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S.1 Technical Proofs

Lemma S.1.1. Given Assumption 2.5 and the null hypothesis in (2.8), it holds that
∑T

t=1 g
e
t,T

P−→ 0.

Proof. Applying integration by parts yields that

get,T = −Et
[
(TδT )−1/2K ′

(
εt
δT

)
ht

]
= −(TδT )−1/2ht

∫
K ′
(
e

δT

)
ft(e) de (S.1.1)

= T−1/2δ
1/2
T ht

∫
K

(
e

δT

)
f ′t(e) de− T−1/2δ

1/2
T ht

[
K

(
e

δT

)
ft(e)

]e=∞
e=−∞

. (S.1.2)

As lime→±∞K(e) = 0 and ft is bounded from above, the latter term is zero a.s. for all T ∈ N. By

transformation of variables, it further holds that

get,T = T−1/2δ
1/2
T ht

∫
K

(
e

δT

)
f ′t(e) de = T−1/2δ

3/2
T ht

∫
K (u) f ′t(δTu) du. (S.1.3)

A Taylor expansion of f ′t(δTu) around zero is given by

f ′t(δTu) = f ′t(0) + (δTu)f ′′t (0) +
(δTu)2

2
f ′′′t (ζδTu), (S.1.4)

for some ζ ∈ [0, 1] and f ′t(0) = 0 holds under the null hypothesis specified in (2.8). Consequently,

T∑
t=1

get,T =T−1/2δ
5/2
T

T∑
t=1

f ′′t (0)ht

∫
uK (u) du (S.1.5)

+
1

2
T−1/2δ

7/2
T

T∑
t=1

ht

∫
u2K (u) f ′′′t (ζδTu) du. (S.1.6)

As
∫
uK (u) du = 0 by assumption (A5), the first term is zero for all T ∈ N. As supx f

′′′
t (x) ≤ c by
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Assumption (A4) and
∫
u2K (u) du ≤ c <∞ by Assumption (A5), we obtain

1

2
T−1/2δ

7/2
T

T∑
t=1

ht

∫
u2K (u) f ′′′t (ζδTu) du ≤ 1

2
c2
(
Tδ7

T

)1/2 1

T

T∑
t=1

ht
P−→ 0, (S.1.7)

as Tδ7
T → 0 for T → ∞ by Assumption (A6) and 1

T

∑T
t=1 ht

P−→ E[ht] by a law of large numbers

for stationary and ergodic sequences. The result of the lemma follows.

Lemma S.1.2. Given Assumption 2.5 and under the null hypothesis in (2.8), it holds that∑T
t=1 Var (zt,T )→ ω̄2 = λ>ΩModeλ.

Proof. We first observe that Var (zt,T ) = E
[(
λ>
(
gt,T − get,T

))2]
as E

[
λ>
(
gt,T − get,T

)]
= 0. Hence,

Var [zt,T ] = E
[(
λ>gt,T

)2
]
− E

[(
λ>get,T

)2
]
, (S.1.8)

as E
[(
λ>get,T

)
·
(
λ>gt,T

)]
= E

[(
λ>get,T

)
· Et
[
λ>gt,T

]]
= E

[(
λ>get,T

)2]
. For the first term in (S.1.8),

we obtain

E
[(
λ>gt,T

)2
]

= E

[
(TδT )−1(λ>ht)

2Et

[
K ′
(
Xt − Yt+1

δT

)2
]]

(S.1.9)

= E

[
(TδT )−1(λ>ht)

2

∫
K ′
(
e

δT

)2

ft(e) de

]
(S.1.10)

=
1

T
E
[
(λ>ht)

2

∫
K ′ (u)2 ft(δTu) du

]
. (S.1.11)

As δT → 0 when T →∞, we find

T∑
t=1

E
[(
λ>gt,T

)2
]
→ E

[
(λ>ht)

2ft(0)
] ∫

K ′ (u)2 du = λ>E
[
ft(0)hth

>
t

]
λ

∫
K ′ (u)2 du. (S.1.12)

For the second term in (S.1.8), inserting the equality in (S.1.3) yields

(
λ>get,T

)2
=

(
δ

3/2
T T−1/2(λ>ht)

∫
K ′ (u) f ′t(δTu)du

)2

≤ δ3
TT
−1||λ||2||ht||2

∣∣∣∣∫ K ′ (u) f ′t(uδT )du

∣∣∣∣2 .
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As supx |f ′t(x)| ≤ c and
∣∣∫ K ′ (u) du

∣∣ ≤ c by assumption, it holds that

T∑
t=1

E
[(
λ>get,T

)2
]
≤ δ3

T c
2||λ||2

(
1

T

T∑
t=1

E
[
||ht||2

])
→ 0, (S.1.13)

as δ3
T → 0 as T →∞. The result of the lemma follows by combining (S.1.12) and (S.1.13).

