin (1987) and Weeks (1999) present
various methods of dealing with missing observations and numerous further references on the
topic.> Anderson (1957) and Stambaugh (1997) suggest using the marginal/conditional distribution
decomposition of a joint distribution, for the case of iid multivariate normal random variables.
The approach of these latter two papers is the most closely related to ours. Our assumption that
the multivariate model is constructed using copulas allows us to deal with non-normality, with
more irregular data sets, and to further simplify the estimation of the model.

It should be pointed out that the theory presented in this paper is only applicable in the case that
the starting dates and ending dates of the series do not contain any information for the parameters
of interest that is not contained in the observed data. If the cause of the missing data, the ‘missing-
data mechanism’ in the terminology of Little and Rubin (1987), is related to the data-generating
process, then analysing only the observable data will lead to biased inference. A standard example
of a non-ignorable missing-data mechanism is when an observation is censored if its value is
greater or less than a certain value, see Tobin (1958) for example. Examples in finance where the
missing-data mechanism is not ignorable may be found in Brown et al. (1995), Goetzmann and
Jorion (1999), Weeks (1999) and Kofman and Sharpe (2000), inter alia.

The main contribution of this paper is a comparison of the MSMLE estimated using all available
data with the usual 1SMLE estimated using only the overlapping data, using both asymptotic
theory and small sample simulations. We focus on the bivariate case, but all of our methods
extend naturally to higher dimensions. We show that the existing two-stage maximum likelihood
framework, see Newey and McFadden (1994) and White (1994), requires only simple extensions
to handle this type of irregular data set. We present a sufficient condition for the MSMLE to
be not less asymptotically efficient than the 1SMLE. In finite samples we find that the MSMLE
compares favourably with the 1ISMLE for a collection of data-generating processes chosen to be
reflective of daily asset returns. Specifically, we find that the use of non-overlapping data generally
substantially improves the small sample efficiency of the estimator of the parameters relating to the
data with the longer history, without a significant deterioration in the efficiency of the estimators
of the remaining parameters. Unlike some alternative methods for dealing with irregular data sets,
the MSMLE is easily implemented in standard software packages, and these efficiency results
provide further motivation for its use on such data sets.

The second contribution of the paper is the application of the estimator to a model of the joint
distribution of daily Japanese yen—US dollar and euro—US dollar exchange rates. These are the

2 For studies of particular econometric estimators using non-overlapping and missing data, see Linton (2005), Lynch and
Wachter (2004), Schmidt (1977) and Swamy and Mehta (1975), for example.
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two most frequently traded exchange rates, making up almost half of total turnover in the FX
market,’ and this paper is one of the first to model these important variables jointly. We find
significant evidence of time variation in the conditional copula of these exchange rates, indicating
that the dependence between the yen and the euro is time-varying. We allow for a non-zero
probability of joint extreme movements via the use of the Student’s ¢ copula, and find that it
is a significant improvement over the normal copula. Our results on the conditional dependence
structure between these currencies may be used to improve international portfolio decisions, risk
management decisions involving international holdings, or for stress testing risk management
models.

The remainder of the paper is organized as follows. In Section 2 we present the multi-stage
maximum likelihood estimator and provide a brief introduction to copulas. In Section 3 we present
the results of a Monte Carlo study of the small sample properties of the estimator and in Section 4
we apply the estimator to a model of the joint distribution of yen/dollar and euro/dollar exchange
rates. We conclude in Section 5. Assumptions required for the consistency and asymptotic normality
of the estimator are presented in Appendix A, and proofs are collected in Appendix B.

2. MULTI-STAGE ESTIMATION OF COPULA-BASED MODELS
2.1. Irregular Data Sets

Let us denote the two variables of interest as X and Y. In this paper we allow for the situation
that the amount of data available on X is possibly different to that available on Y, which is
also possibly different to the amount of overlapping data on both X and Y. This scenario is
depicted in Figure 1. Let X denote the variable with the most data available. We will denote the
number of observations on X, Y and the common sample as n,, n, and n. respectively. All data
lengths are assumed to be (fixed) functions of n,. We consider cases where n,/n, — A, and
Re/Ry — Ac as ny — 00, where 0 < Ay <1and 0 < A. <1.If A, = A, =1 then the differences
in sample sizes are asymptotically negligible. If A, < 1 and/or A, < 1, then the differences in
sample sizes are asymptotically non-negligible. In some cases, such as in our study of the joint
density of the yen/dollar and euro/dollar exchange rates, it may appear more accurate to label the
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e

Figure 1. One possible scenario where the amounts of data available on each individual variable are different,
as is the amount of data available for the estimation of the copula

3 Source: Bank for International Settlements (2002). The figures quoted here are for April 2001. Euro/USD and yen/USD
turnover accounted for approximately 29.5% and 19.3% respectively of the total turnover.
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differences in sample sizes as asymptotically negligible.* However, we would argue that treating
the differences in sample sizes as asymptotically non-negligible, i.e. allowing A, < 1 and A, < 1,
generates asymptotic theory that better reflects the small sample reality, and hopefully yields
distribution results that are a closer approximation to the true unknown small sample distribution
of the parameter estimates. This is because the differences in sample sizes, which are present in
our finite sample, are maintained as we move towards asymptopia.

2.2. Multivariate Models and Copulas

We focus on multivariate density models constructed using copulas. The theory of copulas dates
back to Sklar (1959), who showed that one may decompose a joint distribution into its k univariate
marginal distributions and a copula, which describes the dependence between the variables. Below
we focus on the bivariate case, though both the theory of copulas and the estimation methods
presented here extend quite naturally to the general multivariate case. We will assume in this
paper that the distribution functions F, G and H are continuous, and sufficiently smooth for all
required derivatives to exist.
In the bivariate case, if we let X ~ F, Y ~ G and (X, Y) ~ H, then we may write:

H(x, y) = C(F(x), G(y) 1)
h(x, y) = f(x)- g(y) - c(F(x), G(y)) 2)

where C is the copula of (X, Y), and c is the copula density. As usual, we denote a distribution
function (cdf) with an upper case letter and a density function (pdf) with a lower case letter. A
copula links marginal distributions together to form a joint distribution, and completely describes
the dependence between the variables. By construction, it is a multivariate distribution function
with Uniform (0, 1) marginals. See Joe (1997) or Nelsen (1999) for an introduction to copulas.
One of the uses of this theorem in econometric modelling is in the construction of flexible
multivariate distributions: we may combine a mix of k marginal distributions of any form with
any copula to form a valid multivariate distribution. Most existing multivariate distributions are
simple extensions of univariate distributions, and often have the restrictive property that all of
the marginal distributions are of the same type (by its construction, all marginal distributions of
a multivariate Student’s ¢ are univariate Student’s z¢, for example). If the individual variables of
interest were known to be best fitted by different univariate distributions, the choice of a suitable
joint distribution was difficult.’> The application of copula theory to the analysis of economic
problems is a fast-growing field: examples of work in this field include Chen and Fan (2002),
Chen et al., (2004), Cherubini and Luciano (2002), Embrechts et al. (2003), Fermanian and Scaillet
(2003), Li (2000), Patton (2004, 2005), Rockinger and Jondeau (2001) and Rosenberg (2003).
There is a large body of work on the estimation theory underlying the numerous applications of
copula theory that have appeared in the statistics literature, see Oakes (1982), Genest and Rivest

4 The euro was introduced in January 1999, and so we have less data available on that currency than we do on the yen.
But from now on we will receive new data on both exchange rates each day and so as time progresses it is true that
ny/ny and n./n, will converge to one.

