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We propose a decomposition of the realized covariance matrix into components
based on the signs of the underlying high-frequency returns, and we derive the asymp-
totic properties of the resulting realized semicovariance measures as the sampling in-
terval goes to zero. The first-order asymptotic results highlight how the same-sign and
mixed-sign components load differently on economic information related to stochastic
correlation and jumps. The second-order asymptotic results reveal the structure under-
lying the same-sign semicovariances, as manifested in the form of co-drifting and dy-
namic “leverage” effects. In line with this anatomy, we use data on a large cross-section
of individual stocks to empirically document distinct dynamic dependencies in the dif-
ferent realized semicovariance components. We show that the accuracy of portfolio
return variance forecasts may be significantly improved by exploiting the information
in realized semicovariances.

KEYWORDS: High-frequency data, realized variances, semicovariances, co-jumps,
volatility forecasting.

1. INTRODUCTION

THE COVARIANCE MATRIX OF ASSET RETURNS arguably constitutes the most crucial in-
put for asset pricing, portfolio, and risk management decisions. Correspondingly, there is
a substantial literature devoted to the estimation, modeling, and prediction of covariance
matrices dating back more than half a century (e.g., Kendall (1953), Elton and Gruber
(1973), and Bauwens, Laurent, and Rombouts (2006)). Meanwhile, a rapidly-growing re-
cent literature has forcefully advocated the use of high-frequency intraday data to more
reliably estimate lower-frequency return covariance matrices (e.g., Andersen, Bollerlsev,
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Diebold, and Labys (2003), Barndorff-Nielsen and Shephard (2004b), and Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2011)).

Set against this background, we propose a decomposition of the realized covariance
matrix into three realized semicovariance matrix components dictated by the signs of the
underlying high-frequency returns. The realized semicovariance matrices may be seen as
a high-frequency multivariate extension of the semivariances originally proposed in the
finance literature (e.g., Markowitz (1959), Mao (1970), Hogan and Warren (1972, 1974),
and Fishburn (1977)). Our high-frequency theoretical analysis is inspired by and extends
the pioneering work of Barndorff-Nielsen, Kinnebrock, and Shephard (2010).

To fix ideas, let Xt = (X1�t� � � � �Xd�t)
� denote a d-dimensional log-price process, sam-

pled on a regular time grid {i�n : 0 ≤ i ≤ [T/�n]} over some fixed time span T > 0. Let
the ith return of X be denoted by �ni X ≡Xi�n −X(i−1)�n . The realized covariance matrix
(Barndorff-Nielsen and Shephard (2004b)) is then defined as

Ĉ ≡
[T/�n]∑
i=1

(
�ni X

)(
�ni X

)�
�

If we let p(x) ≡ max{x�0} and n(x) ≡ min{x�0} denote the component-wise positive
and negative elements of the real vector x, the corresponding “positive,” “negative,” and
“mixed” realized semicovariance matrices are then simply defined as

P̂ ≡
[T/�n]∑
i=1

p
(
�ni X

)
p
(
�ni X

)�
� N̂ ≡

[T/�n]∑
i=1

n
(
�ni X

)
n
(
�ni X

)�
�

M̂ ≡
[T/�n]∑
i=1

(
p
(
�ni X

)
n
(
�ni X

)� + n(�ni X)p(�ni X)�)�
(1)

Note that Ĉ = P̂ + N̂ + M̂ for any sampling frequency �n. The concordant realized semi-
covariance matrices, P̂ and N̂ , are defined as sums of vector outer-products and thus
are positive semidefinite. By contrast, the mixed semicovariance matrix, M̂ , has diagonal
elements that are identically zero, and thus is necessarily indefinite.

As an illustration of the different dynamic dependencies and information conveyed by
the realized semicovariances, Figure 1 plots the daily realized covariance averaged across
500 randomly-selected pairs of S&P 500 stocks, together with its concordant (P̂ + N̂) and
mixed (M̂) semicovariance components.1 The mixed component is, of course, always neg-
ative, while the concordant component is always positive. The two components are typi-
cally similar in magnitude during “normal” time periods, while in periods of high volatility
the concordant component increases substantially more than the mixed component de-
clines, in line with the widely-held belief that during periods of financial market stress,
correlations between financial assets tend to increase. As such, the (total) realized co-
variance is largely determined by the concordant realized semicovariance components in
these “crisis” periods.

1Each day, we randomly draw 500 pairs of assets and compute C ≡ (1/500)
∑

j �=k Ĉjk. P , N , and M are
computed similarly. A detailed description of the data is provided in Section 4 below. To avoid cluttering the
figure, we sum P and N into a single concordant component, and smooth the daily measures using a day t− 25
to day t + 25 moving average.
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To help understand these empirical features, consider a simple setting in which the
vector log-price process Xt is generated by a Brownian motion with constant drift b, unit
volatility, and constant correlation ρ. Although stylized, this simple model captures the
central force in the first-order asymptotic behavior of the semicovariance estimators in
the no-jump setting; we provide a more general analysis below. Normalizing T = 1, by the
law of large numbers the probability limits (as �n → 0) of the (j�k) off-diagonal elements
of the realized semicovariance matrices are then given by

plim P̂jk = plim N̂jk =ψ(ρ)� plimM̂jk = −2ψ(−ρ)�
where

ψ(ρ)= (2π)−1
(
ρarccos(−ρ)+√1 − ρ2

)
(2)

corresponds to E[Z1Z21{Z1<0�Z2<0}] for (Z1�Z2) bivariate standard normally distributed
with correlation ρ. As these expressions illustrate, the limiting values of the semicovari-
ance components depend crucially on the value of ρ. As ρ increases to 1, the limiting value
of the concordant component P̂ + N̂ also approaches 1, while the mixed component M̂
approaches zero, and vice versa when ρ decreases to −1. This is consistent with the em-
pirical observation from Figure 1 that the concordant component accounts for most of the
covariance in periods of market stress, which are generally believed to be accompanied
by increased positive correlations.

This simple diffusive setting highlights the potentially different information conveyed
by the concordant and the mixed semicovariance components. It does not, however, re-
veal any differences between the P̂ and N̂ components as they have the same limits in
this stylized setting. This is at odds with the intuition that these measures carry distinct
economic information about good and bad news over each day. To illustrate, Figure 2
presents high-frequency returns on each of the 30 Dow Jones Industrial Average (DJIA)
stocks on two different days. On September 18, 2013 (left panel), the Federal Reserve
announced that it would not taper its asset-purchasing program, in contrast to what the
market had been anticipating, and individual stocks responded with positive jumps at

FIGURE 1.—Realized covariance decomposition. Note: The figure plots the time series of the concordant
semicovariance (P̂ + N̂), the mixed semicovariance (M̂), and the realized covariance (Ĉ). Each series is con-
structed as the moving average of the relevant daily realized measures averaged across 500 random pairs of
S&P 500 stocks.
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FIGURE 2.—Signed return-pairs for DJIA stocks. Note: The figure shows a scatter plot of the one-minute
returns of each pair of the 30 Dow Jones Industrial Average stocks on two days in 2013. The left panel presents
a day with an FOMC announcement that led to positive stock price jumps for many stocks. The right panel
presents a day with steady downward price moves for many stocks.

the announcement time, resulting in much larger estimates of P̂ than N̂ . By contrast, on
February 25, 2013 (right panel), the DJIA drifted down by 1.5% over the course of the
day amid concerns, according to market anecdotes,2 about political uncertainty in Italy,
and generated much larger estimates of N̂ than P̂ . Hence, the empirical estimates of P̂
and N̂ can indeed differ depending on the directional content of the news, and whether
it manifests in the form of price jumps or price drifts.

Motivated by these empirical observations, in Section 2 we derive first- and second-
order asymptotics for the positive and the negative semicovariance estimators in a general
Itô semimartingale setting, focusing particularly on a deeper understanding of the infor-
mation they convey. Extending the work of Barndorff-Nielsen, Kinnebrock, and Shephard
(2010), our limit theory identifies three channels through which P̂ and N̂ may differ: di-
rectional “co-jumps,” a type of “co-drifting,” and a specific form of “dynamic leverage
effect.” The co-jump channel manifests straightforwardly in the first-order asymptotics.
In particular, assuming that the vector log-price process in the aforementioned example
is subject to finite activity jumps, it follows readily that

plim P̂jk = ψ(ρ)+
∑

0<s≤1

p(�Xj�s)p(�Xk�s)�

plim N̂jk = ψ(ρ)+
∑

0<s≤1

n(�Xj�s)n(�Xk�s)�

where �Xj�s denotes the jump of the jth component of X at time s. By comparison, co-
drifting and dynamic leverage effects manifest in second-order bias terms in a non-central
limit theorem.

These terms are unique to our analysis of realized semicovariances, and, from a
methodological perspective, they set our asymptotic analysis apart from standard high-
frequency econometric analysis, in which central limit theorems are generally applied for
the purpose of conducting statistical inference (see, e.g., Aït-Sahalia and Jacod (2014)).
By contrast, the main purpose of our higher-order asymptotic results is to “dissect” the

2Source: https://money.cnn.com/2013/02/25/investing/stocks-markets/index.html.

https://money.cnn.com/2013/02/25/investing/stocks-markets/index.html
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semicovariance estimators, thereby allowing for additional theoretical and empirical in-
sights by comparing and contrasting the relevant terms.

To gain more insights into the price behaviors illustrated in Figure 2, we employ a stan-
dard truncation technique (Mancini (2001)) to separately study the jump and diffusive
information in positive and negative semicovariances. For the jump component, we es-
tablish a feasible central limit theorem that facilitates formal statistical inference. For the
diffusive component, which is more complicated to study, we provide a standard error
estimator that quantifies its sampling variability in a well-defined sense, and which, under
more restrictive regularity conditions, also yields an asymptotically valid test.

Implementing the new inference procedures on high-frequency data for the 30 DJIA
stocks over a nine-year period reveals strong evidence of significant differences in the P̂
and N̂ semicovariance components on many days. Consistent with economic intuition,
large differences in the jump semicovariance components are typically associated with
“sharp” public news announcements (e.g., FOMC announcements). Large differences in
the diffusive semicovariance components are typically associated with more difficult-to-
interpret news, which manifests in the form of common price drifts within the day.3

The above results naturally suggest that decomposing the realized covariance matrix
into its semicovariance components may be useful for volatility forecasting. We investi-
gate this idea by analyzing a large cross-section of stocks composed of all of the S&P 500
constituents. We show that out-of-sample forecasts of portfolio return volatility are sig-
nificantly improved by using semicovariance measures. The gains from doing so increase
with the number of stocks included in the portfolio, although in line with the gains from
portfolio diversification, they appear to plateau at around 30–40 stocks in the portfolio.
Further dissecting the forecasting gains, we find that the models that use realized semico-
variances generally respond to new information faster than models that use only realized
variances or semivariances (e.g., Corsi (2009) and Patton and Sheppard (2015)). Inter-
estingly, during the financial crisis existing volatility models reduce the weight on recent
information, whereas semicovariance-based models increase the weight, primarily due to
an increase in the short-run importance of the negative semicovariance component.

The forecasting gains obtained through the use of the realized semicovariances are nat-
urally linked to the early work on asymmetric volatility models (e.g., Kroner and Ng (1998)
and Cappiello, Engle, and Sheppard (2006)). Our proposed tests for differences between
positive and negative semicovariance components are also related to existing tests for
asymmetric dependencies (e.g., Longin and Solnik (2001), Ang and Chen (2002), and
Hong, Tu, and Zhou (2007)). Our work also connects to earlier empirical results on cor-
relations between asset returns in “bear” versus “bull” markets, and notions of asymmet-
ric tail dependencies (e.g., Patton (2004), Poon, Rockinger, and Tawn (2004), and Tjøs-
them and Hufthammer (2013)), and to recent work on high-frequency based co-skewness
and co-kurtosis measures (e.g., Neuberger (2012) and Amaya, Christoffersen, Jacobs, and
Vasquez (2015)), and jumps and co-jumps (e.g., Das and Uppal (2004), Bollerslev, Law,
and Tauchen (2008), Lee and Mykland (2008), Mancini and Gobbi (2012), Jacod and
Todorov (2009), Aït-Sahalia and Xiu (2016), and Li, Todorov, and Tauchen (2017b)). In
contrast to all of these studies, however, we retain the covariance matrix as the summary
measure of dependence, and instead use information from signed high-frequency returns
to “look inside” this matrix to obtain additional information about the inherent depen-
dencies, both dynamically and cross-sectionally at a given point in time.