Lemma S.1.3. Given Assumption 2.5 and under the null hypothesis in (2.8), it holds that∑T
t=1 z

2
t,T

P−→ ω̄2 = λ>ΩModeλ.

Proof. We define

h1,T :=

T∑
t=1

(
z2
t,T − Et

[
z2
t,T

])
and h2,T :=

T∑
t=1

Et
[
z2
t,T

]
− ω̄2, (S.1.14)

such that
∑T

t=1 z
2
t,T − ω̄2 = h1,T +h2,T . We first show that h1,T

Lp−→ 0 for some 1 < p < 2 sufficiently

small enough and thus h1,T
P−→ 0. For this, first notice that z2

t,T − Et
[
z2
t,T

]
is a Ft+1-MDS by

definition. Thus, we can apply the von Bahr and Esseen (1965)-inequality for some p ∈ (1, 2) for

MDS (in the first line) in order to conclude that

E [|h1,T |p] = E

[∣∣∣∣∣
T∑
t=1

z2
t,T − Et

[
z2
t,T

]∣∣∣∣∣
p]
≤ 2

T∑
t=1

E
[∣∣z2

t,T − Et
[
z2
t,T

]∣∣p] (S.1.15)

≤ 2
T∑
t=1

2p−1
(
E
[∣∣z2

t,T

∣∣p]+ E
[∣∣Et [z2

t,T

]∣∣p]) ≤ 2p+1
T∑
t=1

E
[
|zt,T |2p

]
, (S.1.16)

where we use in the second inequality that |a + b|p ≤ 2p−1
(
|a|p + |b|p

)
for any a, b ∈ R. Using the

same inequality again yields

E
[
|zt,T |2p

]
= E

[∣∣∣λ>gt,T − λ>get,T ∣∣∣2p] ≤ 22p−1

(
E
[∣∣∣λ>gt,T ∣∣∣2p]+ E

[∣∣∣λ>get,T ∣∣∣2p]) . (S.1.17)

Thus,

T∑
t=1

E
[∣∣∣λ>gt,T ∣∣∣2p] = (TδT )1−p 1

T

T∑
t=1

E
[∣∣∣λ>ht∣∣∣2p ∫ ∣∣K ′ (u)

∣∣2p ft(δTu)du

]
→ 0, (S.1.18)
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as (TδT )1−p → 0 for all p ∈ (1, 2), E
[∣∣λ>ht∣∣2p] <∞ for p > 1 sufficiently small such that 2p ≤ 2+δ

(for the δ > 0 from Assumption (A2)), and
∫
|K ′ (u)|2p ft(δTu)du ≤ cc2p−1

∫
|K ′ (u)|du < ∞ as∫

|K ′ (u)|du <∞, supu |K ′ (u)| ≤ c and supx ft(x) ≤ c a.s. by assumption. Similarly, we obtain

T∑
t=1

E
[∣∣∣λ>get,T ∣∣∣2p] = δ2p−1

T (TδT )1−p 1

T

T∑
t=1

E

[∣∣∣λ>ht∣∣∣2p ∣∣∣∣∫ K ′ (u) ft(δTu)du

∣∣∣∣2p
]
→ 0, (S.1.19)

which shows that h1,T
Lp−→ 0 for some p > 1 sufficiently small which implies that h1,T

P−→ 0.