3 As recently as Farebrother (1992), for example, it was a considerable challenge in econometrics to construct an
asymmetric bivariate density with common marginal densities. Employing copula theory renders the task almost trivial:
select any asymmetric copula and use it to link any two marginal distributions of the same type. Suitable copulas include
the Clayton and the Gumbel copulas, see Joe (1997) or Nelsen (1999).
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(1993), Genest et al. (1995), Shih and Louis (1995), Joe and Xu (1996), Capéraa et al. (1997) and
Glidden (2000). This theory, however, was developed for applications where the data could be
assumed to be independent and identically distributed (i.i.d.), an assumption that is rejected for
almost every economic time series. We employ the two-stage maximum likelihood framework of
Newey and McFadden (1994) and White (1994) to overcome this restriction.

Let the conditional distribution (X;, Y,)|F;—; be parameterized as H,(0y) = C;(F:(¢0), G:(1);
ko). We assume that H, is known, but that 6, must be estimated. In general k, = h,(x,, y; Z'~", 6y)
where Z'~! is a vector of elements of F,_;. For simplicity, we will write &, (x;, y;;Z'~!, 6y) as
hi(Z'; 6y), although of course not all of the elements of Z' will be required. Similarly, we will
write f,(Z';90), 8:/(Z";v0) and ¢,(F,(Z';90), G/(Z';v0); Z'", ko) or ¢;(Z";6p). Assume for now
that the data are fully overlapping and that n, = n, = n, = n. Then

h(Z'300) = f1(Z'500) - 8:(Z"5 y0) - ct(F(Z'5900), G(Z'3%0): 21, ko) 3)

Lxy(©0)=n"">_logh(Z';6p)

t=1

n n
=13 log fi(Zs )+t log g (' )

=1 =1

n
+n7"Y loga(FiZ90). Gi(Z'10): 27" ko) )

=1
= Lx(¢o) + Ly (vo) + Lc(@o, Yo, ko) (5)

where ¢ € int(®) C R?, y eint(T') S RY, «p€int(K) S R" and so 6y = [¢), v, ko)
€ int(®) = int(®) x int(T') x int(K) € RPH = R?, where int(A) is the interior of the set A.

It will not always be the case that the parameter vector 6, decomposes neatly into three
components associated with the first margin, second margin and the copula. Examples of common
models where such a decomposition is possible are vector autoregressions and certain multivariate
GARCH models, including the CCC model of Bollerslev (1990), who was the first to propose
multi-stage estimation of multivariate GARCH models, and the DCC model of Engle (2002).
Common models where the decomposition is not possible are multivariate ARMA models and
some other multivariate GARCH models such as the BEKK model, see Engle and Kroner (1995)
and Bauwens ef al. (2003). Parameter restrictions across marginal distributions can also cause this
decomposition to fail to hold.

2.3. The Estimator

Our multi-stage maximum likelihood estimator, MSMLE, is denoted én, and its components are
given below.® To simplify notation, we assume that all samples (on X, ¥ and the common sample)
start at # = 1 and run through until # = n,, n, and n. respectively.

Ry
$n, = argmax n ! Z log f1(Z"; ¢) (6)
ped =1

6 When a quantity, such as the MSMLE, depends on the different sample sizes, ny, n y and n., we will denote it simply
with a subscript 7.
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ny

P, =argmax n3' Y loggi(Z';y) @
’ yell —1

ky, = argmax n_ 1z:logc,(Z On, ,y,, LK) ()
kel =1

O =19, 7, %, ©)

Allowing for differing sample sizes causes no complications beyond the standard case for proving
the consistency of this estimator, and so we do not present these results. We present below an
asymptotic normality result for the MSMLE presented above. This result is a simple extension
of the two-stage MLE framework discussed in Newey and McFadden (1994) and White (1994),
both of which provide thorough reviews of maximum likelihood estimation theory. The result
relies on standard regularity conditions required for asymptotic normality of an MLE, presented in
Appendix A. The asymptotic covariance matrix of this estimator is slightly different to that of the
standard two-stage MLE; the key difference introduced when allowing for histories of different
lengths is the presence of the matrix N'/2, rather than /n as in the standard case.

Theorem 1 Denote the number of observations on X, Y and the common sample as n,, n,
and n. respectively. Let ny > ny, > n. and let ny/n, — Ay and n./ny — Ac as ny — o0, where
0 <Ay, <1and 0 < A. < 1. Under regularity conditions presented in Appendix A, the estimator
0, defined in equation (9) satisfies:
_1/2 N D
BY" A2 LAY (B, — 6y) — N(O, 1) (10)

where Iy is a k x k identity matrix, and

[y -1, 0 0
N=| 0 ny-I, 0 (11)

L 0 0 ne-I,
_n;lZf';lelng? 0 0

Hess? = 0 ny' Y2 Vi log g? 0 (12)
[ 2300 Vi 1ogc? ngt 300 Vieloge) ni' 1L Vclog ]
I _IZI lslt slz (nxny)_l/zz:zl S(])Z'S(Z); (nene)™!/? = ls(])t (3)’

OPG, = | (nxny)” 122: 159, - s%, _1 Z?‘ﬁsgt 9 (nyne)™2Ye ISZt S3t (13)
| (nyne)™ 12 = 13(3)z'so/ (nyne)” 1/2 = 13(3)z S(z)/z 712; 1S3z S3r

and A° = E [Hess], BY = E [OPG"] (14)

where s, = Vlog [\(Z'; go), s = Vyloggi@'s ). o5, = Velogei(Z'so) f7 = fu(Z's )
g =g(Z" ) and ¢ = c/(Z';6p).

Remark 1 If n, =n, = n. = n, then the result above simplifies to the standard case:
—1/2

A% /n(6, —90)—>N(0 I,) (15)
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with BY and A® as defined above.

Following White (1994), we say that if V:'/2/n(6, — 69) B N(0, 1), then the asymptotic
covariance matrix of the estimator 6, is V,, or that avar(én) =V,. For the MSMLE we
have Bgfl/z SN2 LAY (6, — 6) 2 N, I), where N* = n ' N. Thus the asymptotic

. . —1 —1/2 —1/2 —1
covariance matrix is A - N / “BY - N / A%, where

At 0 0
N=lim M=| 0 aazter, 0 (16)
ny— 00 0 0 I,

If the differences in sample sizes are asymptotically negligible then A} = I, and avar(én) takes
the same form as the standard MSMLE.

Under standard conditions, see White (1994), the asymptotic covariance matrix may be
consistently estimated using the Hessian and the outer-product of the scores evaluated at the
MSMLE. Thus one estimator of V [0,] is Hess, (0,)" 'NT20PG, (9 N l/zHess,,(Q y~
n, = n, = n,, then this estimator simplifies to n_lH ess, (9 y-lopPG, (9 )H ess,, (9 L, Wthh is
the usual so-called ‘sandwich estimator’ of the variance of a MLE.