3The two days plotted in Figure 2 also correspond to these two scenarios, and are indeed detected by using
the new inference method, as further discussed in Section 3 below.
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The rest of the paper is organized as follows. Section 2 presents the first- and second-
order asymptotic properties of the realized semicovariances. Readers primarily interested
in empirical applications of the new measures may skip the more technical parts of Sec-
tion 2. Section 3 discusses our empirical findings from the new semicovariance-based tests.
Our results pertaining to the use of the realized semicovariances in the construction of im-
proved volatility forecasts are discussed in Section 4. Section 5 concludes. Technical reg-
ularity conditions and proofs are deferred to the Appendix. Additional robustness checks
and extensions are available in the Supplemental Material (Bollerslev, Li, Patton, and
Quaedvlieg (2020)).

2. INFORMATION CONTENT OF REALIZED SEMICOVARIANCES: AN ASYMPTOTIC ANALYSIS

In this section, we demonstrate the differential information embedded in the realized
semicovariance measures in equation (1) in an infill asymptotic framework. Sections 2.1
and 2.2 present the first- and the second-order asymptotics, respectively. Section 2.3 de-
scribes feasible inference methods. Below, for a matrixA, we denote its (j�k) element by
Ajk and its transpose by A�. Convergence in probability and stable convergence in law

are denoted by
P−→ and

L-s−→, respectively. All limits are for the sample frequency �n → 0
on a probability space (Ω�F�P).

2.1. First-Order Asymptotic Properties

Suppose that the log-price vector Xt is an Itô semimartingale of the form

Xt =X0 +
∫ t

0
bs ds+

∫ t

0
σs dWs + Jt� (3)

where b is the Rd-valued drift process, W is a d-dimensional standard Brownian motion,
σ is the d× d dimensional stochastic volatility matrix, and J is a finitely active pure-jump
process. We denote the spot covariance matrix of X by ct ≡ σtσ�

t and further set

vj�t ≡ √
cjj�t� ρjk�t ≡ cjk�t

vj�tvk�t
� (4)

That is, vj�t and ρjk�t denote the spot volatility of asset j and the spot correlation coeffi-
cient between assets j and k, respectively. We explicitly allow for so-called “leverage ef-
fect” (i.e., dependence between changes in the price and changes in volatility), stochastic
volatility of volatility, volatility jumps, and price-volatility co-jumps.

We begin by characterizing the first-order limiting behavior of the realized semicovari-
ance estimators defined by equation (1) in the Introduction. Let �Xs denote the price
jump occurring at time s, if a jump occurred, and set it to zero if no jump occurred at
time s. Further define

P† ≡
∑
s≤T
p(�Xs)p(�Xs)

��

N† ≡
∑
s≤T
n(�Xs)n(�Xs)

��

M† ≡
∑
s≤T

(
p(�Xs)n(�Xs)

� + n(�Xs)p(�Xs)
�)�
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These measures characterize the discontinuous parts of the semicovariance measures, as
formally spelled out in the following theorem.

THEOREM 1: Under Assumption 1 in the Appendix, (P̂� N̂� M̂)
P−→ (P�N�M), where P ,

N , and M are d× d matrices with their (j�k) elements given by

Pjk ≡
∫ T

0
vj�svk�sψ(ρjk�s) ds+ P†

jk�

Njk ≡
∫ T

0
vj�svk�sψ(ρjk�s) ds+N†

jk�

Mjk ≡ −2
∫ T

0
vj�svk�sψ(−ρjk�s) ds+M†

jk�

and ψ(·) is defined in equation (2).

It follows from Theorem 1 that each of the realized semicovariances contains both dif-
fusive and jump covariation components. Importantly, the limiting variables P and N
share exactly the same diffusive component, but their jump components differ. In partic-
ular,

P̂ − N̂ P−→ P −N = P† −N†�

That is, the first-order asymptotic behavior of the concordant semicovariance differential
(CSD) is fully characterized by the “directional co-jumps.” Consequently, in line with the
stylized model in equation (1) discussed in the Introduction, Theorem 1 cannot distin-
guish the information conveyed by P̂ and N̂ in periods when there are no jumps. Hence,
in order to reveal the differential information inherent in the realized measures more
generally, we turn next to a more refined second-order asymptotic analysis.

2.2. Second-Order Asymptotic Properties

Since the main theoretical lessons about the second-order asymptotic behavior of the
concordant realized semicovariance components can be readily learned in a bivariate set-
ting, we set d = 2 and focus on the analysis of P̂12 and N̂12 throughout this subsection.
Correspondingly, we also write ρt in place of ρ12�t for simplicity. The joint analysis of all
semicovariance components can be done in a similar manner. However, it is much more
tedious to discuss, so for readability we defer this more general analysis to the Supple-
mental Material, Section S1.

We need to impose some additional structure on the volatility dynamics. In particular,
we will assume that the stochastic volatility σt is also an Itô semimartingale of the form
(see, e.g., equation (4.4.4) in Jacod and Protter (2012))

σt = σ0 +
∫ t

0
b̃s ds+

∫ t

0
σ̃s dWs + M̃t +

∑
s≤t
�σs1{‖�σs‖>σ}� (5)

where b̃ is the drift, σ̃ is a d × d × d tensor-valued process, and M̃ is a local martin-
gale that is orthogonal to the Brownian motion W .4 A few remarks are in order. The

4By convention, the (j�k) element of the stochastic integral
∫ t

0 σ̃s dWs equals
∑d

l=1

∫ t
0 σ̃jkl�s dWl�s .
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process σ̃ collects the loadings of the stochastic volatility matrix σ on the price Brow-
nian shocks dW , and hence is naturally thought of as a multivariate quantification of
a “leverage effect.” We also allow σ to load on Brownian shocks that are independent
of dW through the local martingale M̃ . The M̃ process may also contain compensated
“small” volatility jumps in the form of a purely discontinuous local martingale.5 Mean-
while, the term

∑
s≤t �σs1{‖�σs‖>σ} collects the “large” volatility jumps (with an arbitrary

but fixed threshold σ > 0), which often occur in response to major news announcements
(see, e.g., Bollerslev, Li, and Xue (2018)). The Itô semimartingale setting also readily ac-
commodates the well-established intraday periodicity in the volatility dynamics (see, e.g.,
Andersen and Bollerslev (1997)). Further regularity conditions regarding the σ process
are collected in the Appendix.

Theorem 2, below, describes the F -stable convergence in law of the normalized statistic
�−1/2
n (P̂12 −P12� N̂12 −N12). The limit variable turns out to be fairly complicated, but it may

be succinctly expressed as(
B

−B
)

+
(
L

−L
)

+
(
ζ

−ζ
)

+
(
ζ̃P
ζ̃N

)
+
(
ξ̃P
ξ̃N

)
�

where, as we will detail below, B and L are bias terms, and (ζ� ζ̃� ξ) capture sampling
variabilities that arise from various sources. In particular, we note that P̂12 and N̂12 load
on the B and L bias terms in exactly opposite ways, which would cancel with each other
in the (aggregated) realized covariance Ĉ12. Before presenting the actual limit theorem,
we begin by briefly describing each of these separate terms. Recall that the processes b,
σ , v, ρ, and σ̃ have previously been introduced in equations (3), (4), and (5).

Bias components due to price drift, B. The first type of bias is related to the price drift,
which is defined for the semicovariance estimator P̂12 as

B= 1

2
√

2π

∫ T

0

(
b1�s

v1�s
+ b2�s

v2�s

)
v1�sv2�s(1 + ρs)ds�

As mentioned above, the analogous bias term for N̂12 is −B. Other things equal, this bias
term is proportional to the average spot “Sharpe ratio” of the two assets

1
2

(
b1�s

v1�s
+ b2�s

v2�s

)
�

Therefore, the B term tends to be more pronounced when the two assets drift in the same
direction, akin to a “co-drift” type phenomenon.

Bias components due to continuous price-volatility covariation, L. The second bias term
stems from the fact that the volatility matrix process σt may be partially driven by the
Brownian motion W (i.e., σ̃ �= 0), corresponding to a “dynamic leverage” type effect.
To more precisely describe this bias term for P̂12, define f1(x) ≡ 1{x1≥0} max{x2�0} and

5We remind the reader that two local martingales are called orthogonal if their product is a local martingale
(or equivalently, their predictable covariation process is identically zero). A local martingale is called purely
discontinuous if it is orthogonal to all continuous local martingales. See Definition I.4.11 and Proposition I.4.15
in Jacod and Shiryaev (2003) for additional details.
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f2(x)≡ max{x1�0}1{x2≥0} and then set, for any 2 × 2 matrix A,

Fj(A)≡ E

[
fj(AW1)

∫ 1

0
Ws dW

�
s

]
� j = 1�2�

The bias term in P̂12 due to the common price-volatility Brownian dependence may then
be expressed as

L≡
2∑
j=1

∫ T

0
Trace

[
σ̃j�sFj(σs)

]
ds� (6)

where σ̃j�s denotes the 2 × 2 matrix [σ̃jkl�s]1≤k�l≤2. The bias term for N̂12 may be defined
similarly, and it can be shown to equal −L.

Diffusive sampling error spanned by price risk, ζ. The third component in the limit of P̂12

captures the sampling variability in p(�ni X1)p(�
n
i X2) that is spanned by the Brownian

price shock σt dWt . Formally,

ζ ≡
∫ T

0

(
c−1
s γs

)�
(σs dWs)� (7)

where the γt process is defined as

γt ≡ (1 + ρt)2v1�tv2�t

2
√

2π

(
v1�t

v2�t

)
�

The analogous component for N̂12 equals −ζ. Note that the quadratic covariation matrix
of the local martingale (ζ�−ζ) equals

∫ T
0 
s ds, where


t ≡
(
γ�
t c

−1
t γt −γ�

t c
−1
t γt−γ�

t c
−1
t γt γ�

t c
−1
t γt

)
� (8)

Diffusive sampling error orthogonal to price risk, ζ̃. While ζ defined above captures the
diffusive risk in the semicovariance spanned by the Brownian shocks to the price process,
ζ̃ captures the diffusive risk component orthogonal to those shocks. This limit variable
may be represented by its F -conditional distribution as

ζ̃ =
(
ζ̃P
ζ̃N

)
=
∫ T

0
γ̄1/2
s dW̃s� (9)

where W̃ is a two-dimensional standard Brownian motion that is independent of the σ-
field F , and the γ̄ process is defined by γ̄t ≡ 
t − 
t , where


t ≡ v2
1�tv

2
2�t

(
Ψ(ρt)−ψ(ρt)2 −ψ(ρt)2

−ψ(ρt)2 Ψ(ρt)−ψ(ρt)2

)
� (10)

and

Ψ(ρ)≡ 3ρ
√

1 − ρ2 + (1 + 2ρ2
)

arccos(−ρ)
2π

� (11)
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with Ψ(ρ) corresponding to E[Z2
1Z

2
21{Z1<0�Z2<0}] for (Z1�Z2) standard normally dis-

tributed with correlation ρ.
Jump-induced sampling error, ξ. The price jumps also induce sampling errors. Let Tj

for j ∈ {1�2} denote the collection of jump times of (Xj�t)t∈[0�T ], with the corresponding
“signed” subsets denoted by

Tj+ ≡ {τ ∈ Tj : �Xj�τ > 0}� Tj− ≡ {τ ∈ Tj : �Xj�τ < 0}�

For each τ ∈ T1 ∪ T2, associate the variables (κτ� ξ̃τ−� ξ̃τ+) that are, conditionally on F ,
mutually independent with the following conditional distributions: κτ ∼ Uniform[0�1],
ξ̃τ− ∼ MN (0� cτ−), and ξ̃τ+ ∼ MN (0� cτ). Further define η̃τ = (η̃1�τ� η̃2�τ)

� ≡ √
κτξ̃τ− +√

1 − κτξ̃τ+. The limiting variable ξ= (ξP�ξN)� may then be expressed as

ξP ≡
∑

τ∈T1+∩T2+

(�X1�τη̃2�τ +�X2�τη̃1�τ)+
∑

τ∈T1+\T2

�X1�τp(η̃2�τ)+
∑

τ∈T2+\T1

�X2�τp(η̃1�τ)�

ξN ≡
∑

τ∈T1−∩T2−

(�X1�τη̃2�τ +�X2�τη̃1�τ)+
∑

τ∈T1−\T2

�X1�τn(η̃2�τ)+
∑

τ∈T2−\T1

�X2�τn(η̃1�τ)�

Note that the first component in ξP (resp. ξN) concerns times when both assets have
positive (resp. negative) jumps, while the other two terms are active when one asset jumps
upwards (resp. downwards) and the other asset does not jump. The latter terms involve
the half-truncated doubly mixed Gaussian variable p(η̃τ) (resp. n(η̃τ)). To the best of our
knowledge, this limiting distribution is new to the literature.