We continue by showing that h2,T
P−→ 0. Using the same argument as in (S.1.8), we split

h2,T =
T∑
t=1

Et
[
z2
t,T

]
− ω̄2 =

T∑
t=1

Et
[
(λ>gt,T )2

]
−

T∑
t=1

(λ>get,T )2 − ω̄2. (S.1.20)

Applying a transformation of variables yields

T∑
t=1

(λ>get,T )2 = δT
1

T

T∑
t=1

(λ>ht)
2

(∫
K ′(u)ft(δTu)du

)2

(S.1.21)

≤ δT

(
1

T

T∑
t=1

(λ>ht)
2

)(
c

∫
|K ′(u)|du

)2
P−→ 0, (S.1.22)

as δT → 0, 1
T

∑T
t=1(λ>ht)

2 = E
[
(λ>ht)

2
]

+ oP (1) and
(∫
|K ′(u)|du

)2 ≤ ∫ |K ′(u)|2du < ∞ by

assumption. Furthermore,

T∑
t=1

Et
[(
λ>gt,T

)2]
= (TδT )−1

T∑
t=1

(λ>ht)
2Et

[
K ′
(
εt
δT

)2
]

(S.1.23)

=

(
1

T

T∑
t=1

(λ>ht)
2

)∫
K ′(u)2ft(δTu)du

P−→ E
[
ft(0)(λ>ht)

2
] ∫

K ′(u)2du = ω̄2, (S.1.24)

as for all u ∈ R, 1
T

∑T
t=1(λ>ht)

2ft(δTu)
P−→ E

[
ft(0)(λ>ht)

2
]
. Thus, we find h2,T

P−→ 0 and

consequently
∑T

t=1 z
2
t,T − ω̄2 P−→ 0, which concludes this proof.

Lemma S.1.4. Given Assumption 2.5 and the null hypothesis in (2.8), it holds that

max1≤t≤T |ht,T |
P−→ 0.
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Proof. Let ζ > 0 and δ > 0 (sufficiently small such that E
[
||ht||2+δ

]
<∞). Then,

P
(

max
1≤t≤T

|ht,T | > ζ

)
= P

(
max

1≤t≤T
|ht,T |2+δ > ζ2+δ

)
≤

T∑
t=1

P
(
|ht,T |2+δ > ζ2+δ

)
≤ ζ−2−δ

T∑
t=1

E
[
|ht,T |2+δ

]
= ζ−2−δω̄−2−δ

T

T∑
t=1

E
[
|zt,T |2+δ

]
,

(S.1.25)

by Markov’s inequality. Employing the same steps as in the proof of Lemma S.1.3 following Equation

(S.1.17) and replacing the exponent “2p” by “2 + δ” yields that
∑T

t=1 E
[
|zt,T |2+δ

]
→ 0. As ω̄T →

ω̄2 > 0, this directly implies that P (max1≤t≤T |ht,T | > ζ)→ 0.

Lemma S.1.5. Given Assumption 2.5, Assumption 3.1 and Assumption 3.2, for all λ ∈ Rk such

that ||λ||2 = 1, it holds that
∑T

t=1 Var
(
φ∗t,T (θ0)λ

)
→ σ2.

Proof. As φ∗t,T is a Ft+1-MDS, it holds that E
[
φ∗t,T (θ0)λ

]
= 0 and thus, Var

(
φ∗t,T (θ0)λ

)
= E

[(
φ∗t,T (θ0)λ

)2]
.

We further find

T∑
t=1

E
[(
φ∗t,T (θ0)λ

)2]
=

1

T

T∑
t=1

E
[
θ2

10

(
λ>WMeanht

)2
ε2
t

]

+
1

T

T∑
t=1

E
[
θ2

20

(
λ>WMedht

)2 (
1{εt>0} − 1{εt<0}

)2]

+
1

T

T∑
t=1

E

[
θ2

30

(
λ>WModeht

)2
δ−1
T K ′

(
−εt
δT

)2
]

+
2

T

T∑
t=1

E
[
θ10θ20

(
λ>WMeanht

)(
λ>WMedht

)
εt
(
1{εt>0} − 1{εt<0}

)]
+

2

T

T∑
t=1

E
[
θ10θ30

(
λ>WMeanht

)(
λ>WModeht

)
εtδ
−1/2
T K ′

(
−εt
δT

)]

+
2

T

T∑
t=1

E
[
θ20θ30

(
λ>WMedht

)(
λ>WModeht

) (
1{εt>0} − 1{εt<0}

)
δ
−1/2
T K ′

(
−εt
δT

)]

+

T∑
t=1

E
[
(ut,T (θ0)λ)2

]
− 2

T∑
t=1

E
[(
ut,T (θ0)λ

)(
φ̃t,T (θ0)λ

)]
.