2.4. A Comparison of the Efficiency of the ISMLE and MSMLE

The asymptotic efficiency of two asymptotically normal estimators can be compared by examining
the difference of their asymptotic covariance matrices: if the matrix difference is positive (negative)
semi-definite, then the first estimator is asymptotically less (more) efficient than the second
estimator. The small sample efficiency of these estimators is compared via a Monte Carlo
experiment in the next section.

In the case that n, = n, = n. it is well known (see Le Cam, 1956, for example) that the ISMLE
is the most efficient estimator, in that it attains the minimum asymptotic variance bound, while
the MSMLE does not attain this bound. Similarly, if the difference between the sample sizes
is asymptotically negligible then the MSMLE is asymptotically less efficient than the 1SMLE,
regardless of the magnitude of the difference in the (finite) sample sizes. However, if the difference
between the sample sizes is asymptotically non-negligible then the following proposition shows
that there exist situations in which the MSMLE is asymptotically not less efficient than the ISMLE.

Proposition 1 Let the MSMLE be denoted @,,, with asymptotic covariance matrix A(,);1 - Neo 2,
B) - N& 12 ~A27”. Let the ISMLE and its asymptotic covariance matrix be denoted Ozf I and M 2(
respectively. Define D° —A(r1 BY . Aofl/

If lim n./ny,=x.<1or hm nc/ny =Aey < Land if A or Ay is ‘sufficiently small’, then
Ny—>00 ny

the MSMLE is not less eﬁ‘iczent than the ISMLE. If we let M ;; denote the (i, j)th element of the matrix
MO(‘ and similarly for D then a sufficient condition is that A, < M;;/D;; for some i € [1, p], or
that Ay <M ;;/Dj; for some j €[p+1,q]

Thus there are situations where neither estimator is more efficient than the other: the MSMLE is
a more efficient estimator of the parameters in the marginal distribution (in the proof of the above
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proposition this is for the first parameter of the first marginal distribution) while the 1SMLE is a
more efficient estimator of the copula parameters. The intuition behind this is that it is possible
to have enough extra observations on the marginal distributions to offset the loss of information
incurred by estimating each marginal distribution separately. If this is the case then the MSMLE
will be more efficient in the estimation of the marginal parameters. Regardless of the amount of
extra information available on the marginal distributions, the MSMLE for the copula parameters
will always be weakly less asymptotically efficient than the ISMLE.

If X, and Y, are conditionally independent then estimating the parameters of the two marginal
distributions separately involves no loss of information. In fact, by estimating the two marginal
distribution models separately we correctly impose the assumption that the variables are indepen-
dent. Thus it is not surprising that the MSMLE is weakly more efficient than the 1SMLE in this
case (the proof is straightforward and omitted in the interest of brevity). If n, = n, = n, then the
two estimators are equally asymptotically efficient in this case.

3. SMALL SAMPLE PROPERTIES

In this section we present the results of a Monte Carlo study of the small sample properties of
the estimators discussed above for a representative collection of DGPs. Parametric density models
have been used for macroeconomic variables such as inflation and GDP growth, see Tay and
Wallis (2000), Clements (2002) and Wallis (2003), and for asset returns, see Bollerslev (1987),
Hansen (1994), Diebold et al. (1998, 1999) and Hong et al. (2004). The simulation DGPs in this
paper are designed to reflect the stylized facts about daily asset returns: weak serial dependence
in the conditional mean, and highly persistent conditional variance.

3.1. Simulation Design

We consider three different DGPs. All three DGPs are bivariate distributions, with both marginals
being conditionally normal with the same AR(1)-~GARCH(1,1) specifications:

X, =0.01 +0.05X,_y +&, &lF1~N(©O,h)
B =0.05+0.1> | +0.851" ,
Y, =0.01 +0.05Y,_ +n;, nF—1 ~ N, h)
B =0.0540.19> , +0.851",

The DGPs differ in the amount of dependence between the two variables. We examine the case
that the variables have the Clayton copula, with the copula parameter chosen so as to imply rank
correlations of 0.25, 0.50 and 0.75. See Nelsen (1999) for more on this copula.

Xy, YO\ Fi—1 ~ H = Clayton (Normal, Normal; k)
k = 0.41,1.10 or 2.50

We do not consider DGPs with time-varying conditional dependence, nor time-varying higher-
order marginal moments, in order to keep the simulation tractable. In addition to the three DGPs,
we consider six possible data situations: n, = 1500 and 3000, and n,/n, = 0.25, 0.50 and 0.75. In

Copyright © 2006 John Wiley & Sons, Ltd. J. Appl. Econ. 21: 147-173 (2006)
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all cases we assume that n. = n,. The estimators considered are the MSMLE, @n = [(fo;h, f/,’“, /2;1(]’,

and the standard 1SMLE, éflf /. We will compare the estimators by looking at their mean squared
error’ (MSE) over 1000 replications.

3.2. Results

We computed the ratio of MSEs of the MSMLE to the 1SMLE for each of the 11 parameters
of the model.® A ratio of less than one indicates that the MSMLE has a lower MSE than the
ISMLE. To simplify interpretation we present only a summary of the complete results in Table I;
the complete results are presented in Patton (2002). For the summary results, we present the
average of the first marginal distribution’s five parameter MSE ratios, and similarly for the second
marginal distribution.’ The copula contains only one parameter, and so we present the actual ratio
of MSEs in this case.

Table 1. Efficiency of the MSMLE relative to the 1ISMLE

This table presents the ratio of the mean-squared error of the multi-stage maximum likelihood
estimator (MSMLE) of a given parameter to the one-stage maximum likelihood estimator (1SMLE) of
that parameter. We present the average ratios across the five parameters in each marginal distribution,
and the actual ratio for the (single) copula parameter. n, is the number of observations on the first
margin, and n,/n, is the ratio of the number of observations on the second margin to those on the
first. We set n. = n,. p is the rank correlation between the two variables. All simulations were done

with 1000 replications.

ny = 1500 ny = 3000
o =025 p=0.50 o =0.75 p =025 o =0.50 p=0.75
ny/ny =025
First margin 0.16 0.23 0.48 0.21 0.27 0.58
Second margin 1.07 1.94 3.07 1.18 1.74 4.07
Copula 0.24 1.03 1.42 0.97 0.87 0.99
ny/n, =0.50
First margin 0.42 0.71 0.77 0.55 0.66 1.27
Second margin 1.51 1.96 3.81 1.19 1.50 2.83
Copula 0.93 0.90 1.08 1.01 1.03 1.01
ny/ny =0.75
First margin 0.75 1.64 221 0.79 1.20 2.10
Second margin 1.07 1.52 3.49 1.08 1.56 2.75
Copula 0.92 0.95 0.94 0.98 0.97 1.01

7 Recall that the MSE of an estimator is defined as MSE (é) = R*IE(él‘ — 69)? where 0 is the estimator, 6y is the true
parameter, 6; is the estimate based on the ith Monte Carlo replication, and R is the number of replications.

81n a previous version of this paper, see Patton (2002), we also studied the one-step adjusted multi-stage maximum
likelihood estimator, see Newey and McFadden (1994) or White (1994). This estimator is a single step modification of the
MSMLE, which achieves the minimum asymptotic variance bound and may be applied to any consistent and asymptotically
normal estimator. This estimator is asymptotically fully efficient, and so has the same asymptotic covariance matrix as the
ISMLE. The small sample efficiency of this estimator is often adversely affected by the lack of precision in the estimated
Hessian that is required for its computation. This was true in our case: this estimator generally performed much worse
than both the ISMLE and the MSMLE. We do not present these results here.