With the definitions above, we are now ready to state the stable convergence in law of
the realized semicovariances.

THEOREM 2: Under Assumption 2 in the Appendix,

�−1/2
n

(
P̂12 − P12

N̂12 −N12

)
L-s−→
(
B

−B
)

+
(
L

−L
)

+
(
ζ

−ζ
)

+
(
ζ̃P
ζ̃N

)
+
(
ξ̃P
ξ̃N

)
�

Theorem 2 depicts a non-central limit theorem for the positive and negative realized
semicovariances, where (±B�±L) represent bias terms, while (±ζ� ζ̃� ξ) stem from vari-
ous sources of “sampling errors.” The latter sampling error terms are all formed as (local)
martingales and have zero mean under mild integrability conditions. We note that the bias
terms arise because the test functions used to define the realized semicovariances (e.g.,
(x1�x2) �→ p(x1)p(x2)= max{x1�0}max{x2�0}) are not globally even.6 This phenomenon
also appears in earlier work by Kinnebrock and Podolskij (2008), Barndorff-Nielsen, Kin-
nebrock, and Shephard (2010), and Li, Mykland, Renault, Zhang, and Zheng (2014); also
see Chapter 5 of Jacod and Protter (2012). In the Supplemental Material Section S1, we
provide a more general result for the joint convergence of all the realized semicovariance
components, including the realized semivariances of Barndorff-Nielsen, Kinnebrock, and
Shephard (2010) as special “diagonal” cases. We also demonstrate there how to recover

6Following Jacod and Protter (2012), we say that a function f (·) defined on Rd is globally even if f (x) =
f (−x) for all x ∈ Rd ; see page 135 in that book. Kinnebrock and Podolskij (2008) simply referred to such
functions as even functions; see page 1057 of that paper.
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that prior result in the case without price jumps, and further characterize the effect of
jumps on the sampling variability of the realized semivariances.

The presence of the bias terms means that Theorem 2 is not directly suitable for the
construction of confidence intervals for the (P�N) estimand; however, that is not our goal.
Instead, the main insight derived from Theorem 2 is to reveal the differential second-
order behavior of the realized semicovariances P̂ and N̂ , about which the first-order
asymptotics in Theorem 1 remains entirely silent in the absence of jumps. Indeed, while
Theorem 1 states that P̂ and N̂ have the same limit in the no-jump case, Theorem 2 clar-
ifies that they actually load on higher-order “signals” ±B and ±L in the exact opposite
way. From a theoretical perspective, this therefore explains why P̂ and N̂ may behave dif-
ferently. From an empirical perspective, it helps guide our understanding of the actual P̂
and N̂ estimates discussed in Section 3, and the use of these measures in the construction
of improved volatility forecasts discussed in Section 4.

Theorem 2 focuses on the concordant semicovariance terms, P̂ and N̂ . The asymptotic
behavior of the mixed semicovariance term, M̂ , is of particular interest when studying
negatively correlated assets, such as in analyzing hedge portfolios. This term is considered
jointly with all other elements of the semicovariance matrices in the more general limit
theorem presented in the Supplemental Material. Meanwhile, Theorem 2 can also be
used to help understand the behavior of the mixed semicovariances by computing P̂ and
N̂ on a rotation of the original returns: use the original returns on the first asset, and the
negative of the returns on the second asset.

2.3. Tests Based on Concordant Semicovariance Differentials

Even though Theorem 2 does not allow for the construction of standard confidence
intervals, it is still possible to develop feasible inference methods for the difference P̂−N̂ ,
that is, the CSD. In particular, the asymptotic theory in the previous subsection reveals
three types of signals underlying the CSD: a directional co-jump effect (i.e., P† −N†), a
co-drifting effect (i.e., 2B), and a dynamic leverage effect (i.e., 2L). Empirically, it is of
great interest to separate the variation due to jumps from that due to the diffusive price
moves. Below, we use the standard truncation method (see, e.g., Mancini (2001, 2009)) to
achieve such a separation. As in Section 2.2, we consider a bivariate setting, or d = 2, and
focus on the inference for P̂12 − N̂12.

The truncation method involves a sequence un ∈ R2
+ of truncation thresholds satisfying

uj�n � ��n for some� ∈ (0�1/2) and j ∈ {1�2}. Under our maintained assumption of finite
activity jumps, it can be shown that the index set

Î ≡ {i : −un ≤ �ni X ≤ un does not hold
}

consistently estimates the jump times of the vector log-price process X .7 In practice, it
is important to choose the truncation threshold un adaptively so as to account for time-
varying volatility, particularly its well-known U-shape intraday pattern; we discuss this
further in connection with our empirical analyses below. As a result, the diffusive and

7See Proposition 1 of Li, Todorov, and Tauchen (2017b), for which the inequality −un ≤ �ni X ≤ un is in-
terpreted element-by-element. Importantly, although jumps can be separately recovered in asymptotic theory,
it is difficult to do so in practice. The realized semicovariance measures only concern time-aggregated jump
characteristics, instead of individual jumps. In our analysis, the jump recovery is only used as a theoretical
auxiliary tool to prove asymptotic results for time-aggregated quantities.
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jump returns may be separated, allowing for the separate estimation of the diffusive com-
ponents of the semicovariances using the “small” (non-jump) returns:

P̂� ≡
∑
i/∈Î
p
(
�ni X

)
p
(
�ni X

)�
� N̂� ≡

∑
i/∈Î
n
(
�ni X

)
n
(
�ni X

)�
�

and the jump components of the semicovariances using the “jump” returns:

P̂† ≡
∑
i∈Î
p
(
�ni X

)
p
(
�ni X

)�
� N̂† ≡

∑
i∈Î
n
(
�ni X

)
n
(
�ni X

)�
�

The aforementioned jump detection result permits the truncated estimators to be ana-
lyzed in the following straightforward extension of Theorem 2.

PROPOSITION 1: Under Assumption 2 in the Appendix, the following convergences hold
jointly:

�−1/2
n

(
P̂†

12 − P†
12

N̂†
12 −N†

12

)
L-s−→
(
ξP
ξN

)
�

�−1/2
n

(
P̂�12 − P�12

N̂�
12 −N�

12

)
L-s−→
(
B

−B
)

+
(
L

−L
)

+
(
ζ

−ζ
)

+
(
ζ̃P
ζ̃N

)
�

where P�12 =N�
12 ≡ ∫ T0 v1�sv2�sψ(ρs)ds.

Proposition 1, and consistent estimation of the spot covariances (discussed below), al-
low for feasible inference on each of the two separate CSD components, P̂†

12 − N̂†
12 and

P̂�12 − N̂�
12. We will refer to these as the jump or diffusive concordant semicovariance dif-

ferentials (JCSD or DCSD), respectively.
We start with a discussion of how to implement the JCSD test, which is the simpler of

the two as it admits a central limit theorem. In particular, it follows immediately from
Proposition 1 that

�−1/2
n

(
P̂†

12 − N̂†
12 − (P†

12 −N†
12

)) L-s−→ ξP − ξN�
where, as discussed above, ξP and ξN are defined in terms of doubly-mixed Gaussian
variables. Hence, to consistently estimate the distribution of the limiting variable, we first
need to estimate the spot covariance matrix before and after each detected jump time. In
order to do so, we choose an integer sequence kn of local windows that satisfies kn → ∞
and kn�n → 0, and set, for each i,

ĉi− ≡ 1
kn�n

kn∑
l=1

(
�ni−lX

)(
�ni−lX

)�
1{−un≤�ni−lX≤un}�

ĉi+ ≡ 1
kn�n

kn∑
l=1

(
�ni+lX

)(
�ni+lX

)�
1{−un≤�ni+lX≤un}�

Algorithm 1 describes the requisite steps for implementing the resulting JCSD test for
the null hypothesis P†

12 =N†
12, that is, equal directional jump covariation.
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ALGORITHM 1—JCSD Test: Step 1. Draw random variables (κ∗
i � ξ̃

∗
i−� ξ̃

∗
i+) that are

mutually independent such that κ∗
i ∼ Uniform[0�1] and ξ̃∗

i± ∼ MN (0� ĉi±). Set η̃∗
i =

(η̃∗
i�1� η̃

∗
i�2)=√κ∗

i ξ̃
∗
i− +√1 − κ∗

i ξ̃
∗
i+.

Step 2. Let �ni X
∗
j ≡ �ni Xj1{|�ni Xj |>uj�n} for j ∈ {1�2} and set

ξ∗
P = �−1/2

n

∑
i∈Î

(
p
(
�ni X

∗
1 +�1/2

n η̃
∗
i�1

)
p
(
�ni X

∗
2 +�1/2

n η̃
∗
i�2

)−p(�ni X∗
1

)
p
(
�ni X

∗
2

))
�

ξ∗
N = �−1/2

n

∑
i∈Î

(
n
(
�ni X

∗
1 +�1/2

n η̃
∗
i�1

)
n
(
�ni X

∗
2 +�1/2

n η̃
∗
i�2

)− n(�ni X∗
1

)
n
(
�ni X

∗
2

))
�

Step 3. Repeat steps 1–2 many times. Compute the 1 − α (resp. α) quantile of ξ∗
P − ξ∗

N

as the critical value of �−1/2
n (P̂†

12 − N̂†
12) for the null hypothesis P†

12 = N†
12 in favor of the

one-sided alternative P†
12 >N

†
12 (resp. P†

12 <N
†
12) at significance level α.

Algorithm 1 may be seen as a parametric bootstrap that exploits the approximate (para-
metric) doubly-mixed Gaussian distribution of the detected jump returns given the esti-
mated spot covariances, with ξ∗

P and ξ∗
N being the bootstrap analogue of the original nor-

malized estimators. While this type of simulation-based inference is often used in the
study of jumps, a non-standard feature of Algorithm 1 is its use of the truncated re-
turn �ni X

∗
j = �ni Xj1{|�ni Xj |>uj�n}, which shrinks the detected diffusive returns to zero. This

shrinkage is needed in situations where exactly one asset jumps at time τ, so that the
sampling variability contributed by the other (no-jump) asset, say j, is given by a half-
truncated doubly-mixed Gaussian variable like p(η̃τ�j). This distribution may in turn be
mimicked by �−1/2

n p(�ni X
∗
j + �1/2

n η̃
∗
i�j)= p(η̃∗

i�j), which differs from the “un-shrunk” vari-
able �−1/2

n p(�ni Xj +�1/2
n η̃

∗
i�j).

PROPOSITION 2: Under Assumption 2 in the Appendix, the conditional distribution of ξ∗
P−

ξ∗
N given the data converges in probability to the F -conditional distribution of ξP − ξN under

the uniform metric. Consequently, the test described in Algorithm 1 has asymptotic level α
under the null {P†

12 =N†
12} and asymptotic power of 1 under one-sided alternatives.

We turn next to the conduct of feasible inference using the DCSD statistic P̂�12 − N̂�
12.

This involves some additional non-standard theoretical subtlety. Proposition 1 implies
that

�−1/2
n

(
P̂�12 − N̂�

12

)− 2B− 2L
L-s−→ 2ζ + ζ̃P − ζ̃N� (12)

where we recall that B and L capture co-drift and dynamic leverage effects, respec-
tively. The first-order limiting variables P�12 and N�

12 exactly cancel with each other in the
P̂�12 − N̂�

12 difference. Consequently, as revealed by the convergence in (12), the remain-
ing “signal” carried by the DCSD is given by the higher-order term 2B + 2L, which is
comparable in magnitude with the statistical noise term 2ζ + ζ̃P − ζ̃N (defined as a lo-
cal martingale). Since the signal-to-noise ratio does not diverge to infinity even in large
samples, the resulting test is generally not consistent.

A further non-standard complication related to (12) stems from the fact that the lim-
iting variable 2ζ + ζ̃P − ζ̃N is generally not mixed Gaussian. Specifically, while ζ̃P − ζ̃N is
F -conditional Gaussian, the remaining part

2ζ = 2
∫ T

0

(
c−1
s γs

)�
(σs dWs)
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is generally not mixed Gaussian unless, of course, the stochastic volatility σ is independent
of the Brownian motion W that drives the diffusive price moves.