(S.1.26)
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For the last two terms, we have
∑T

t=1 E
[(
ut,T (θ0)λ

)2]→ 0 and
∑T

t=1 E
[(
ut,T (θ0)λ

)(
φ̃t,T (θ0)λ

)]
→

0 by assumption. For the fifth term,

2

T

T∑
t=1

E
[
θ10θ30

(
λ>WMeanht

)(
λ>WModeht

)
δ
−1/2
T Et

[
εtK

′
(
−εt
δT

)]]
(S.1.27)

= − 2

T

T∑
t=1

E
[
θ10θ30

(
λ>WMeanht

)(
λ>WModeht

)
δ

3/2
T

∫
uK ′ (u) ft(δTu)du

]
→ 0, (S.1.28)

as δ
3/2
T → 0,

∫
uK ′ (u) du <∞ and the respective moments are finite. The sixth term converges to

zero by a similar argument by bounding
∣∣1{εt>0} − 1{εt<0}

∣∣ ≤ 1. For the third term, it holds that

1

T

T∑
t=1

E

[
θ2

30

(
λ>WModeht

)2
δ−1
T K ′

(
−εt
δT

)2
]

=
1

T

T∑
t=1

E
[
θ2

30

(
λ>WModeht

)2
∫
K ′ (u)2 ft(δTu)du

]
→ E

[
θ2

30

(
λ>WModeht

)2
ft(0)

∫
K ′ (u)2 du

]
.

The remaining first, second and fourth terms obviously converge to the equivalent quantities of σ2

by employing a standard CLT, which concludes the proof of this lemma.

Lemma S.1.6. Given Assumption 2.5, Assumption 3.1 and Assumption 3.2, for all λ ∈ Rk such

that ||λ||2 = 1, it holds that
∑T

t=1

(
φ∗t,T (θ0)λ

)2 P−→ σ2.

Proof. We apply the same factorization as in (S.1.26) (however without the expectation operator).

By applying a law of large numbers for stationary and ergodic sequences (Theorem 3.34 in White

(2001)), we obtain that

1

T

T∑
t=1

(
θ10

(
h>t WMeanλ

)
εt

)2 P−→ E
[(
θ10

(
h>t WMeanλ

)
εt

)2
]
,

1

T

T∑
t=1

(
θ20

(
h>t WMedλ

) (
1{εt>0} − 1{εt<0}

))2 P−→ E
[(
θ20

(
h>t WMedλ

) (
1{εt>0} − 1{εt<0}

))2
]
,

2

T

T∑
t=1

(
θ10θ20

(
h>t WMeanλ

)(
h>t WMedλ

)
εt
(
1{εt>0} − 1{εt<0}

))2

P−→ 2E
[(
θ10θ20

(
h>t WMeanλ

)(
h>t WMedλ

)
εt
(
1{εt>0} − 1{εt<0}

))2
]
.
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Furthermore, a slight modification of Lemma S.1.3 (multiplying with θ2
30

(
h>t WModeλ

)2
instead of(

h>t λ
)2

) yields that

1

T

T∑
t=1

θ2
30

(
h>t WModeλ

)2
δ−1
T K ′

(
−εt
δT

)2
P−→ E

[
θ2

30

(
h>t WModeλ

)2
ft(0)

∫
K ′ (u)2 du

]
. (S.1.29)

We now show that the remaining four terms vanish asymptotically (in probability). For the

mixed mean/mode term, we apply a similar addition of a zero (adding and subtracting Et[. . . ]) as

in the proof of Lemma S.1.3. For this, we first note that

2

T

T∑
t=1

θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)
δ
−1/2
T Et

[
εtK

′
(
−εt
δT

)]
(S.1.30)

= − 2

T

T∑
t=1

θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)
δ

3/2
T

∫
uK ′ (u) ft(δTu)du

P−→ 0, (S.1.31)

as δ
3/2
T → 0. In the following, we further show that

2

T

T∑
t=1

θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)
δ
−1/2
T

{
εtK

′
(
−εt
δT

)
− Et

[
εtK

′
(
−εt
δT

)]}
Lp−→ 0,

for any p ∈ (1, 2) small enough. As in the proof of Lemma S.1.3, we apply the von Bahr and Esseen

(1965) inequality and Minkowski’s inequality in order to conclude that

E

[∣∣∣∣∣ 2

T

T∑
t=1

θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)
δ
−1/2
T

{
εtK

′
(
εt
δT

)
− Et

[
εtK

′
(
εt
δT

)]}∣∣∣∣∣
p]