9 The complete results in Patton (2002) confirm that examining only the mean ratio for each marginal distribution does
not distort the general conclusions from this simulation.
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For the low overlap case (n,/n, =0.25) we can see that for no level of rank correla-
tion was the 1SMLE as good as the MSMLE for the parameters of the first margin; all
MSE ratios are less than one. For the parameters of the second margin the MSMLE ranged
from slightly worse (MSE ratios of 1.07 and 1.18) to much worse (MSE ratios of 3.07 and
4.07) depending on the degree of dependence between the variables. For the copula param-
eter the MSMLE was comparable in finite sample accuracy to the 1SMLE: in four out of
six cases it performed slightly better, and in the remaining cases it performed slightly worse.
Thus we see that although asymptotically the MSMLE is known to be less efficient than
the ISMLE for the copula parameter, in small samples the improved estimates of the first
margin parameters often outweigh the loss of information incurred through multi-stage estima-
tion.

As one would expect a priori, greater dependence and ratios of n,/n, closer to unity generally
lead to higher MSE ratios: the loss of information from using the MSMLE rather than the ISMLE
is greater for rank correlations of 0.50 and 0.75, while the gains are smaller if there is larger
overlap between the two variables’ histories. Notice, however, that the MSE ratios of the copula
parameters do not change very much with the level of dependence or the degree of overlap. In
most cases this ratio is close to one, indicating that in terms of this parameter the two estimators
are approximately equally good.

Overall the simulation results suggest that the MSMLE is a good alternative to 1SMLE. In
addition to being much more attractive computationally,'® there were numerous situations where
the MSMLE actually outperformed the 1SMLE, as the MSMLE exploits all available information
on both variables. In the cases where a loss of efficiency was incurred, this loss was generally
moderate.

4. A MODEL OF THE EURO AND YEN EXCHANGE RATES

In this section we apply the methods discussed above to a flexible model of the conditional joint
distribution of daily Japanese yen—US dollar and euro—US dollar exchange rates. Flexible models
of joint distributions for these exchange rates have numerous potential applications: to improve
portfolio decisions, see Ang and Bekaert (2002) or Patton (2004), to improve risk measurement
and management, see Rosenberg and Schuermann (2004), or to price derivative securities with
multiple underlying assets, see Cherubini and Luciano (2002) and Rosenberg (2003). For a review
of copula-based methods in finance more generally, see Cherubini et al. (2004).

The data set employed runs from 1 January 1991 to 30 June 2003 for the yen, and from 1 January
1999 to 30 June 2003 for the euro, so n, = 3210 and n, = n. = 1159. The data are plotted in
Figures 2 and 3. It is possible that the fact that the euro was introduced on 1 January 1999, rather
than some other date, carries useful information on the conditional distribution of the euro/dollar
exchange rate. We will assume, however, that we can ignore the missing-data mechanism.!' As
usual, we will analyse the log-difference of the exchange rates.

10 Eor example, using Matlab 7 on a Pentium 4 2.4 GHz machine, the estimation of the 1SMLE and its standard errors
for the time-varying Student’s ¢ copula presented in the next section took 7 minutes 22 seconds, while the estimation of
the MSMLE and its standard errors for the same model took 1 minute 16 seconds; almost six times faster.

1 For example, if enough countries now using the euro had failed to meet the requirements laid down for joining, it is
conceivable that the emergence of the euro would have been delayed. Thus, the fact that such a delay did not occur may
carry information on the economic performance of the countries now using the euro, and possibly also on the conditional
distribution of the euro itself.
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Figure 2. The daily yen/dollar and euro/dollar exchange rates over the sample period, 1 January 1991 to
30 June 2003
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Figure 3. Log-differences (multiplied by 100) of the yen/dollar and euro/dollar exchange rates over the
sample period, 1 January 1991 to 30 June 2003

The significance of these two exchange rates in the global foreign exchange market, and the fact
that there exist quite different amounts of data on each of these variables, motivated our analysis of
the estimator above: market participants can neither wait for more euro data to arrive, nor are they
willing to throw away the additional information they have on the yen. The sample rank and linear
correlation coefficients between the exchange rate returns for the overlapping period are 0.26 and
0.25. Thus this application most resembles the low dependence (p = 0.25, our case: p = 0.26),
long first sample (n, = 3000, our case: n, = 3210) with small to medium overlapping period
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(ny/ny =nc/n, =0.25 or 0.50, our case: n,/n, = n./n, = 0.36) in our simulation. If the true
DGP for the yen/USD and euro/USD exchange rates resembles our simulated DGP, then Table I
suggests that we should expect the MSMLE to be a more efficient estimator of the parameters of
the yen margin than the ISMLE, with the MSE ratio being between 0.21 and 0.55. The MSMLE
is expected to be a slightly less efficient estimator of the euro margin parameters, with an MSE
ratio of around 1.18, and for the copula parameters we expect the MSMLE and 1SMLE to be
approximately equally accurate. For the purposes of comparison we will present results using both
the MSMLE and the 1SMLE.!?

The Student’s ¢ distribution has previously been found to provide a good fit to individual
exchange rates, see Bollerslev (1987) and Patton (2005) for example, and so we employ it for
the marginal distributions of both the yen and the euro exchange rates. For the yen margin an
AR(1,10) model'? was estimated for the conditional mean, and a GARCH(1,1) model, see Engle
(1982) and Bollerslev (1986), was estimated for the variance. We tested for the presence of a
structural break in the parameters of the yen/dollar marginal model upon the introduction of the
euro, and found some evidence of a structural break in the degrees of freedom parameter, which
changed from 3.95 to 4.52. Breaks in the remaining parameters were not significant at the 5%
level and so we imposed that they are constant. Estimation of the yen model via ISMLE uses
only post-euro data and so effectively imposes that all parameters of the model changed upon
the introduction of the euro. The fact that the remaining parameters did not significantly change
indicates that we lose information by only using post-euro data on the yen, and this is reflected
in the standard errors on the ISMLE versus the MSMLE. The euro data exhibited no statistically
significant time variation in either the conditional mean or the conditional variance, and so these
conditional moments were set to constants.'* The estimated parameters and standard errors for
these marginal distributions are presented in Table II.

It is interesting to note that although the Student’s ¢ distribution provides a good fit to both
exchanges rates, MSMLE of the degrees of freedom parameters for each margin are different;
4.52 for the yen in the post-euro period and 7.67 for the euro. A test for the significance of the
difference in these estimates yields a p-value of 0.06.'> Tests for the significance of this difference
using the 1SMLE are not significant at the 10% level, reflecting the greater estimation error in
these estimates.

The evaluation of the goodness-of-fit of the models for the marginal distributions is of critical
importance in this application: the joint distribution of the transformed variables, U, = F,(Z"; §,_)
and V, = G,(Z' 5 Vn,)> Will be modelled with a copula. If the marginal distribution models are
misspecified then the variables U, and V; will not be uniform and the copula will be misspecified.

12 The 1SMLE results are those obtained when the marginal distribution models described here are combined with the
time-varying Student’s ¢ copula described below.

13 An AR(1) model was originally specified for the conditional mean, but specification tests indicated that the 10th lag
was important for this exchange rate, and so an AR(1,10) was used.