Although these non-standard features of the limit theory prevent us from conducting
formal tests in the most general setting, it is nevertheless possible to assess the sampling
variability of P̂�12 − N̂�

12 in a well-defined way. Indeed, it follows from (7) and (9) that the
quadratic variation of the continuous local martingale 2ζ + ζ̃P − ζ̃N is given by

Σ� ≡ 2
∫ T

0
v2

1�sv
2
2�sΨ(ρs)ds� (13)

Therefore,
√
Σ� may be naturally used as the standard error for gauging the sampling vari-

ability of the centered variable �−1/2
n (P̂�12 − N̂�

12)− (2B+ 2L). The Σ� variable is defined
as an integrated functional of the spot covariance matrix and it may be consistently esti-
mated using a nonparametric “plug-in” estimator Σ̂� (see, e.g., Li, Todorov, and Tauchen
(2017a)).

Comparing P̂�12 −N̂�
12 with its standard error provides an econometrically disciplined ap-

proach for detecting “large” differences in positive and negative concordant semicovari-
ances, as summarized in the following algorithm. We refer to it cautiously as a detection
rule instead of a test; it may be formally interpreted as a test under additional conditions,
as detailed below.

ALGORITHM 2—DCSD Detection: Step 1. Define v̂1�i, v̂2�i, and ρ̂i implicitly by decom-
posing the spot covariance matrix estimator ĉi+ as

ĉi+ =
(

v̂2
1�i ρ̂iv̂1�iv̂2�i

ρ̂iv̂1�iv̂2�i v̂2
2�i

)
�

and set

Σ̂� ≡ 2�n
[T/�n] − kn + 1

[T/�n]−kn∑
i=0

v̂2
1�iv̂

2
2�iΨ(ρ̂i)�

Step 2. Use the 1 − α quantile of a standard normal distribution zα as the critical
value for the t-statistic �−1/2

n (P̂�12 − N̂�
12)/
√
Σ̂� for one-sided detection of deviations from

B+L= 0.

The DCSD detection rule described in Algorithm 2 should be interpreted carefully in
empirical work. Due to the aforementioned lack of mixed Gaussianity for the limiting
variable under the most general conditions, the t-statistic �−1/2

n (P̂�12 − N̂�
12)/
√
Σ̂� is gener-

ally not asymptotically standard normally distributed. For this reason, the asymptotic level
of the proposed one-sided test is not guaranteed to be α. Instead, the t-statistic may be
interpreted as a well-defined “signal-to-noise” measure, as opposed to a formal statistical
test. These asymptotic results are also corroborated by the simulation results pertaining
to the finite-sample properties of the JCSD test and DCSD detection rule presented in
Section S2 of the Supplemental Material.

In lieu of these results, mixed Gaussianity can be formally restored under the additional
assumption that the volatility process σ is independent of the Brownian motionW , which
in turn allows us to analyze the size and power properties of the DCSD detection rule as a
formal test. Note that in this “no-leverage” case with σ being independent of W , without
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loss of generality we can fix σ̃ ≡ 0 in the volatility model in (5), which further implies that
L≡ 0 (recall equation (6)). Hence, the statistic �−1/2

n (P̂�12 − N̂�
12) is centered at 2B, and the

signal-to-noise ratio equals 2B/
√
Σ�.

Formally, the null hypothesis for DCSD is composed of the following collection of sam-
ple paths:

Ω0 ≡ {ω ∈Ω : B(ω)= 0
}
�

We remind the reader that in non-ergodic high-frequency settings, it is standard to con-
sider hypotheses as events consisting of sample paths of interest (see, e.g., Aït-Sahalia and
Jacod (2014) and the many references therein). Correspondingly, to state a one-sided al-
ternative hypothesis, we fix a constant R> 0, and consider:

Ωa ≡
{
ω ∈Ω : 2B(ω)√

Σ�(ω)
≥R

}
�

Intuitively, R measures the “distance” between the null and the alternative by drawing
a lower bound for the (random) signal-to-noise ratio 2B/

√
Σ�, which, not surprisingly,

determines the power of the test. Proposition 3, below, characterizes the size and power
properties of the resulting DCSD test described in Algorithm 2, where we use �(·) to
denote the cumulative distribution function of the standard normal distribution.

PROPOSITION 3: Suppose that (i) Assumption 2 in the Appendix holds, and (ii) the
(bt) and (σt) processes are independent of W , and σ̃t ≡ 0. Then, the critical region C+

n ≡
{�−1/2

n (P̂�12 − N̂�
12)/
√
Σ̂� > zα} associated with the (positive) one-sided DCSD test has asymp-

totic level α in restriction to Ω0, that is,

lim
n→∞

P
(
C+
n |Ω0

)= α�
Moreover, for any R> 0,

lim inf
n→∞

P
(
C+
n |Ωa

)≥ 1 −�(zα −R) > α.

Proposition 3 shows that, under the additional “no-leverage” assumption, the one-sided
DCSD test controls size under the null with “no co-drift” (i.e., B = 0), and is asymptoti-
cally unbiased with strictly non-trivial power under the alternative. The asymptotic power
is higher when the signal-to-noise ratio 2B/

√
Σ� is higher, and the power is at least 50%

whenR= zα. Also, even though the proposition focuses on a positive one-sided test, these
same results readily extend to a negative one-sided test, or two-sided tests.

2.4. Discussion of Prior Related Studies

Putting our results further into perspective, Theorem 2 naturally extends Barndorff-
Nielsen, Kinnebrock, and Shephard’s (2010) asymptotic theory (Proposition 2) from
the univariate setting and realized semivariances to a multivariate setting and realized
semicovariances. However, the results in Barndorff-Nielsen, Kinnebrock, and Shephard
(2010) rely on the theory of Kinnebrock and Podolskij (2008), and hence rule out the
presence of price or volatility jumps. Jacod and Protter (2012) provided a more general
result allowing for volatility jumps (see Theorem 5.3.5). By comparison, we allow for both
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price and volatility jumps. Price jumps in turn result in an interesting limiting distribution
that involves truncated doubly-mixed Gaussian variables (i.e., p(η̃τ) and n(η̃τ)), which, to
the best of our knowledge, are new to the literature on jump-related inference (see, e.g.,
Aït-Sahalia and Jacod (2009), Jacod and Todorov (2009), and Chapter 14 of Aït-Sahalia
and Jacod (2014)).

The higher-order bias terms that appear in the second-order asymptotics arise from
the fact that the realized semicovariances are not globally even transformations of the
high-frequency returns. Results in Kinnebrock and Podolskij (2008), Barndorff-Nielsen,
Kinnebrock, and Shephard (2010), and Chapter 5 of Jacod and Protter (2012) share that
same feature. In the probability literature, a closely related limit theorem was also proved
by Jacod (1997) and reported as Theorem IX.7.3 in Jacod and Shiryaev (2003). Another
interesting example of this type of higher-order bias terms was provided by Li et al. (2014),
in their analysis of realized tricity (see their Theorem 2) and a test for endogenous sam-
pling times.8

The feasible inference developed in Section 2.3 also further sets our analysis apart from
that of Barndorff-Nielsen, Kinnebrock, and Shephard (2010). In the absence of price
jumps, in particular, our DCSD inference about the diffusive component involves a non-
linear transform of the spot covariance matrix, Σ� ≡ 2

∫ T
0 v

2
1�sv

2
2�sΨ(ρs)ds. Correspond-

ingly, our inference relies on the estimator for general integrated volatility functionals
recently developed by Li and Xiu (2016) and Li, Todorov, and Tauchen (2017a); see also
Renò (2008) and Kristensen (2010) for earlier results on spot volatility estimation. By
contrast, the feasible inference of Barndorff-Nielsen, Kinnebrock, and Shephard (2010),
available under more restrictive conditions, only requires the estimation of integrated
quarticity.

In further contrast to Barndorff-Nielsen, Kinnebrock, and Shephard (2010), who did
not consider jumps, our JCSD test is explicitly geared toward price jumps. By focusing on
the differential between positive and negative directional co-jumps, our test also serves
a different empirical purpose than other tests for the presence of jumps and co-jumps
(see, e.g., Barndorff-Nielsen and Shephard (2006), Aït-Sahalia and Jacod (2009), Jacod
and Todorov (2009), and Caporin, Kolokolov, and Renò (2017)). Our feasible inference
described in Algorithm 1 may be seen as a parametric bootstrap, and as such is natu-
rally related to the high-frequency bootstrap methods developed by Gonçalves and Med-
dahi (2009), Dovonon, Goncalves, Hounyo, and Meddahi (2019), among others. How-
ever, while the latter bootstrap methods are designed to mimic the sampling variability of
aggregated Brownian shocks, we aim to recover that of the truncated jump returns.

3. EMPIRICAL SEMICOVARIANCE TESTS

We begin our empirical investigations by looking at the realized semicovariances for
the 30 Dow Jones Industrial Average (DJIA) constituent stocks as of the last day of our
sample period. We use one-minute returns, obtained from the Trades and Quotes (TAQ)

8The (realized) tricity estimator is defined as the sum of cubic powers of high-frequency returns. Theorem 2
of Li et al. (2014) establishes a non-central limit theorem for this estimator allowing for random sampling.
In the special case with regular sampling (corresponding to ht = 1 in the notation in that paper), the bias
term has the form (using the notation in the present paper) 3

∫ T
0 σ

2
s bs ds+ 3

∫ T
0 σ

3
s dWs + (3/2)〈σ2�X〉t , where

〈σ2�X〉t denotes the quadratic variation between σ2 and X , corresponding to a leverage type effect. These
three components play similar roles to the B, ζ, and L terms in Theorem 2, respectively. It may be interesting
to further generalize the results in the present paper to a setting with random sampling using the technique of
Li et al. (2014).
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database, spanning the period from January 2006 to December 2014, a total of 2,265
trading days. Our choice of a one-minute sampling frequency and recent sample period is
dictated by the need to reliably estimate the spot covariance matrix, which is used in the
tests described in the previous section.9 To more clearly pinpoint within-day market-wide
price moves and economic events, we exclude the returns for the first half-hour of the
trading day in the calculation of the statistics.

We calculate the JCSD and DCSD semicovariance-based tests for all of the 435 unique
stock-pairs and 2,265 days in the sample, resulting in close to one million test statistics for
each of the two tests.10

We use one-sided tests at the 5% significance level. The average rejection rates for the
JCSD tests far exceed the nominal level, rejecting in favor of positive (negative) co-jumps
for about 30% (32%) of the pairs. The DCSD algorithm detects significantly positive
(negative) differences for 13% (10%) of all stock pairs.11

To shed additional light on these test results, Table I lists the days with the most re-
jections for each of the tests for each of the nine years in the sample, along with a short
description of the most important economic events that occurred on these days. Panel A
shows that all but one of the days with the most rejections for the JCSD test are associated
with FOMC statements or changes in the federal funds rate. This finding is consistent with
the prior literature that links jumps in asset prices with public news announcements (e.g.,
Andersen, Bollerslev, and Diebold (2007), Lee and Mykland (2008), Lee (2012), and Ca-
porin, Kolokolov, and Renò (2017)). It is also in line with the literature on testing for
co-jumps and the finding that those jumps are associated with economy-wide news (e.g.,
Bollerslev, Law, and Tauchen (2008) and Lahaye, Laurent, and Neely (2011)).12

In contrast to the “sharp” economic events associated with the JCSD test, Panel B
shows that the days with the most rejections for the DCSD test are typically associated
with “softer,” more difficult-to-interpret information. Kyle (1985)-type models can be
used to establish a more formal economic link between the “soft” information and price
drift (which drives the DCSD test through the co-drift effect). In these models, informed
agents trade strategically with liquidity traders to maximize their profit, and they do so
patiently in order to manage the market marker’s belief. As shown by Back (1992), in-
formed traders’ optimal order flow is smooth (i.e., differentiable) in time, which in turn
determines the drift of the equilibrium price. In a setting with stochastic liquidity, Collin-
Dufresne and Fos (2016) further showed that, in equilibrium, the price drift exhibits mean
reversion toward the asset’s true value, and mean reversion is strong (weak) when the
short-term liquidity is high (low) relative to the long-term liquidity. This theory suggests

9The choice of a one-minute sampling frequency mirrors that of Li, Todorov, Tauchen, and Chen (2017)
in their estimation of spot covariances. It is also supported by the “signature plots” in Section S8 of the
Supplemental Material. For additional discussion of market microstructure effects, see Zhang, Mykland, and
Aït-Sahalia (2005), Hansen and Lunde (2006), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), and
Jacod, Li, and Zheng (2017).