≤ 2p+2

T p

T∑
t=1

{
E
[∣∣∣∣θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)
δ
−1/2
T εtK

′
(
εt
δT

)∣∣∣∣p]
+ E

[∣∣∣∣θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)
δ
−1/2
T Et

[
εtK

′
(
εt
δT

)]∣∣∣∣p]} ,
where the first term is bounded from above by

≤ 2p+2

T p

T∑
t=1

E
[∣∣∣θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)∣∣∣p δ−p/2T

∫ ∣∣∣∣eK ′( e

δT

)∣∣∣∣p ft(e)de]
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= 2p+2δ
1+p/2
T T 1−p 1

T

T∑
t=1

E
[∣∣∣θ10θ30

(
h>t WMeanλ

)(
h>t WModeλ

)∣∣∣p ∫ ∣∣uK ′ (u)
∣∣p ft(δTu)du

]
→ 0,

as δ
1+p/2
T → 0, T 1−p → 0 for any p > 1 and as the respective moments are bounded by assumption.

Similar arguments also yield that the second term converges to zero (compare to (S.1.19)). Applying

the same line of reasoning for the mixed median/mode terms shows that

2

T

T∑
t=1

θ20θ30

(
h>t WMedλ

)(
h>t WModeλ

)
δ
−1/2
T Et

[(
1{εt>0} − 1{εt<0}

)
K ′
(
−εt
δT

)]
P−→ 0. (S.1.32)

For the fourth and last term,
∑T

t=1

(
ut,T (θ0)λ

)2 P−→ 0 and
∑T

t=1

(
ut,T (θ0)λ

)(
φ̃t,T (θ0)λ

) P−→ 0 by

assumption, which concludes this proof.

Lemma S.1.7. Given Assumption 2.5, Assumption 3.1 and Assumption 3.2, for all λ ∈ Rk such

that ||λ||2 = 1, it holds that max1≤t≤T
∣∣σ−1φ∗t,T (θ0)λ

∣∣ P−→ 0.

Proof. Let ζ > 0 and δ > 0 (sufficiently small such that E
[
||ht||2+δ

]
< ∞ holds). Then, as in

(S.1.25) in the proof of Lemma S.1.4, we get that

P
(

max
1≤t≤T

∣∣σ−1
T φ∗t,T (θ0)λ

∣∣ > ζ

)
≤ ζ−2−δσ−2−δ

T

T∑
t=1

E
[∣∣φ∗t,T (θ0)λ

∣∣2+δ
]
, (S.1.33)

by Markov’s inequality. Furthermore, we get that

4−2−δ
T∑
t=1

E
[∣∣φ∗t,T (θ0)λ

∣∣2+δ
]
≤

T∑
t=1

E
[
|ut,T (θ0)|2+δ

]
(S.1.34)

+ θ2+δ
10 T−

δ
2

1

T

T∑
t=1

E
[∣∣∣h>t WMeanλ

∣∣∣2+δ
|εt|2+δ

]
(S.1.35)

+ θ2+δ
20 T−

δ
2

1

T

T∑
t=1

E
[∣∣∣h>t WMedλ

∣∣∣2+δ ∣∣1{εt>0} − 1{εt<0}
∣∣2+δ

]
(S.1.36)

+ θ2+δ
30 T−

δ
2

1

T

T∑
t=1

E

[∣∣∣h>t WModeλ
∣∣∣2+δ

δ
− 2+δ

2
T

∣∣∣∣K ′(−εtδT

)∣∣∣∣2+δ
]
. (S.1.37)

The first term converges to zero by Assumption 3.1. The second and third term converge to zero

as T−
δ
2 → 0 and the respective moments are bounded by assumption. For the last term, we obtain
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convergence equivalently to the proof of Lemma S.1.4,

θ2+δ
30 T−

δ
2

1

T

T∑
t=1

E

[∣∣∣h>t WModeλ
∣∣∣2+δ

δ
− 2+δ

2
T

∣∣∣∣K ′(−εtδT

)∣∣∣∣2+δ
]

(S.1.38)

≤ θ2+δ
30 (TδT )−

δ
2

1

T

T∑
t=1

E
[∣∣∣h>t WModeλ

∣∣∣2+δ
∫ ∣∣K ′ (u)

∣∣2+δ
ft(δTu)du

]
, (S.1.39)

which converges to zero as (TδT )−
δ
2 → 0 and the respective moments are bounded by assumption.