14 Whilst zero serial correlation in exchange rate returns is not unusual, the lack of volatility clustering is surprising.
ARCH LM tests of serial correlation in squared returns up to five lags yielded a p-value of 0.18. More generally, for
lags from 1 to 20 this test indicated no volatility clustering. There was, however, significant serial correlation in absolute
returns, perhaps because absolute returns are a less noisy proxy for conditional variance. The constant volatility model
passes all of our model diagnostic tests and so we continue to use it. As more data on the euro becomes available it is
likely that volatility clustering in daily data will become more pronounced and a conditional volatility model will need to
be employed.

15 The construction of this test statistic requires the specification of the copula model. The p-value reported here is
that obtained when the time-varying Student’s ¢ copula is used. The p-values obtained using the other copula models
considered in this paper differed by less than 0.001.
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Table II. Results for the marginal distributions

This table presents the estimated parameters and asymp-
totic standard errors of the marginal distribution models for
the yen—US dollar and euro—US dollar exchange rates. An
asterisk denotes that the parameter is significantly different
from zero at the 5% level, except for the degrees of free-
dom parameters, for which the null is that the inverse of the
parameter is equal to zero. We allow for a structural break
in the degrees of freedom parameter in the yen model on 1
January 1999, and denote the pre-euro estimate by v! and
the post-euro estimate by v2.

MSMLE ISMLE
Coeff. Std error Coeff. Std error
Yen margin

Mx 0.018 0.010 0.036 0.019
P1x —0.011 0.017 —0.000 0.026
P1ox 0.056* 0.017 0.027 0.026
[on 0.008* 0.003 0.009 0.006
B 0.944* 0.012 0.959* 0.021
oy 0.045* 0.009 0.021* 0.009
vl 3.952% 0.315 — —

v2 4.521* 0.379 6.167* 0.871

Euro margin

p,% 0.016 0.018 0.025 0.019
oy 0.404* 0.022 0.347* 0.020
vy 7.672* 1.634 8.308* 1.084

We employ two simple tests proposed by Diebold er al. (1998) for evaluating the marginal
distribution models. Diebold et al. suggested testing that U, ~ i.i.d. Unif (0, 1) and V, ~ i.i.d.
Unif (0, 1) in two stages: firstly testing that U, and V, are i.i.d. via LM tests, and then testing that
they are Uniform(0, 1). We test the i.i.d. assumption by regressing (U, — U,)* and (V, — V)
on 20 lags of both variables for k = 1, 2, 3, 4. We test the Unif (0, 1) hypothesis via the well-
known Kolmogorov—Smirnov test. The results of these tests are presented in Table III. As this
table shows, both marginal distribution models pass both tests. We thus conclude that the marginal
distributions are adequately modelled, and proceed to the modelling of the copula.

There is a vast literature in statistics on the generation of families of copulas, though only a
few have been used in econometric models. For the purposes of comparison we will estimate two
copulas: the Gaussian, or normal, copula and the Student’s ¢ copula. The normal copula is the
copula associated with the bivariate normal distribution, and is the dependence function implicitly
assumed whenever the bivariate normal distribution is used. Similarly, the Student’s ¢ copula is the
dependence structure associated with the bivariate Student’s ¢ distribution. The functional forms
of these two copula densities are given below:

2 =172 —1,. 32 —1 —1
@ W+ 7 ) — 2007 W) (v)} an

1
ey (U, vy p) = ———=exp
N { 21— p?)
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Table III. LM tests of serial independence and
Kolmogorov—Smirnov tests of the marginal den-
sities

The first four rows of this table present the
p-values from LM tests of the independence
of the first four moments of the variables U,
and V,, described in the text, which correspond
to the yen and euro distribution models respec-
tively. We regress (U, — U)" and (V, — V) on
20 lags of both variables, for k =1, 2, 3, 4.
The test statistic is (T — 40) - R? for each regres-
sion, and is distributed under the null as x3,.
p-values of less than 0.05 indicate significant
serial dependence in these variables and sug-
gest that the distribution dynamics are misspeci-
fied. The final row presents the p-values from
a Kolmogorov—Smirnov test on U, and V,.
p-values of less than 0.05 indicate that the shape
of the distribution model is misspecified.

Yen margin Euro margin
First moment 0.85 0.51
Second moment 0.87 0.70
Third moment 0.78 0.67
Fourth moment 0.67 0.59
K-S test 0.59 0.39

r(+2/2/r02) | (M) o (18)

cr(u, v; p, v) = GG T — 2 v(l — p%)

for p € (=1, 1) and v > 0, where ®~! is the inverse cdf of a N (0, 1) random variable, #(-; v) is
the pdf of a Student’s ¢t random variable with v degrees of freedom, X = T~ u;v), y= T (v v)
where T~!(-;v) is the inverse cdf of a Student’s ¢ random variable with v degrees of freedom.

The Student’s ¢ copula generalizes the normal copula by allowing for non-zero dependence in
the extreme tails. This type of dependence is measured by ‘upper tail dependence’, t¥, and ‘lower
tail dependence’, 7L, see Joe (1997):

L . . . C(87 8)
o =1lmPr[U <¢|lV<e]l=1mPr [V <¢|U < ¢] = lim (19)
e—>0 e—0 e—>0 &
U1 . . 1=2584+C(,9)
T E%HI}PI‘ [U>8|V>8]=§1H}Pr [V>8|U>8]=§1H}T (20)

Two random variables exhibit lower tail dependence, for instance, if t° > 0. This would imply
a non-zero probability of observing an extremely large appreciation of the yen against the dollar
together with an extremely large appreciation of the euro against the dollar. The normal copula
imposes that this probability is zero. The two parameters of the Student’s ¢ copula, p and v, jointly
determine the amount of dependence between the variables in the extremes. Being a symmetric
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copula, the dependence between the variables during extreme appreciations is restricted to be the
same as during extreme depreciations,'® and is given by:

1—
WU = ok =oT —«/v—}—lﬂﬁ;v—}—l 1)

While there was no evidence of time variation in the conditional density of the euro/dollar
exchange rate, there does appear to be evidence of time variation in the conditional copula between
the euro/dollar and the yen/dollar exchange rates. In Figure 4 we plot simple rolling window
correlations between ®~'(U,) and ®~'(V,) over the period July 1999 to June 2003, where & !
is the inverse standard normal cdf. For the first two years the correlation was approximately zero,
while for the last two years it averaged close to 0.5.

We elected to model time variation in the conditional copula parameter in a manner similar
to that used by a GARCH model to capture time-varying volatility, or by the DCC model to
capture time-varying conditional correlations. For both copulas we set the correlation parameter
at time ¢ as a function of a constant, the correlation parameter at time ¢ — 1, and some forcing
variable. For correlation parameters the natural forcing variables to use are ® ' (u,_;) - @' (v,_;)
and T~ (u,_1;v) - T~ (v,_1; v). We elected to use the average over 10 lags due to the presence of
the 10th lag in the yen margin model. Time variation in the parameters of the conditional copulas

Rolling window correlations
T T T

T
—— 1-month window
—— 6-month window

05

o
T
|
|
I —%
=
0
—
—
=
=
F——
=
S——

-05F .