10We rely on the dynamic threshold advocated by Bollerslev and Todorov (2011a, 2011b) based on three
times the trailing bipower variation, as originally defined by Barndorff-Nielsen and Shephard (2004a, 2006),
adjusted for the intraday periodicity in the volatility. We set the local window kn = 45.

11We do not intend to make a formal statistical statement jointly across all pairs. Instead, we view the
rejection frequencies as simple summary statistics of the pairwise test results.

12A detailed comparison of the dates in Table I with those reported by all of the studies cited here is beyond
the scope of this paper. However, we note that some of the dates overlap with those in Caporin, Kolokolov,
and Renò (2017), for example, while others do not, as the different focus of the tests naturally leads to some
variation in the days with the most significant jumps.
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TABLE I

TOP REJECTION DAYS BY YEARa

Year Date Direction % Headline Event

Panel A. JCSD Test
2006 June 29 + 100 Fed raises short-term rate by a quarter-percentage point.
2007 September 18 + 99 Fed cuts short-term rate by a half-percentage point.
2008 December 16 + 100 Fed cuts short-term rate by a quarter-percentage point.
2009 March 18 + 100 Fed announces it will buy up to $300 billion in long-term Treasuries.
2010 August 10 + 98 Fed announces it will continue Quantitative Easing.
2011 September 22 + 100 Fed announces Operation Twist.
2012 September 13 + 100 Fed announces it will continue buying Mortgage Backed Securities.
2013 September 18 + 98 Fed announces it will sustain the asset buying program.
2014 August 5 − 97 Russian troops are reported lining on the borders of Ukraine.

Panel B. DCSD Test
2006 July 19 + 57 Bernanke explains to the Senate Banking Committee how the Fed sees

the economic slowdown.
2007 August 29 + 58 Bernanke writes letter to senator that Fed is monitoring and ready to

step in if necessary.
2008 January 2 − 67 Markets react to poor manufacturing, housing and credit news.
2009 March 23 + 90 Obama administration announces its plan to buy $1 trillion in bad

bank assets.
2010 July 7 + 76 EU reveals its first list of stress test banks.
2011 June 1 − 83 Moody’s cuts Greece’s bond rating by three notches.
2012 June 21 − 84 Rumors of Moody’s downgrade for global banks.
2013 February 25 − 83 Political uncertainty surrounding Italian elections.
2014 February 3 − 85 Janet Yellen sworn in as the new Fed chair.

aThe table reports the top rejection dates by year for the semicovariance-based tests across all 435 DJIA stock-pairs. The first
column gives the date, the second gives the direction in which the rejections occurred, and the third provides the fraction of pairs of
stocks for which the test rejects at the 5% level in that direction. The final column summarizes headline economic news events for the
different days. Panel A reports the results for the jump CSD test, while Panel B is based on the diffusive CSD test.

that, ceteris paribus, price drift is greater in magnitude when there is a greater degree of
mispricing, or when the revelation of the private information is imminent.

To illustrate the distinct price dynamics on the “sharp” and “soft” news event days iden-
tified by the JCSD and DCSD tests, Figure 3 plots cumulative returns for each of the 30
DJIA stocks for two days from Table I: September 18, 2013 and February 25, 2013.13

(These are also the dates presented in Figure 2.) For the event detected by the JCSD
test (left panel), all stocks experienced a large positive price change (of just over 1%
on average) at 2 PM, following the release of the FOMC meeting statement which de-
clared that the Fed would sustain its asset-purchasing program. By contrast, for the event
detected by the DCSD test (right panel), we observe slow and steadily decreasing price
paths throughout the day for all of the stocks. The total daily return is large, with the me-
dian daily return of around negative 2%, but no “extreme” one-minute returns occurred
for any of the stocks during the course of that day.

The outcome of the DCSD or JCSD tests and the differences in the within-day price dy-
namics further translate into different dynamic dependencies in the semicovariance com-
ponents across days.14 The total realized covariance Ĉ , in particular, generally appears

13Section S3 in the Supplemental Material presents plots for all of the dates listed in Table I.
14A summary table with the correlations conditional on different DCSD and JCSD event days is available

in Supplemental Material Section S4.
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FIGURE 3.—DJIA Cumulative returns on representative event days. Note: The figure plots the cumulative
return of the 30 Dow Jones Industrial Average stocks on two of the event dates associated with market-wide
jump CSD and diffusive CSD events from Table I.

more persistent following days with diffusive events, as detected by the DCSD algorithm.
On the other hand, the persistence of P̂ increases primarily following positive DCSD
events, while the persistence of N̂ is mostly higher following negative DCSD events, again
consistent with the idea that certain types of “soft” news are processed only slowly over
multiple days. By comparison, only negative JCSD jump events appear to affect the aver-
age persistence of either component.

4. FORECASTING WITH REALIZED SEMICOVARIANCES

The results discussed in the previous section highlight the additional information and
economic insights afforded by the realized semicovariances beyond those from standard
realized covariances. The results also point to the existence of different dynamic depen-
dencies conditional on different days. In this section, we further explore these empirical
differences from the perspective of forecasting future variances and covariances.

To allow for the construction of larger-dimensional portfolios, we expand our previous
sample of 30 DJIA stocks to include all of the S&P 500 constituent stocks, and we consider
a longer sample period, from January 1993 to December 2014, a total of 5,541 trading
days. In order to reliably estimate models for covariances and semicovariances, we include
only stocks with at least 2,000 daily observations, resulting in a total of 749 stocks. Most
of these stocks are not as actively traded as the DJIA stocks, especially during the earlier
part of the sample. Correspondingly, since we only require consistent estimates for this
part of our analysis, we rely on a coarser 15-minute sampling scheme to construct the
realized measures. Finally, similarly to most existing work on volatility forecasting (e.g.,
Hansen, Huang, and Shek (2012), and Noureldin, Shephard, and Sheppard (2012)), we
focus on the intra-daily period excluding the overnight returns.15

4.1. Vector Autoregressions for Realized Semicovariances

Figure 1 discussed in the Introduction already points to the existence of different dy-
namic dependencies in the average combined concordant and discordant semicovariance

15Empirical results that include the overnight returns are presented in Supplemental Material Section S6.3.
All of our main empirical findings remain qualitatively unaltered.
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FIGURE 4.—Autocorrelations. Note: The graph plots the autocorrelation functions for the different realized
semicovariance elements. All of the estimates are averaged across 1,000 randomly selected S&P 500 pairs of
stocks, and bias-adjusted following the approach of Hansen and Lunde (2014).

components. To more directly highlight these differences, Figure 4 plots the lag 1 through
50 autocorrelations for each of the individual realized semicovariance components aver-
aged across 1,000 randomly selected S&P 500 pairs of stocks.16 While the autocorrelations
for the realized variances (RV) and the positive and negative realized semivariances (PSV
and NSV) shown in the left panel are almost indistinguishable, there is a clear ordering in
the rate of decay of the autocorrelations for the realized semicovariance elements shown
in the right panel. Most noticeably, the autocorrelations for the (total) covariances Ĉ are
systematically below those for the three realized semicovariance elements, with the mixed
M̂ component exhibiting the highest overall persistence. The fact that almost all of our
pairs of stocks are positively correlated means that few co-jumps will appear in M̂ , and
so by the asymptotic theory in Section 2, M̂ is mostly composed of diffusive covariation,
while P̂ and N̂ contain both diffusive and co-jump components. Previous work (e.g., Ma-
heu and McCurdy (2004), and Andersen, Bollerslev, and Diebold (2007)) has found that
the diffusive component of volatility is generally more persistent than the jump compo-
nent, and our finding that M̂ appears more persistent than P̂ and N̂ is consistent with
those findings.

These differences also naturally suggest that more accurate volatility and covariance
forecasts may be obtained by separately modeling the realized semicovariance compo-
nents that make up the realized covariance. To more directly investigate this, we estimate
a vector version of the popular HAR model of Corsi (2009), in which each of the ele-
ments in the realized semicovariance matrix is allowed to depend on its own daily, weekly,
and monthly lags, as well as the lags of the other realized semicovariance components.17

Specifically, for each pair of assets (j�k), we estimate the following three-dimensional

16We rely on the estimator of Hansen and Lunde (2014) to account for measurement errors in the realized
measures. Section S5 of the Supplemental Material provides the corresponding unadjusted autocorrelation
functions.

17Building on the new ideas and theoretical results first presented here, Bollerslev, Patton, and Quaedvlieg
(2020) have recently shown how the realized semicovariances may similarly be used in the construction of
improved multivariate realized GARCH-type models.
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vector autoregression:⎛⎝ P̂jk�tN̂jk�t

M̂jk�t

⎞⎠=
⎛⎝φjk�Pφjk�N
φjk�M

⎞⎠+�jk�Day

⎛⎝ P̂jk�t−1

N̂jk�t−1

M̂jk�t−1

⎞⎠+�jk�Week

⎛⎝ P̂jk�t−2:t−5

N̂jk�t−2:t−5

M̂jk�t−2:t−5

⎞⎠

+�jk�Month

⎛⎝ P̂jk�t−6:t−22

N̂jk�t−6:t−22

M̂jk�t−6:t−22

⎞⎠+
⎛⎝εPjk�tεNjk�t
εMjk�t

⎞⎠ � (14)

where P̂t−l:t−k ≡ 1
k−l+1

∑k

s=l P̂t−s, with the other components defined analogously.
The first three columns of Table II report the resulting parameter estimates averaged

across 500 randomly selected (j�k) pairs of stocks. The table reveals a clear block struc-
ture in the coefficients of this general specification. Most notably, the dynamic dependen-
cies in P̂ and N̂ are almost exclusively driven by the lagged N̂ terms, while the dynamic
behavior of the mixed M̂ elements is primarily determined by their own lags, with the
monthly lag receiving the largest weight.

The last two columns of Table II report the parameter estimates from regressing the
realized covariances Ĉ on the lagged realized semicovariances and the lagged covari-
ances.18 The model with individual semicovariances clearly reveals the most important

TABLE II

SEMICOVARIANCE HAR ESTIMATESa

P̂jk�t N̂jk�t M̂jk�t Ĉjk�t

P̂jk�t−1 0�038 (0.67) 0�050 (0.67) −0�035 (0.63) 0�052 (0.60)
P̂jk�t−2:t−5 0�004 (0.44) 0�057 (0.47) −0�002 (0.34) 0�059 (0.44)
P̂jk�t−6:t−22 −0�074 (0.42) 0�023 (0.31) 0�099 (0.42) 0�048 (0.43)

N̂jk�t−1 0�248 (0.99) 0�192 (0.99) −0�096 (0.95) 0�344 (0.94)
N̂jk�t−2:t−5 0�312 (0.99) 0�250 (0.97) −0�090 (0.71) 0�472 (0.94)
N̂jk�t−6:t−22 0�349 (0.90) 0�206 (0.70) −0�021 (0.31) 0�534 (0.84)

M̂jk�t−1 −0�075 (0.72) −0�072 (0.74) 0�141 (1.00) −0�006 (0.37)
M̂jk�t−2:t−5 −0�044 (0.47) −0�049 (0.42) 0�209 (0.97) 0�116 (0.49)
M̂jk�t−6:t−22 0�028 (0.37) −0�020 (0.23) 0�409 (0.99) 0�417 (0.87)

Ĉjk�t−1 0.184 (0.94)
Ĉjk�t−2:t−5 0.305 (0.96)
Ĉjk�t−6:t−22 0.304 (0.99)

R2 0.397 0.376 0.354 0.313 0.284
R2

adj 0.395 0.374 0.352 0.311 0.283

aThe table reports the average parameter estimates for the vector HAR model in (14) averaged across 500 randomly selected pairs
of stocks. The first three columns report results for the unrestricted models. The fourth column reports the estimates from a model
that restricts the rows of �jk�Day��jk�Week, and �jk�Month to be the same, corresponding to a model for Ĉj�kt , while the final column
reports the results of a standard HAR model on Ĉjk�t . The fraction of randomly selected pairs of stocks for which the coefficient is
significant at the 5% level is given in brackets.