Proof of Theorem 2.7. Let λ ∈ Rk, ||λ||2 = 1 be a fixed and deterministic vector. Then,

λ>Ω̂T,Modeλ− λ>ΩModeλ

=
1

T

T∑
t=1

δ−1
T K ′

(
Xt − Yt+1

δT

)2

(λ>ht)
2 − 1

T

T∑
t=1

Et

[
δ−1
T K ′

(
Xt − Yt+1

δT

)2

(λ>ht)
2

]

+
1

T

T∑
t=1

Et

[
δ−1
T K ′

(
Xt − Yt+1

δT

)2

(λ>ht)
2

]
− E

[
(λ>ht)

2ft(0)

∫
K ′(u)2du

]
.

(S.1.40)

We start by showing that the last line in (S.1.40) is oP (1),

1

T

T∑
t=1

Et

[
δ−1
T K ′

(
Xt − Yt+1

δT

)2

(λ>ht)
2

]
=

1

T

T∑
t=1

(λ>ht)
2δ−1
T

∫
K ′
(
e

δT

)2

ft(e)de (S.1.41)

=
1

T

T∑
t=1

(λ>ht)
2

∫
K ′ (u)2 ft(δTu)du

P−→ E
[
(λ>ht)

2ft(0)

∫
K ′ (u)2 du

]
, (S.1.42)

as ft(δTu) → ft(0) ≤ c, and by further applying a weak law of large numbers for stationary and

ergodic data as E
[
||ht||2+δ

]
<∞.

We further show that the penultimate line in (S.1.40) converges to zero in Lp (p-th mean) for

some p > 1 small enough. By applying the von Bahr and Esseen (1965) inequality for MDS, we get

E

[∣∣∣∣∣ 1

T

T∑
t=1

δ−1
T K ′

(
εt
δT

)2

(λ>ht)
2 − 1

T

T∑
t=1

Et

[
δ−1
T K ′

(
εt
δT

)2

(λ>ht)
2

]∣∣∣∣∣
p]

≤ 2T−p
T∑
t=1

E

[∣∣∣∣∣δ−1
T K ′

(
εt
δT

)2

(λ>ht)
2

∣∣∣∣∣
p]

+ 2T−p
T∑
t=1

E

[∣∣∣∣∣Et
[
δ−1
T K ′

(
εt
δT

)2

(λ>ht)
2

]∣∣∣∣∣
p]
.
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For the first term, we get that

T−p
T∑
t=1

E

[∣∣∣∣∣δ−1
T K ′

(
εt
δT

)2

(λ>ht)
2

∣∣∣∣∣
p]

= (TδT )−p
T∑
t=1

E

[∣∣∣λ>ht∣∣∣2p ∫ ∣∣∣∣K ′( e

δT

)∣∣∣∣2p ft(e)de
]

= (TδT )1−p 1

T

T∑
t=1

E
[∣∣∣λ>ht∣∣∣2p ∫ ∣∣K ′ (u)

∣∣2 ft(δTu)du

]
→ 0,

as (TδT )1−p → 0 for any p > 1, E
[
||ht||2p

]
<∞ for p > 1 small enough, the density ft is bounded

from above, and
∫
|K ′(u)|2du <∞ by assumption. The second term converges by a similar argument

as further detailed in (S.1.19) in the proof of Lemma S.1.3. As Lp convergence for any p > 1 implies

convergence in probability, the result of the theorem follows.

Proof of Theorem 3.4. For notational simplicity, we show consistency of the covariance estimator

by considering the bilinear forms λ>
(

1
T

∑T
t=1 φt,T (θ0)φt,T (θ0)>

)
λ and σ2 := λ>Σ(θ0)λ, given in

(A.20), for some arbitrary but fixed λ ∈ Rk such that ||λ||2 = 1. Then, we get that

λ>

(
1

T

T∑
t=1

φt,T (θ0)φt,T (θ0)>

)
λ =

1

T

T∑
t=1

θ2
10

(
h>t ŴT,Meanλ

)2
ε2
t (S.1.43)