1
Jan99 Jan00 Jan01 Jan02 Jan03  Jun03

Figure 4. Rolling window correlations through the overlapping sample period, January 1999 to June 2003

16 In unreported results, we also employed the symmetrized Joe—Clayton (SJIC) copula proposed in Patton (2005). The SIC
copula has two parameters, one determining v/ and the other determining ¥, thus allowing for asymmetric dependence.
However, the asymmetry was not significant at conventional levels. Further, a test comparing the constant and time-varying
SJC copulas to the constant and time-varying Student’s ¢ copulas showed no significant difference in goodness-of-fit. We
do not report the results for the SIC copula in the interests of brevity.
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are modelled as:

10
3 1 _ _

Normal: o= A { o+ Byprr +an 5 D @7 - )@ (u-) (22)

j=1

10

5 " 1 —1 —1

Student’s 1 p, = A | wr + Broi—1 + ar s S T T (i jiv) (23)

j=1

where ®~! is the inverse cdf of a standard normal, 7~!(-, v) is the inverse cdf of a Student’s
¢t random variable with v degrees of freedom, and Ax)=(1-— e ™)/(1 4+ e™) is the modified
logistic function. This function is used to ensure that the correlation coefficients remain in (—1, 1)
at all times. The above specification is in the spirit of Hansen’s (1994) autoregressive conditional
density model. The degrees of freedom parameter in the Student’s ¢ copula was assumed to be
constant for simplicity.

From the above specifications for the conditional copula model the important question of
stationarity arises, which is required for the consistency and asymptotic normality of the MSMLE.
Whilst the conditions required for stationarity of univariate AR and GARCH processes have
been widely studied, see Hamilton (1994) for discussion and references, comparable conditions
for multivariate nonlinear processes such as those in equations (22) and (23) are not available.
Carrasco and Chen (2002) and Meitz and Saikkonen (2004) present conditions for general classes
of univariate nonlinear processes, which include as special cases GARCH, stochastic volatility
and autoregressive conditional duration (ACD) processes. Similar results for the multivariate case
would be very useful, but are beyond the scope of this paper. We are thus left to simply assume
that the conditions for stationarity hold.!”

We estimated constant and time-varying versions of these copulas, and report the parameters,
standard errors and log-likelihood values in Table IV.'® A number of insights are possible from
these results. Firstly, the best fitting constant copula is the Student’s ¢ copula with an estimated
degrees of freedom parameter of 6.27, implying substantial joint fat tails. The implied tail
dependence coefficient for the Student’s ¢ copula is 7Y = %' = 0.08, with a 95% confidence
interval of [0.02, 0.15]. Thus when one variable takes an extreme value there is about an 8%
chance of the other variable taking an extreme value. A simple likelihood ratio (LR) test for the
significance of the improvement in the log-likelihood of the Student’s ¢ copula over the normal
copula yields a p-value of less than 0.001, indicating that the constant Student’s ¢ copula yields
a significantly better fit than the normal copula.

In Figure 4 we saw evidence of time variation in the conditional copula, and so we now turn to
the time-varying conditional copula specifications. Comparing the time-varying normal with the
time-varying Student’s ¢ we again see a substantial improvement in the likelihood, and a LR test
again yields a p-value of less than 0.001 in favour of the Student’s ¢ copula. The estimated
degrees of freedom parameter for the time-varying Student’s 7 copula is larger than for the

17 A heuristic method of determining whether stationarity is a reasonable assumption is to simulate the conditional copula
using the estimated parameters. One can then plot the resulting time series for p; to see whether it diverges to %1, or
exhibits other clear violations of stationarity. We did this for the parameter estimates presented below and found no clear
violations of stationarity. This is of course no substitute for having theoretical sufficient conditions for stationarity.

18 We do not present the copula log-likelihood values for the ISMLE as these are not comparable across copula models;
only the joint log-likelihood values for each model are comparable for this estimator.
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Table IV. Copula model results

This table presents the estimated copula parameter and the value of the copula likelihood, L., at

the optimum for the copula models considered in this paper. An asterisk denotes that the parameter

is significantly different from zero at the 5% level, except for the degrees of freedom parameters, for

which the null is that the inverse of the parameter is equal to zero. Copula likelihoods for the 1ISMLE
are not comparable across copula models and so are not reported.

Model Parameter MSMLE 1SMLE
Estimate Std error Lc Estimate Std error

Constant normal ON 0.268* 0.031 41.96 0.194* 0.023
Constant Student’s ¢ or 0.279* 0.030 53.77 0.202* 0.025
v 6.273* 1.452 11.026* 2.280
Time-varying normal WN 0.219 0.116 61.49 0.153 0.099
ay 0.627* 0.274 0.303* 0.135
By 0.695 0.610 0.736 0.649
Time-varying wr 0.315* 0.124 71.08 0.207 0.111
Student’s ¢ ar 0.587* 0.194 0.288* 0.138
Br 0.300 0.550 0.409 0.707
vr 7.388* 1.901 11.861* 1.731

constant Student’s ¢ copula, indicating that some joint extreme events are generated by time-varying
correlations rather than by joint fat tails, in the same way that time-varying heteroskedasticity can
explain some of the excess kurtosis in the unconditional distribution of individual asset returns.
(Recall that kurtosis is inversely related to the degrees of freedom parameter for a Student’s ¢
random variable.) A test that the degrees of freedom parameter is the same for both exchange
rates and for the time-varying Student’s ¢ copula in the post-euro period yields a p-value of 0.095.
So while components of different multivariate Student’s ¢ densities fit these exchange rate data
well, a single multivariate Student’s ¢ density appears too restrictive a specification.

Testing for the significance of time variation in the conditional copula is complicated by
the presence of a nuisance parameter that is unidentified under the null hypothesis of no time
variation.!” In our case we may test this null by first noting that the autoregressive parameter in
the Student’s ¢ copula model, for example, denoted Sz, is not significantly different from zero.
Thus we could re-estimate this model imposing that 8 = 0, making this model for the conditional
correlation parameter resemble an ARCH model. Testing for the significance of time variation in
such a model is done via a simple test that oy equals zero. Following such a procedure yields
a p-value of less than 0.001, indicating that time variation in the conditional copula is indeed
significant.

In Figure 5 we plot the time path of the conditional correlation implied by the time-varying
Student’s ¢ copula model.?° For comparison we also plot the conditional correlation obtained from
the dynamic conditional correlation (DCC) model of Engle (2002). This model for the conditional

19 Methods for overcoming this problem have been proposed for simpler time series models, see Andrews and Ploberger
(1994) for example. Notice that we do not need to constrain o7 > 0, as is needed in GARCH models, and so a7 =0
does not represent a boundary of the parameter space, meaning we avoid this potential problem.

20 The conditional correlation between the exchange rates is not the same as the correlation parameter in the Student’s ¢
copula model, as the marginal distributions and the copula have different degrees of freedom parameters. We obtain the
conditional correlation implied by the model via simulation.
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Conditional correlation in the time-varying Student's t copula and DCC models
08 T T T T
t copula

—— DCC

-0.4
Jan99 Jan00 Jan01 Jan02 Jan03 Jun03

Figure 5. Conditional correlation estimates from the time-varying Student’s ¢ copula model and the DCC
model over the period January 1999 to June 2003

covariance matrix is also specified in stages; with models for the conditional variance estimated
first, and the model for the conditional correlation estimated in a final stage, thus satisfying
the restriction that the parameter vector may be partitioned into parts relating to the marginal
distribution and the copula. We used the same mean and variance models as presented above,
and employed a simple DCC(1,1) specification. Figure 5 shows that the two models yield similar
estimates of the conditional correlation over the sample period: both yield correlation estimates
around or below zero during 2000, for example, and both indicate that correlation rose substantially
since then.