18Note that due to the linear nature of the HAR model and the fact that realized semicovariances sum
exactly to the realized covariance, each coefficient in the fourth column is simply the sum of the corresponding
coefficients in the first three columns.
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components: the three lags of N̂ and the monthly lag of M̂ constitute the main drivers
of the realized covariance Ĉ . Interestingly, the models based on the semicovariances also
put a greater weight on more recent information compared to the standard HAR model
reported in the last column: normalizing each of the explanatory variables by their sam-
ple means, the semicovariance-based HAR models effectively put a weight of 0�339 on
lagged daily information, while the final column shows that a standard HAR model on
average puts a weight of only 0�184 on the daily lag, implying a more muted reaction to
new information. These differences are naturally associated with an improved fit of the
semicovariance-based models, as shown by the R2 values. In the next section, we inves-
tigate whether this improved in-sample fit is accompanied by a similar improvement in
out-of-sample forecast performance for models that utilize the realized semicovariances.

4.2. Portfolio Volatility Forecasting

The realized variance of a portfolio depends on the realized semicovariances of the
assets included in the portfolio. In particular, utilizing the result that Ĉ = P̂+ N̂ + M̂ , the
realized variance of a portfolio with portfolio weights w may be expressed as

R̂V
w ≡w�Ĉw

=w�P̂w+w�N̂w+w�M̂w

≡ P̂w + N̂w + M̂w�

where we use the superscript w to indicate the relevant (scalar-valued) portfolio quan-
tities. These portfolio semicovariance measures are distinct from the portfolio semivari-
ances of Barndorff-Nielsen, Kinnebrock, and Shephard (2010), which only depend on
the high-frequency returns of the portfolio. The portfolio semicovariances, on the other
hand, depend on the high-frequency returns for all of the individual assets included in the
portfolio, and cannot be computed using only returns on the portfolio itself.

To explore whether portfolio semicovariances convey useful information beyond real-
ized variances and semivariances, we extend the HAR model of Corsi (2009) to allow
the forecasts to depend on each of the realized portfolio semicovariance components.
Accordingly, the one-step forecast for the portfolio return variance is constructed from

RVw
t+1|t = φ0 +φDay�P P̂

w
t +φWeek�P P̂

w
t−1:t−4 +φMonth�P P̂

w
t−5:t−21

+φDay�NN̂
w
t +φWeek�NN̂

w
t−1:t−4 +φMonth�NN̂

w
t−5:t−21

+φDay�MM̂
w
t +φWeek�MM̂

w
t−1:t−4 +φMonth�MM̂

w
t−5:t−21� (15)

We will refer to this model as the SemiCovariance HAR (SCHAR) model. The general
SCHAR model in (15) is obviously quite richly parameterized. Hence, motivated by the
results in Table II, we also consider a restricted version, in which we only include the
daily, weekly, and monthly lags of N̂w, and the monthly lag of M̂w. We will refer to this
specification as the restricted SCHAR model, or SCHAR-r for short.

If the parameters associated with the lagged realized semicovariance component all
coincide (i.e., φj�P = φj�N = φj�M = φj for j ∈ {Day�Week�Month}), the SCHAR model
trivially reduces to the basic HAR model and the corresponding forecasting scheme

RVw
t+1|t =φ0 +φDayR̂V

w

t +φWeekR̂V
w

t−1:t−4 +φMonthR̂V
w

t−5:t−21�
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This simple and easy-to-implement model has arguably emerged as the benchmark for
judging alternative realized volatility-based forecasting procedures in the literature.

In addition to this commonly used benchmark, we also consider the forecasts from the
Semivariance HAR (SHAR) model of Patton and Sheppard (2015). This model uses the
portfolio realized semivariances defined as

P̂SV =
[T/�n]∑
i=1

p
(
w��ni X

)2
� N̂SV =

[T/�n]∑
i=1

n
(
w��ni X

)2
�

to decompose the daily realized variance into positive and negative semivariances, result-
ing in the forecasting scheme:

RVw
t+1|t =φ0 +φDay�+P̂SV t +φDay�−N̂SV t +φWeekR̂V

w

t−1:t−4 +φMonthR̂V
w

t−5:t−21�

This model has been found to perform particularly well from the perspective of portfolio
variance forecasting, performing on par with or better than the forecasts from other HAR-
style models, and as such constitutes another particularly challenging benchmark.19

We consider equally-weighted portfolios composed of d = 10 (“small”) and 100
(“large”) stocks randomly selected from the full set of 749 individual stocks. In each
case, we ensure that the selected stocks contain an overlap of at least 1,100 daily obser-
vations. We then construct rolling out-of-sample forecasts based on each of the different
models, with model parameters re-estimated daily using the most recent 1,000 daily ob-
servations. We rely on the commonly used mean-square-error (MSE) and QLIKE loss
functions to evaluate the performance of the forecasts vis-a-vis the actual portfolio real-
ized variances R̂V

w

t+1.20 Table III reports the resulting losses averaged across 500 randomly
selected portfolios. In addition, for each of the 500 portfolios, we also compute the ra-
tio of each model’s average loss relative to the benchmark HAR model, and report the
average of these ratios over all of the random samples.21

Consistent with Patton and Sheppard (2015), the SHAR-based forecasts that utilize the
portfolio realized semivariances result in fairly large relative gains vis-a-vis the benchmark
HAR-based forecasts, especially for the large dimensional portfolios. The performance
of the unrestricted SCHAR model, however, is mixed: it has smaller MSE loss than the
HAR forecasts, but underperforms that same benchmark under QLIKE loss. This find-
ing is hardly surprising. There is ample evidence in the forecasting literature emphasiz-
ing the importance of parsimony (see, e.g., Zellner (1992)), and the results in Table II
clearly suggest that the unrestricted SCHAR model is “over-parameterized,” and as such
is likely to perform poorly in a forecasting context. Indeed, looking at the results for the
restricted SCHAR-r model guided by the estimates in Table II, we see that the forecasts
from this model unambiguously outperform those from the other models; the 13.8% im-
provement in terms of predictive accuracy (measured by MSE) for the large portfolio case

19A comprehensive comparison of these models with the numerous other specifications that have appeared
in the volatility forecasting literature (e.g., Andersen, Bollerslev, and Diebold (2007), Corsi, Pirino, and Renò
(2010), and Caporin, Kolokolov, and Renò (2017)) would be interesting. In the interest of space, we leave a
more extensive empirical analysis along these lines for future research.

20The MSE and QLIKE loss functions may both be formally justified for the purpose of volatility forecast
evaluation based on the use of imperfect ex post volatility proxies; see Patton (2011).

21Supplemental Material Section S6 reports corroborative evidence from a series of additional robustness
checks, including the results from multivariate models designed to forecast the full d× d dimensional realized
covariance matrix.
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TABLE III

PERFORMANCE COMPARISON FOR PORTFOLIO VARIANCE FORECASTSa

MSE QLIKE

Model Average Ratio Average Ratio

Panel A. Small Portfolio Case (d =10)
HAR 1.849 1.000 0.141 1.000
SHAR 1.671 0.966 0.139 0.986
SCHAR 1.643 0.955 0.210 1.318
SCHAR-r 1.567 0.908 0.139 0.979

Panel B. Large Portfolio Case (d =100)
HAR 0.048 1.000 0.119 1.000
SHAR 0.045 0.935 0.115 0.957
SCHAR 0.045 0.976 0.236 1.495
SCHAR-r 0.041 0.862 0.111 0.925

aThe table reports the loss for forecasting the portfolio variance for portfolios of size
d = 10 and 100 for each of the different forecasting models. The reported numbers are
based on 500 randomly selected portfolios. The Average column provides the average loss
over time and all portfolios. The Ratio column gives the time-average ratio of losses across
all sets of portfolios relative to the HAR model.

is particularly impressive. As such, this clearly shows the benefit of utilizing the additional
information inherent in the realized semicovariances, compared to both the HAR- and
SHAR-based forecasts that only rely on the portfolio realized (semi)variances.

These gains in forecast accuracy are not unique to the two portfolio dimensions high-
lighted in Table III. Figure 5 plots the median loss ratios for the HAR, SHAR, and
SCHAR-r models for all values of d ranging from 2 to 100, together with the 10% and
90% quantiles for the SCHAR-r forecasts computed across the 500 random portfolio-
formations. As the figure shows, the median loss ratios for the SCHAR-r model are sys-
tematically below those of the other two models, the only exception being the QLIKE
loss for d = 2. Also, the gains from using the information in the realized semicovariances
accrue relatively quickly as the number of stocks in the portfolio increases, and for the
QLIKE loss appear to reach somewhat of a plateau for d ≈ 40 stocks.

The gains in forecast accuracy obtained from using realized semicovariances are also
not specific to the one-day forecast horizon. Table S.VI in Section S7 of the Supplemental
Material reports results for 5-day- and 22-day-ahead forecasts, and shows that the fore-
cast improvements obtained by the SCHAR-r model relative to the standard HAR model
appear even larger over longer forecast horizons.

To help understand the source of these forecast improvements, it is instructive to rep-
resent the SHAR and SCHAR models as HAR models with time-varying parameters. To
illustrate the idea, consider the forecasts from a SCHAR-type model based only on the
lagged daily realized semicovariances,

RVw
t+1|t = φ0 +φDay�P P̂

w
t +φDay�NN̂

w
t +φDay�MM̂

w
t
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FIGURE 5.—Median loss ratios. Note: The graph plots the median loss ratios as a function of the number of
stocks in the portfolio, d. The ratio is calculated as the average loss of the models divided by the average loss
of the standard HAR, based on 500 random samples of d-stock portfolios.

As these equations show, even though the φDay�P , φDay�N , and φDay�M parameters used in
the formulation of the model are all constant, the model may alternatively be interpreted
as a first-order autoregression for R̂V

w

t+1 with a time-varying autoregressive parameter
φDay�t . This idea immediately extends to the SHAR and the more elaborate SCHAR-
r forecasting models used in our empirical analysis, in which the parameters associated
with the weekly and monthly lags in the implied HAR-type representations would be time-
varying as well.

To study these effects, Figure 6 plots the daily, weekly, and monthly time-varying HAR
parameters implied by the SHAR and SCHAR-r models for d = 10, averaged across 500
randomly selected ten-stock portfolios.22 In addition to the implied daily, weekly, and
monthly parameters, the last panel reports their sum as a measure of the overall persis-
tence of the different models.

The daily, weekly, and monthly parameters for the HAR model are by definition all
constant, with an average implied persistence of around 0.94. By comparison, the implied
daily parameter estimates for the SHAR model vary slightly above the constant daily
HAR parameter, while the constant weekly parameter for the SHAR model is slightly be-
low that of the HAR model. As such, the overall persistence of the SHAR-based forecasts
is generally close to that of the standard HAR-based forecasts.

22In contrast to the out-of-sample forecast results in Table III, which are based on a rolling estimation
scheme, Figure 6 plots the implied parameter estimates obtained over the full sample period. Requiring ob-
servations to be available over the full sample reduces the number of stocks to 121. To avoid contaminating
the results by a few influential outliers, we exclude any portfolios for which the maximum P̂w/R̂V

w
, N̂w/R̂V

w
,

and M̂w/R̂V
w

ratios exceed ten, and further smooth the implied parameters using a day t − 25 to day t + 25
moving average.



1540 BOLLERSLEV, LI, PATTON, AND QUAEDVLIEG

FIGURE 6.—Implied HAR parameters. Note: The figure plots the implied HAR-type parameters for pre-
dicting the variance of a ten-stock portfolio. The figure shows moving averages of the estimates, averaged
across 500 randomly selected portfolios. The models are estimated over the full sample period.

By contrast, the implied time-varying daily and weekly HAR parameters for the
SCHAR-r model both far exceed those of the standard HAR model, especially over the
earlier part of the sample. On the other hand, the implied time-varying monthly parame-
ters for the SCHAR-r model are typically less than the monthly parameters for the stan-
dard HAR and SHAR models. Meanwhile, the sum of the three implied parameters for
the SCHAR-r model, which may be interpreted as an overall measure of persistence,
are typically greater than those for the other two models. Thus, not only do the supe-
rior SCHAR-based forecasts respond more quickly to new information, the forecasts are
typically also more persistent and slower to mean-revert than the benchmark HAR- and
SHAR-based forecasts. This explains why the SCHAR-r model performs well not just over
the short one-day forecast horizon, but also over weekly and monthly forecast horizons.
It also highlights the usefulness of the information residing in the new realized semico-
variance measures for volatility forecasting more generally.