+ θ2
20

(
h>t ŴT,Medλ

)2 (
1{εt>0} − 1{εt<0}

)2
+ θ2

30

(
h>t ŴT,Modeλ

)2
δ−1
T K ′

(
−εt
δT

)2

(S.1.44)

+ 2θ10θ20

(
h>t ŴT,Meanλ

)(
h>t ŴT,Medλ

)
εt
(
1{εt>0} − 1{εt<0}

)
(S.1.45)

+ 2θ10θ30

(
h>t ŴT,Meanλ

)(
h>t ŴT,Modeλ

)
εt δ

−1/2
T K ′

(
−εt
δT

)
(S.1.46)

+ 2θ20θ30

(
h>t ŴT,Medλ

)(
h>t ŴT,Modeλ

) (
1{εt>0} − 1{εt<0}

)
δ
−1/2
T K ′

(
−εt
δT

)
. (S.1.47)

We show convergence in probability for the individual matrix components for the first term,

1

T

T∑
t=1

θ2
10

(
h>t ŴT,Meanλ

)2
ε2
t =

∑
i,j,ι,l

Ŵ T,Mean,ijŴ T,Mean,ιl
1

T

T∑
t=1

θ2
10ht,iλjht,ιλlε

2
t (S.1.48)

P−→
∑
i,j,ι,l

WMean,ijWMean,ιl E
[
θ2

10ht,iλjht,ιλlε
2
t

]
= E

[
θ2

10

(
h>t WMeanλ

)2
ε2
t

]
. (S.1.49)

Convergence of the remaining terms follows analogously by considering the terms component-wisely

and by applying similar arguments as in Lemma S.1.6.
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S.2 Kernel Choice

The asymptotic results presented in Section 2.3 rely on the chosen kernel K satisfying Assumption

(A5). Besides the normalization
∫
K(u)du = 1 and boundedness assumptions, we impose the first-

order kernel condition
∫
uK(u)du = 0 (and

∫
u2K(u)du > 0 follows from the non-negativity of K).

As discussed in Li and Racine (2006), higher-order kernels allow one to apply a Taylor expansion

of higher order and can thereby obtain a faster rate of convergence, which could in theory be made

arbitrarily close to
√
T , at the cost of stronger smoothness assumptions on the underlying density

function. However, in our application of kernel functions to the generalized modal midpoint in

Definition 2.3, we need to ensure that the limit of this quantity is well-defined and unique, and

that the identification is strict. For this, we assume in Theorem 2.4 that the kernel function is log-

concave which is automatically violated for higher-order kernels. Consequently, we do not consider

higher-order kernels in this work.

It is well-known in the literature on nonparametric statistics that kernels with bounded support

can be more efficient. However, strict identifiability of the generalized modal midpoint only holds for

kernel functions with unbounded support, which motivates our usage of unbounded kernel functions

such as the Gaussian kernel. Figure S.3 further illustrates that the test power does not increase by

employing a biweight kernel, which has bounded support.

S.3 Bandwidth Choice

We follow the rule-of-thumb proposed by Kemp and Silva (2012) and Kemp et al. (2020) in setting

the bandwidth parameter, with one modification to deal with skewness. Specifically, as discussed

in Section 2.3, in order to obtain an optimal convergence for our nonparametric test (for first-order

kernels), we choose δT ≈ T−1/7. Following Kemp and Silva (2012), we choose δT proportional to

T−0.143, which is almost T−1/7:

δT = k1 · k2 · T−0.143. (S.3.1)

As in Kemp and Silva (2012) and Kemp et al. (2020), we choose k1 proportional to the median
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absolute deviation of the forecast error, a robust measure for the variation in the data,

k1 = 2.4× M̂edt
(∣∣(Xt − Yt+1)− M̂eds(Xs − Ys+1)

∣∣). (S.3.2)

The choice of the bandwidth parameter should be proportional to the scale of the underlying data

such that test results are robust to linear re-scaling. Using preliminary simulations, we found better

finite-sample results when this measure is scaled by 2.4.