While the estimates of conditional correlation are qualitatively similar from the Student’s ¢
copula and the DCC models, the estimates of conditional tail dependence are very different. Taken
as a model for the entire density, with margins and copula assumed to be normal, the DCC
model implies zero tail dependence for every day, as does any model using a normal copula.’!
In Figure 6 we plot the estimated conditional tail dependence from the constant and time-varying
Student’s ¢ copula models. As in the conditional correlations, we see substantial time variation
in tail dependence, ranging from 0.003 in September 2000, to 0.28 in July 2002. Figure 6 thus
indicates that the probability of these joint extreme movements can range from near zero to over
one-quarter.

To test the goodness-of-fit of these copulas we follow the method proposed in Diebold et al.
(1999). This method involves using the conditional cdf of U, given V,, and V, given U,. Let
Wi = CipU|Vy) and Wy, = Cy1(V,|U,). If the copula is correctly specified then the time series

21 The DCC model was originally proposed as a model for the conditional covariance matrix, rather than for the entire
conditional distribution. The most obvious copula to use in combination with a DCC model is the normal copula, but
this is by no means the only possibility. Indeed, it is possible to use the DCC specification of the conditional correlation
matrix in any other copula model that has a correlation-type matrix as a parameter; the Student’s ¢ copula for example.
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Tail dependence in the Student's t copula model
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Figure 6. Conditional tail dependence estimates from the Student’s ¢ copula models over the period January
1999 to June 2003

Table V. LM tests of serial independence and Kolmogorov—Smirnov
tests of the copula

This table presents the p-values from LM tests of serial independence of
the first four moments of the variables (U,, W,,) and (V,, Wy,), described
in the text, for the four copula models considered. We use 20 lags in all
tests. Any p-value less than 0.05 indicates a rejection of the null hypoth-
esis that the particular model is well-specified. We also report the p-value
from the Kolmogorov—Smirnov test for the adequacy of the distribution

model.
Constant copulas Time-varying copulas
Normal Student’s ¢ Normal Student’s ¢
First moment 0.36 0.29 0.31 0.25
0.16 0.12 0.16 0.12
Second moment 0.51 0.38 0.45 0.33
0.17 0.11 0.17 0.12
Third moment 0.53 0.39 0.50 0.38
0.14 0.09 0.14 0.10
Fourth moment 0.48 0.36 0.48 0.39
0.11 0.08 0.09 0.08
K-S test 0.97 0.86 0.37 0.50
0.93 0.94 0.33 0.31

(..,U, Wy, ...)~iid Unif (0, 1) and (..., V;, Wy, ...) ~ iid Unif (0, 1). We test this null
by again testing for serial correlation in the first four moments of these series, and by the K-S
test for uniformity. The results of these tests are presented in Table V. The specification tests
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provide no evidence against any of the four copula specifications. This is perhaps reflective of
the difficulty in detecting deviations from the correct specification of a bivariate density with only
1159 observations.

5. CONCLUSION

This paper compared two maximum likelihood estimators (MLEs) of the parameters of a
multivariate model for time series with histories of different lengths. Numerous situations exist
where differing amounts of data are available on the variables of interest: models of developed
and emerging markets, models of recently floated stocks and the market portfolio, and models
involving the euro.

The benchmark estimator in this paper is the standard one-stage MLE estimated using only
the overlapping data. The alternative estimator is a simple modification of the two-stage MLE of
Newey and McFadden (1994) and White (1994). In addition to greatly simplifying the estimation
of the model by breaking the estimation problem into smaller problems, the multi-stage estimator
is designed to use all available data on each series. This estimator may be interpreted as an
extension of Anderson (1957) and Stambaugh (1997) to more irregular data sets, and to non-
normal, serially dependent random variables. We compared the theoretical asymptotic efficiency
of the estimators, and provided a sufficient condition for the multi-stage estimator to be not less
efficient than the one-stage estimator. Simply put, the information gained by using non-overlapping
data must outweigh the information foregone by estimating the parameter vector in stages rather
than simultaneously. We compared the small sample efficiency of the estimators via a Monte
Carlo study designed to replicate the key features of daily financial time series, and found that the
multi-stage estimator was often more efficient than the one-stage estimator, and in most cases not
less efficient.

We applied our estimator to a model of the joint distribution of daily Japanese yen—US dollar and
euro—US dollar exchange rates, over the period 1 January 1999 to 30 June 2003. These rates are the
two most frequently traded exchange rates, and much more data is available on the yen than on the
euro. We found that the Student’s ¢ distribution fits both exchange rates well, though the degrees of
freedom parameter is different for the different exchange rates. We estimated two different copula
models, with and without time variation in the parameters. Time variation in the conditional copula
was found to be statistically significant, indicating that the assumption of constant correlations or
a constant copula could lead to inferior portfolio or risk management decisions. Further, allowing
for joint extreme events via the Student’s ¢ copula significantly improved the fit. The probability
of joint extreme events varied over the sample period, from near zero to over one-quarter.

APPENDIX A: ASSUMPTIONS

Presented below are the assumptions required for Theorem 1. They are collected here for
convenience and ease of reference. Most of these assumptions are based on those presented in
White (1994). In addition to the assumptions below we make the usual assumptions that observed
data are a realization of a stochastic process on a complete probability space and that all functions
are measurable.
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Assumption 1 (Conditions on the log-likelihoods)
(a)
(i) For each ¢ € ®, E[log f(Z', ¢)] exists and is finite, t = 1,2, ...

(ii) For each y € T, E[log g(Z', y)] exists and is finite, t = 1,2, ...
(iii) For each 0 € ©, E[logc(Z', 0)] exists and is finite, t = 1,2, ...

(D)
(i) E[log f(Z', )] is continuous on ®,t=1,2,...

(ii) E[log g(Z', -)] is continuous on T, t = 1,2, ...
(iii) E[log c(Z', -)] is continuous on ©,t=1,2, ...

(c) {log f(Z', 0)}, {logg(Z"; v)} and {logc(Z';0)} obey the weak uniform law of large numbers.

Assumption 2 {n' >, E[log f(Z';¢)]} and {n;l " Ellog g(Z"; y)]} are O (1) uniformly
on ® and T respectively, and {n;l =, Ellog f(Z’;-)]} and {n;1 ;li] E[logg(Z‘;')]} have

unique maximizers @o and vy interior to ® and T.

Assumption 3  f(Z';.), g(Z";-) and c(Z';") are continuously differentiable of order 2 on ®, '
and © respectively almost surely, t =1,2, .. ..

Assumption 4 (Conditions on the scores)

(a)

(i) Forall g € ®, E [n;' > 1 51(Z";9)| < 00
(ii) Forall y €T, E n;l Zfz‘l $(Z% )| < o0
(iii) For all 0 € ©, E [n;' >0, s3(Z";0)| < o0

(b)

() E [n;' Y0, 51(Z"; )] is continuous on ® uniformly in n, = 1,2, ...
(ii) E n;l 221 $2(Z";y)| is continuous on T uniformly in ny =1,2,....