5. CONCLUSION

We propose a decomposition of the realized covariance matrix based on the signs of
the underlying high-frequency returns into positive, negative, and mixed-sign realized
semicovariance components. Under a standard infill asymptotic setting for continuous-
time Itô semimartingales, we derive the first- and second-order asymptotic properties of
these new realized semicovariance measures. The asymptotic theory, taking the form of a
non-central limit theorem, reveals the differential information carried by each of the real-
ized semicovariance components, related to stochastic correlation, signed co-jumps, and
notions of co-drifting and leverage effects. Using high-frequency data for a large cross-
section of U.S. equities, we demonstrate how the asymptotic theory may be used to help
understand key features of the realized semicovariance components. We further docu-
ment distinctly different dynamic dependencies in the different realized semicovariance
components. These differences in turn translate into superior forecast performance for
models that utilize the realized semicovariance measures.

The infill asymptotic framework underlying much of the recent financial econometrics
literature, including this paper, naturally suggests the use of high-frequency intraday data
for the calculation of daily realized variation measures. However, the availability of re-
liable intraday data limits such analyses to relatively short and recent sample periods.
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FIGURE 7.—Decomposition of monthly realized covariances. Note: The figure plots seven-month moving
averages of the monthly time series of the concordant semicovariance (P̂ + N̂), the mixed semicovariance
(M̂), and the realized covariance (Ĉ). Each series is constructed as the average of the corresponding monthly
realized measures averaged across 500 randomly selected pairs of CRSP stocks over the 1926–2018 period.
The shaded regions represent NBER recession periods.

On the other hand, empirical work in the finance literature often employs daily data for
the calculation of monthly or quarterly (co)variances over longer time periods (see, e.g.,
Schwert (1989)), which speak more directly to the longer holding periods that are com-
monplace in empirical finance. In this spirit, Figure 7 presents a lower-frequency analog
to Figure 1, showing monthly covariances and semicovariances constructed from daily
data spanning 1926 to 2018.23 While the use of coarser daily returns in the construction
of the monthly semicovariances introduces a wedge between the infill asymptotic theory
and the empirical measures, thereby blurring the impact of co-jumps, short-lived co-drifts,
and/or leverage effects for explaining the differences between the concordant semicovari-
ance components, the figure still reveals notable differences through time in the relative
importance of the concordant versus discordant components. In particular, the combined
concordant semicovariance component generally, though not uniformly, increases in re-
cessions more than the mixed component declines, leading to an overall increase in the
total covariance. This is true for the Great Depression in the 1930s and the Great Reces-
sion in the late 2000s, as well as for the 1970s’ oil-shock recession. However, it is not the
case for the recessions of the early 1980s and 2000s. We leave further analyses of these
intriguing features for future research.

APPENDIX A: REGULARITY CONDITIONS

The following regularity conditions are needed for our asymptotic theory.

ASSUMPTION 1: The process X is an Itô semimartingale defined on a filtered probability
space (Ω�F� (Ft)�P) of the form (3) with Jt =

∫ t
0

∫
R
δ(s�u)μ(ds�du), where the process b is

locally bounded, the process σ is càdlàg and takes value in Rd×d , δ is a predictable function,
and μ is a Poisson random measure defined on R+ ×R with compensator ν(dt�du)= dt ⊗
λ(du) for some finite measure λ on R.

23Analogously to Figure 1, each month we randomly select 500 pairs of stocks from that month’s list of
available stocks in the CRSP database, and average the monthly realized measures across all 500 pairs.
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ASSUMPTION 2: We have Assumption 1. Moreover, the process σ has the form (5) such
that (i) σt is non-singular almost surely for all t; (ii) b̃ is locally bounded; (iii) σ̃ is d× d× d
càdlàg adapted process; (iv) the process M̃ is a local martingale that is orthogonal to W
with ‖�M̃t‖ ≤ σ for some constant σ > 0 and its predictable quadratic covariation process
has the form 〈M̃� M̃〉t = ∫ t0 q̃s ds for some locally bounded process q̃; (v) the compensator
of the pure-jump process

∑
s≤t �σs1{‖�σs‖>σ} has the form

∫ t
0 qs ds for some locally bounded

process q.

Overall, these assumptions are fairly mild and quite standard in the analysis of high-
frequency data. In particular, they allow for price and volatility jumps and co-jumps, as
well as the so-called leverage effect. The only notable restriction is the finite activity of
the price jumps. As in Li, Todorov, and Tauchen (2017b), we purposely impose this condi-
tion because, in the current paper, the empirical interest vis-a-vis jumps mainly concerns
“large” market-wide co-jumps, which occur relatively infrequently (and thus aligned with
the finite-activity condition). Relaxing this condition would greatly complicate our tech-
nical exposition, without leading to any change in the actual numerical implementation.

APPENDIX B: PROOFS

B.1. Notation and Preliminary Results

We begin by defining some notation. Recall that for j ∈ {1� � � � � d}, Tj = {τ :
�Xj�τ �= 0} collects the jump times of asset j, and Tj+ ≡ {τ ∈ T : �Xj�τ > 0} and Tj− ≡
{τ ∈ T : �Xj�τ < 0} collect the times at which asset j has positive and negative jumps,
respectively. For each jump time τ, we denote by i(τ) the unique random integer i such
that (i− 1)�n < τ ≤ i�n. We then set

Ij ≡
{
i(τ) : τ ∈ Tj

}
and Ij± ≡ {i(τ) : τ ∈ Tj±

}
�

Recall that p(x)≡ max{x�0} and n(x)≡ min{x�0}. To simplify notation, we denote, for
x� y ∈ R, f (x� y) ≡ p(x)p(y), g(x� y) ≡ n(x)n(y), and m(x�y) = p(x)n(y). Note that f
and g are both continuously differentiable except on {(x� y) : x= 0 or y = 0}, with gradi-
ents

∂f (x� y)=
(

1{x≥0} max{y�0}
max{x�0}1{y≥0}

)
� ∂g(x� y)=

(
1{x≤0} min{y�0}
min{x�0}1{y≤0}

)
�

For generic functions h, h1, and h2 defined on Rd , and an invertible d×d matrix a such
that c = aa�, we define the following quantities:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rc(h)≡EU
[
h(aU)

]
� γc(h)≡EU

[
h(aU)(aU)

]
�

γ̂a(h)≡EU
[
h(aU)U

]
�

Hj ≡ hj(aU)−Rc(h)− (c−1γc(hj)
)�
aU� j = 1�2�

γ̄c(h1�h2)≡ CovU(H1�H2)�


c(h1�h2)≡ CovU
((
c−1γc(h1)

)�
aU�

(
c−1γc(h2)

)�
aU
)
�


c(h1�h2)≡ CovU
(
h1(aU)�h2(aU)

)
�

(16)

where U is a generic d-dimensional standard normal variable, and EU and CovU are the
expectation and covariance operators with respect toU , respectively. We note that, except
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for γ̂a(h), the expected values in (16) depend on a only through c = aa�, which explains
our notation Rc(·), γc(·), etc.

We need to establish a few identities for these functionals. Observe that the variable
Hj is the residual obtained from projecting the demeaned variable hj(aU)−EU [hj(aU)]
onto aU , with c−1γc(hj) being the corresponding projection coefficient. Since a is non-
singular, this residual may alternatively be written as Hj = hj(aU) − EU [hj(aU)] −
γ̂a(hj)

�U . Hence, the functional γ̄c(h1�h2) can be rewritten as

γ̄c(h1�h2)=EU
[(
h1(aU)− γ̂a(h1)

�U
)(
h2(aU)− γ̂a(h2)

�U
)]

−EU
[
h1(aU)

]
EU
[
h2(aU)

]
� (17)

We further note that 
c(h1�h2) computes the covariance of h1(aU) − EU [h1(aU)] and
h2(aU)−EU [h2(aU)], while 
c(h1�h2) computes the covariance of their projections. By
a decomposition of covariance, we then deduce

γ̄c(h1�h2)= 
c(h1�h2)− 
c(h1�h2)� (18)

In addition,


c(h1�h2)= γc(h1)
�c−1γc(h2)� (19)

Our analysis for the semicovariances relies on some explicit calculations of the expec-
tations in (16). Lemma 1, below, provides the details for c taking the form

c =
(

v2
1 ρv1v2

ρv1v2 v2
2

)
� (20)

The proof is done by direct integration and is omitted for brevity.

LEMMA 1: The following statements hold when the matrix c has the form (20):
(a) Rc(f )=Rc(g)= v1v2ψ(ρ) and Rc(m)= −v1v2ψ(−ρ);
(b) Rc(∂f )= −Rc(∂g)= (2√

2π)−1(1 + ρ)(v2� v1)
�;

(c) γc(f )= −γc(g)= (2√
2π)−1(1 + ρ)2v1v2(v1� v2)

�;
(d) 
c(f� f )= 
c(g�g)= v2

1v
2
2(Ψ(ρ)−ψ(ρ)2) and 
c(f�g)= −v2

1v
2
2ψ(ρ)

2.

B.2. Proofs

PROOF OF THEOREM 1: Let X ′ denote the continuous part of X , that is, X ′
t ≡∫ t

0 bs ds + ∫ t0 σs dWs. We define P̂ ′ in the same way as P̂ , but with X replaced by X ′. It
follows that

P̂jk = P̂ ′
jk +

∑
i∈Ij∪Ik

p
(
�ni Xj

)
p
(
�ni Xk

)− ∑
i∈Ij∪Ik

p
(
�ni X

′
j

)
p
(
�ni X

′
k

)
�

By Theorem 3.4.1(b) in Jacod and Protter (2012) and Lemma 1(a),

P̂ ′
jk

P−→
∫ T

0
vj�svk�sψ(ρjk�s) ds� (21)
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We also note that
∑

i∈Ij∪Ik
p(�ni Xj)p(�

n
i Xk) = ∑

τ∈Tj∪Tk
p(�ni(τ)Xj)p(�

n
i(τ)Xk) and

�ni(τ)X → �Xτ pathwise. Hence,∑
i∈Ij∪Ik

p
(
�ni Xj

)
p
(
�ni Xk

) P−→ P†
jk� (22)

Finally, by a standard estimate for continuous Itô semimartingales and the fact that Ij∪Ik
is almost surely finite, we deduce that

∑
i∈Ij∪Ik

p(�ni X
′
j)p(�

n
i X

′
k)=Op(�n). This estimate,

combined with (21) and (22), implies the asserted convergence P̂jk
P−→ Pjk. The proof for

N̂ and M̂ follows essentially the same argument. Q.E.D.

PROOF OF THEOREM 2: Step 1. We begin by outlining the basic steps of the proof.
First, we decompose �−1/2

n (P̂12 −P12)=∑5
j=1 P̃

(j) and �−1/2
n (N̂12 −N12)=∑5

j=1 Ñ
(j), where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃(1) ≡ �−1/2
n

( ∑
i∈I1+∩I2+

p
(
�ni X1

)
p
(
�ni X2

)− P†
12

)
�

P̃(2) ≡ �−1/2
n

∑
i∈I1+\I2

p
(
�ni X1

)
p
(
�ni X2

)
�

P̃(3) ≡ �−1/2
n

∑
i∈I2+\I1

p
(
�ni X1

)
p
(
�ni X2

)
�

P̃(4) ≡ �−1/2
n

∑
i∈I1−∪I2−

p
(
�ni X1

)
p
(
�ni X2

)
�

P̃(5) ≡ �−1/2
n

( ∑
i/∈I1∪I2

p
(
�ni X1

)
p
(
�ni X2

)− P�12

)
�

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ñ(1) ≡ �−1/2
n

( ∑
i∈I1−∩I2−

n
(
�ni X1

)
n
(
�ni X2

)−N†
12

)
�

Ñ(2) ≡ �−1/2
n

∑
i∈I1−\I2

n
(
�ni X1

)
n
(
�ni X2

)
�

Ñ(3) ≡ �−1/2
n

∑
i∈I2−\I1

n
(
�ni X1

)
n
(
�ni X2

)
�

Ñ(4) ≡ �−1/2
n

∑
i∈I1+∪I2+

n
(
�ni X1

)
n
(
�ni X2

)
�

Ñ(5) ≡ �−1/2
n

( ∑
i/∈I1∪I2

n
(
�ni X1

)
n
(
�ni X2

)−N�
12

)
�

To prove the assertion of Theorem 2, it suffices to show the following joint stable con-
vergence in law:(

4∑
j=1

P̃(j)�

4∑
j=1

Ñ(j)

)
L-s−→ (ξP�ξN)� (23)

(
P̃(5)

Ñ(5)

)
L-s−→
(
B

−B
)

+
(
L

−L
)

+
(
ζ

−ζ
)

+
(
ζ̃P
ζ̃N

)
� (24)
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In steps 2 and 3, below, we prove these claims in turn. We note that, by a standard ar-
gument, it is easy to show that the convergences in (23) and (24) hold jointly with F -
conditionally independent limits (as they involve non-overlapping Brownian increments).
Therefore, the remaining task is to separately show (23) and (24).