(iii) E [n71 Y0, 53(Z";0)| is continuous on © uniformly in n. = 1,2, ....
(c)

(i) {s1(Z"; )} obeys the weak uniform law of large numbers
(ii) {s2(Z"; y)} obeys the weak uniform law of large numbers
(iii) {s3(Z"; 0)} obeys the weak uniform law of large numbers
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where s1(Z';¢) = V,log f(Z';¢), s2(Z';y) = V, logg(Z';y) and s3(Z';0) = Vlogc(Z';0) are
the vectors of scores.

Assumption 5 (Conditions on the hessians)

(a)

(i) Forall o € ®, E [n;' Y 1% Vy,log f(Z'59)] <00, ny=1,2,....
(ii) Forall y € T, E [n;' Y1, 9, logg(Z’;y)} <oony =12, ...
(i) Forall 0 € ©, E [n;' 377, Vi logc(Z';0)], E [n7' 327, Ve loge(Z';0)] and E [n7' Y7,
Ve logc(Z’;Q)] are <oo, n,=1,2,....

(b)

(i) E [n7' >0, Vg, log f(Z'5¢)] is continuous on ® uniformly in n, =1,2,....
G E|n'S, Vv, 1o g(Z'; )| is continuous on T uniformly in n, =1,2, ....
y =1 Yyy 108 ¥
(iii) E [n7' 30 Ve log e(Z'50)], E [n7' 307, Ve loge(Z';0)] and E [n7' 31, V. log c(Z';6)]
are continuous on © uniformly in n. =1,2,....

(c)

(i) {Vyy log f(Z"; @)} obeys the weak uniform law of large numbers
(ii) {V,, log g(Z'; y)} obeys the weak uniform law of large numbers
(iii) {Via- log c(Z";0)}, {Vy log c(Z";0)} and {V,, logc(Z';0)} obey the weak uniform law of large
numbers.

Assumption 6 {Ag}, as defined in Theorem 1, is O (1) and negative definite uniformly in n.

Assumption 7 Let $ and ¥ be consistent estimators of o and y. Then {n;' 3" 1< logc(Z"; §,
v, K)} has a unique maximizer K interior to K.

Let us simplify notation for the following assumption: let 5%, = s;(Z'; @) and 5y, = 51(Z"; §,,).
Similarly for s, and s3. Let us define logg(Z';y) =V, logg(Z';y) =0 for t>n, and
logc(Z';0) = V,loge(Z';,60) = 0 for ¢t > n. to deal with time indices beyond the sample sizes
available.

Assumption 8 The double array {[n7'/?s", nyY 259, n=1259.1'} obeys the central limit theorem
with covariance matrix BS, given below, where VBS is O (1) and positive definite.

— / _ ny / _ /
ny : Z;l;l E[s(l)t : ‘;(l)t] v (nxny) 1/2” t;l f[s(l)(t) : sgt] (nxnc) 12 :1;1 E[S?)t ’ S%t]
B , a ; / _ e ’
Bg = | (nyny) 172 >l Elsy, - 87, ny1 >l Elsy, - s3] (nync) 172 1 Elsy, - 53,1
— . / _ . / _ . /
(nyne) 12 ?;l E[S(S)t : S(l)t] (”ync') 1/2 :1;1 E[Sg[ ’ sgt] n. ! Z?;l E[S(S)t : S(S)t]
(24)
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The above definition of the covariance matrix B? is the natural extension of the standard
definition to the case of unequal amounts of data, and reduces to the standard case when
ny =n, =n.. To see where the unusual scaling figures come from, recall that the covariance
matrix is defined as

_ 12 0 1/2 o 71/2 0
B, = var E[n S| h Sy, 1 s3t]

Noting that the expectation of the scores are zero at the true parameter, and expanding the above
expression for the variance yields equation (24).
Let B, (0) be the matrix B, evaluated at the point 6, and so Bg defined above equals B, (6)).

Assumption 9

(a) The elements of B, (0) are finite and continuous on ® uniformly in n, =1,2,....
(b) The elements of {[sY;, 53,551 - [s%;, 53, 551} obey the weak uniform law of large numbers.

Andrews (1988), Gallant and White (1988), White (1994) and White (2001) provide some
results on laws of large numbers for dependent, heterogeneously distributed random variables that
may be used to satisfy Assumption 9(b).

APPENDIX B: PROOFS

Proof of Theorem 1. Here we provide a sketch of the modifications that need to be made to the
standard MSMLE proof of asymptotic normality (see theorem 6.11 of White, 1994, for example)
to accommodate the differing sample sizes.

Let

Hess,(0) =

_l Zm P log f(Z";¢) 0 0
—_ ny
0 nyl Zzé] Vyy IOggl(Zt;V) 0
nc_l Z:lél V«JK log Ct(Zt;e) nc_l Z:lél Vyic log Ct(Zt;'g) nc_l Z:lél Vi log CI(ZI;G)

and A(0) = E[Hess(0)], so A(fy) = AY.

As usual, the proof starts by taking a mean value expansion of the scores evaluated at the
estimated parameters about the scores evaluated at the true parameters, which equal zero due to
the assumption that the true parameters lie in int (©).

ne S su( ) ny S s g0) T
0= nt S (2 Pn,) = | ny 2 s (Z ) | + Hess@,) - | 7, — w0
nct L 53 (2 s T en,) ng' S22y su(Z'60) Kn, — Ko
where 8, = af, + (1 — @)f, and « € [0, 1]. So
[P et S s1(Z o)
Hess@n) | 7, =0 | == | 1y Sir suZ":00)
Kine — Ko w32 6)
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—12 _ 60"» — %o —1/2 _";i/z ZZFxl s1:(Z"590)
BY " N2 . Hess(@,) - Vo, — V0 | = -BY . ny 1252 su(Zh )

Kn, = Ko _”c_]/z :21 53,(Z";6p) |

o an n, — 0 o [ B @)

BY " NYELA@) - | a0 | =BT | ny P 5w ) | 4 0,(1)
Kn. = Ko L nZ 23002 532 60)
D
— N(0, 1))

by theorem 8.10 of Lehmann and Casella (1998, p. 58) and assuming that the scores satisfy the
conditions of a central limit theorem. ]

ProofA of Proposition 1. The 1SMLE is more efficient than the MSMLE if (avar(@,,) —
avar(@,ﬁ(f ) is a positive semi-definite matrix. Consider the case that A. < M;/D;,. Notice that

we may write the first (p x p) elements of the matrix Agfl NP B NP 'A(,);l/ as Ac
times the first (p x p) elements of the matrix DS. Let B = [B, 0], where 0 is a column vector of
p+qg+r—1zeros and 8 € R\{0}. Then the quadratic form
B - (avar(®,) — avar@ 1)) - p=§ - (AY - N2 BO . 22 AT M) B
= B2 (D11 — M)

M
2 11
< B | =—Du —M11>
<D11

=0
Whereas if we let B = [0, ] then we find:

B - (avar(®,) — avar@' 1)) - =B - (AY" - NZV?-BY . NS A M0 B
- ﬁz(Ds,s - Ms,s)

> 0 by the efficiency of the one-stage estimator

Thus the difference between the asymptotic covariance matrices is indefinite. [ ]
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