Step 2. This step proves the claim in (23). Let T ≡ T1 ∪ T2 collect all jump times of the
bivariate process X . We set, for each τ ∈ T , η̂τ = (η̂1�τ� η̂2�τ)

� ≡ �−1/2
n (�ni(τ)X − �Xτ). By

Proposition 4.4.10 in Jacod and Protter (2012),

(η̂τ)τ∈T
L-s−→ (η̃τ)τ∈T � (25)

where η̃τ = (η̃1�τ� η̃2�τ)
� ≡ √

κτξ̃τ− + √
1 − κτξ̃τ+ (recall the definitions in Section 2.2).

From (25), it is easy to derive the following representations uniformly for all τ ∈ T
(note that T is finite almost surely): for j ∈ {1�2},

p
(
�ni(τ)Xj

)=
⎧⎪⎨⎪⎩
�Xj�τ +�1/2

n η̂j�τ + op
(
�1/2
n

)
� if τ ∈ Tj+�

�1/2
n p(η̂j�τ)+ op

(
�1/2
n

)
� if τ ∈ T \ Tj�

op
(
�1/2
n

)
� if τ ∈ Tj−�

and

n
(
�ni(τ)Xj

)=
⎧⎪⎨⎪⎩
op
(
�1/2
n

)
� if τ ∈ Tj+�

�1/2
n n(η̂j�τ)+ op

(
�1/2
n

)
� if τ ∈ T \ Tj�

�Xj�τ +�1/2
n η̂j�τ + op

(
�1/2
n

)
� if τ ∈ Tj−�

Using these representations, we further deduce⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

P̃(1) =
∑

τ∈T1+∩T2+

(�X1�τη̂2�τ +�X2�τη̂1�τ)+ op(1)�

P̃(2) =
∑

τ∈T1+\T2

�X1�τp(η̂2�τ)+ op(1)�

P̃(3) =
∑

τ∈T2+\T1

�X2�τp(η̂1�τ)+ op(1)�

P̃(4) = op(1)�
and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ñ(1) =
∑

τ∈T1−∩T2−

(�X1�τη̂2�τ +�X2�τη̂1�τ)+ op(1)�

Ñ(2) =
∑

τ∈T1−\T2

�X1�τn(η̂2�τ)+ op(1)�

Ñ(3) =
∑

τ∈T2−\T1

�X2�τn(η̂1�τ)+ op(1)�

Ñ(4) = op(1)�
These representations, together with the convergence (25), imply (23).

Step 3. This step proves the claim in (24). Let X ′ denote the continuous part of X ,
that is, X ′

t ≡
∫ t

0 bs ds + ∫ t0 σs dWs. We define P̂ ′ and N̂ ′ in the same way as P̂ and N̂ , but
with X replaced by X ′. It is easy to see that P̂ ′ −∑i/∈I1∪I2

p(�ni X1)p(�
n
i X2) and N̂ ′ −
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i/∈I1∪I2

n(�ni X1)n(�
n
i X2) are Op(�n). Hence, it suffices to prove the claim with P̃(5) and

Ñ(5) replaced by P̃ ′ ≡ �−1/2
n (P̂ ′

12 − P�12) and Ñ ′ ≡ �−1/2
n (N̂ ′

12 −N�
12), respectively.

In order to derive the stable convergence in law of (P̃ ′� Ñ ′), we apply Theorem 5.3.5
in Jacod and Protter (2012) to the test function x �→ (p(x1)p(x2)�n(x1)n(x2)). To do so,
it is enough to verify that the limiting variables (B�−B), (L�−L), (ζ�−ζ), and (ζ̃P� ζ̃N)
coincide with Jacod and Protter’s A, A

′
, U , and U

′
variables. Turning to the details, we

first note that, by Lemma 1(a), we can rewrite P�12 = ∫ T0 Rcs(f )ds and N�
12 = ∫ T0 Rcs(g)ds.

By Lemma 1(b), we can rewrite the B term as B = ∫ T0 b�
s Rcs (∂f )ds = − ∫ T0 b�

s Rcs (∂g)ds.
Given (6), no further rewriting is needed for the (L�−L) term.

By Lemma 1(c), we can rewrite

γt = γct (f ) and −γt = γct (g)� (26)

Hence, γt = σtγ̂σt (f )= −σtγ̂σt (g) and, by (7), ζ = ∫ T0 γ̂σs (f )� dWs = − ∫ T0 γ̂σs (g)� dWs.
By (26) and (19), we see that 
t defined in (8) can be written as


t =
(

ct (f� f ) 
ct (f� g)

ct (g� f ) 
ct (g�g)

)
� (27)

By Lemma 1(d), we see that 
t defined in (10) can be expressed equivalently as


t =
(

ct (f� f ) 
ct (f� g)


ct (g� f ) 
ct (g�g)

)
� (28)

Recall that γ̄t ≡ 
t − 
t . By (18), (27), and (28), it follows that

γ̄t =
(
γ̄ct (f� f ) γ̄ct (f� g)
γ̄ct (g� f ) γ̄ct (g�g)

)
�

In view of (17), we verify that the local quadratic variation of the (ζ̃P� ζ̃N) term coincides
with that defined in (5.2.4) of Jacod and Protter (2012).

We are now ready to apply Theorem 5.3.5 in Jacod and Protter (2012) to finish the
proof of (24), and hence, the assertion of Theorem 2. Q.E.D.

PROOF OF PROPOSITION 1: By Proposition 1 in Li, Todorov, and Tauchen (2017b), the
set Î coincides with I1 ∪ I2 with probability approaching 1 and, in restriction to that
sequence of events,

P̂�12 =
∑

i/∈I1∪I2

p
(
�ni X1

)
p
(
�ni X2

)
� P̂†

12 =
∑

i∈I1∪I2

p
(
�ni X1

)
p
(
�ni X2

)
�

N̂�
12 =

∑
i/∈I1∪I2

n
(
�ni X1

)
n
(
�ni X2

)
� N̂†

12 =
∑

i∈I1∪I2

n
(
�ni X1

)
n
(
�ni X2

)
�

The assertion then follows from (23) and (24) in the proof of Theorem 2. Q.E.D.
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PROOF OF PROPOSITION 2: Let T = T 1 ∪ T2. For notational simplicity, we denote, for
each subset S ⊆ T ,

ξ∗
P(S)≡ �−1/2

n

∑
τ∈S

(
p
(
�ni(τ)X

∗
1 +�1/2

n η̃
∗
i(τ)�1

)
p
(
�ni(τ)X

∗
2 +�1/2

n η̃
∗
i(τ)�2

)
−p(�ni(τ)X∗

1

)
p
(
�ni(τ)X

∗
2

))
� (29)

By Proposition 1 in Li, Todorov, and Tauchen (2017b), Î coincides with I1 ∪I2 with prob-
ability approaching 1. Hence, we can restrict our calculations to that sequence of events
without loss of generality. In particular, we can write ξ∗

P as ξ∗
P(T ) using the notation (29).

We can then decompose ξ∗
P as

ξ∗
P = ξ∗

P(T1+ ∩ T2+)+ ξ∗
P(T1+ \ T2)+ ξ∗

P(T2+ \ T1)+ ξ∗
P(T1− ∪ T2−)�

We note that �ni(τ)X
∗
j = 0 for all τ ∈ T \ Tj with probability approaching 1. It is then easy

to deduce that

p
(
�ni(τ)X

∗
j +�1/2

n η̃
∗
i(τ)�j

)=
⎧⎪⎨⎪⎩
p
(
�ni(τ)X

∗
j

)+�1/2
n η̃

∗
i(τ)�j + op

(
�1/2
n

)
� if τ ∈ Tj+�

�1/2
n p
(
η̃∗
i(τ)�j

)+ op(�1/2
n

)
� if τ ∈ T \ Tj�

op
(
�1/2
n

)
� if τ ∈ Tj−�

From there, we readily deduce that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ∗
P(T1+ ∩ T2+)=

∑
τ∈T1+∩T2+

(
p
(
�ni(τ)X

∗
1

)
η̃∗
i(τ)�2 +p(�ni(τ)X∗

2

)
η̃∗
i(τ)�1

)+ op(1)�
ξ∗
P(T1+ \ T2)=

∑
τ∈T1+\T2

p
(
�ni(τ)X

∗
1

)
p
(
η̃∗
i(τ)�2

)+ op(1)�
ξ∗
P(T2+ \ T1)=

∑
τ∈T2+\T1

p
(
�ni(τ)X

∗
2

)
p
(
η̃∗
i(τ)�1

)+ op(1)�
ξ∗
P(T1− ∪ T2−)= op(1)�

(30)

By a standard result for spot covariance estimation (see, e.g., Theorem 9.3.2 in Jacod
and Protter (2012)), we have ĉi(τ)±

P−→ cτ±. Consequently, (η̃∗
i(τ))τ∈T

L|F−→ (η̃τ)τ∈T , where
L|F−→ denotes the convergence in probability of F -conditional laws under the uniform met-
ric. In addition, we note that p(�ni(τ)X

∗
j )

P−→ �Xj�τ for all τ ∈ Tj+. Combining these con-

vergence results with (30), we deduce that ξ∗
P

L|F−→ ξP . Evidently, the same argument can

be used to show that ξ∗
N

L|F−→ ξN , jointly with ξ∗
P

L|F−→ ξP , which implies the first assertion of

Proposition 2 (i.e., ξ∗
P −ξ∗

N

L|F−→ ξP −ξN). The size and power properties of the test readily
follow from here. Q.E.D.

PROOF OF PROPOSITION 3: Let G be the σ-field generated by (bt�σt)0≤t≤T . Since
σ̃ = 0, L= 0 by definition (recall (6)). Proposition 1 then implies that �−1/2

n (P̂�12 − N̂�
12)−

2B
L-s−→ 2ζ + ζ̃P − ζ̃N . Since G and W are independent, and W̃ in the definition of ζ̃ is

independent of F , we see that 2ζ + ζ̃P − ζ̃N is, conditional on G, centered Gaussian with
conditional variance Σ� (recall (13)). By Theorem 3 of Li, Todorov, and Tauchen (2017a),
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Σ̂� → Σ�. By the property of stable convergence in law, we have

�−1/2
n

(
P̂�12 − N̂�

12

)− 2B√
Σ̂�

L-s−→ 2ζ + ζ̃P − ζ̃N√
Σ�

≡N �

where, by definition, N is a standard normal variable (defined on an extension of the
original probability space) that is independent of G. In restriction to Ω0 = {B = 0}, we
have �−1/2

n (P̂�12 − N̂�
12)/
√
Σ̂�

L-s−→ N . Since Ω0 ∈ G, this convergence readily implies the
first assertion of the proposition concerning the null rejection probability.

To prove the second assertion, we fix some constant R> 0. We suppose that P(Ωa) > 0
without loss of generality because, otherwise, the conditional probability P(C+

n |Ωa) can
be arbitrarily defined and there would be nothing to prove. By the property of stable
convergence, we have

P

({
�−1/2
n

(
P̂�12 − N̂�

12

)√
Σ̂�

> zα

}
∩Ωa

)

= P

({
�−1/2
n

(
P̂�12 − N̂�

12

)− 2B√
Σ̂�

> zα − 2B√
Σ̂�

}
∩Ωa

)

= P

({
N > zα − 2B√

Σ�

}
∩Ωa

)
+ o(1)

≥ P
({N > zα −R} ∩Ωa

)+ o(1)�
Note that Ωa ∈ G. Since N is independent of G, P({N > zα − R} ∩Ωa) = (1 − �(zα −
R))P(Ωa). Hence,

lim inf
n

P

({
�−1/2
n

(
P̂�12 − N̂�

12

)√
Σ̂�

> zα

}
∩Ωa

)
≥ (1 −�(zα −R))P(Ωa)�

Dividing both sides by P(Ωa), we finish the proof of the second assertion of this proposi-
tion. Q.E.D.
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