Following early simulation analyses, we introduce a second constant, k2, to adjust the bandwidth

for the skewness of the forecast error, measured by the absolute value of Pearson’s second skewness

coefficient, γ̂.

k2 = exp(−3 |γ̂|), where γ̂ =
3
(

1
T

∑
t(Xt − Yt+1)− M̂edt[Xt − Yt+1]

)
σ̂(Xt − Yt+1)

. (S.3.3)

For symmetric distributions, k2 = 1 and this term vanishes from the bandwidth formula. For

such distributions, and assuming a symmetric kernel as in our empirical work, the generalized

modal midpoint equals the mode and employing a larger bandwidth increases efficiency. As skewness

increases in magnitude the distance between the mode and the generalized modal midpoint increases

for a fixed bandwidth, and to ensure satisfactory finite-sample properties a smaller bandwidth is

needed. Our simple expression for k2 achieves this.

S.4 Power study for the mode forecast rationality test

To analyze the power of the mode forecast rationality test introduced in Section 2.3 of the main

paper we use the same DGPs as in Section 4.1 and consider two forms of sub-optimal forecasts:

(a) Bias: X̃t = Xt + κσX , where σX =
√

Var(Xt) for κ ∈ (−1, 1), and

(b) Noise: X̃t = Xt +N (0, κσ2
X), where σX =

√
Var(Xt), for κ ∈ (0, 1).

The first type of misspecification introduces deterministic bias, where the degree of misspecification

depends on the misspecification parameter κ. We standardize the bias using the unconditional stan-

dard deviation of the optimal forecasts,
√

Var(Xt). The second type of misspecification introduces
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independent noise, and the magnitude of the noise is regulated through the parameter κ: for κ = 1,

the signal-to-noise ratio is one, as the standard deviation of the signal equals the standard deviation

of the independent noise, and as κ shrinks to zero the noise vanishes.

Figure S.1 presents power plots for the “biased” forecasts and Figure S.2 presents power plots

for the “noisy” forecasts. In each of the plots, we plot the rejection rate against the degree of

misspecification κ. For all plots, we use the instrument choice (1, Xt), a Gaussian kernel, and a

nominal level of 5%. Notice that for κ = 0 the figures reveal the empirical test size.

Figure S.1 and Figure S.2 reveal that the proposed mode rationality test exhibits, as expected,

increasing power for an increasing degree of misspecification. Also as expected, larger sample sizes

lead to tests with greater power, although even the two smaller sample sizes exhibit reasonable

power, particular in the case of biased forecasts. The figures also reveal that increasing degree of

skewness yields to a slight loss of power. This is driven through the bandwidth choice, where larger

values of the (empirical) skewness result in a smaller bandwidth, and consequently a lower test

power (analogous to the bias-variance trade-off in the nonparametric estimation literature).

Results corresponding to the “biased” forecast case when using a biweight kernel are presented

in Figure S.3. That figure reveals that the finite-sample size and power are very similar to those for

the Gaussian kernel.
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Figure S.1: Test power for the bias simulation setup. This figure plots the empirical rejection
frequencies against the degrees of misspecification κ for different sample sizes in the vertical panels and for
the four DGPs in the horizontal panels. The misspecification follows the “bias” setup and we utilize the
instrument vector (1, Xt) and a nominal significance level of 5%.
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Figure S.2: Test power for the noise simulation setup. This figure plots the empirical rejection
frequencies against the degrees of misspecification κ for different sample sizes in the vertical panels and for
the four DGPs in the horizontal panels. The misspecification follows the “noise” setup and we utilize the
instrument vector (1, Xt) and a nominal significance level of 5%.

S.15



T = 100 T = 500 T = 2000 T = 5000

0
0.1

0.25
0.5

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

κ

re
je

ct
io

n 
ra

te

kernel Gaussian Biweight

Figure S.3: Test power for different kernel functions. This figure plots the empirical rejection
frequencies for the Gaussian and the biweight kernels against the degrees of misspecification κ for different
sample sizes in the vertical panels and for four skewness levels in the horizontal panels. We simulate data
from the AR-GARCH process, the misspecification follows the bias setup and we utilize the instrument vector
(1, Xt) and a nominal significance level of 5%.
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S.5 Additional Plots and Tables

Table S.1: Empirical size of the mode rationality test: 1% significance level

Instrument set 1 Instrument set 2 Instrument set 3

Skewness 0 0.1 0.25 0.5 0 0.1 0.25 0.5 0 0.1 0.25 0.5

Sample size
Panel A: Homoskedastic iid data

100 0.9 1.1 1.2 2.4 1.0 1.2 1.3 1.9 1.2 1.2 1.2 1.8
500 1.0 1.2 2.0 2.8 1.0 1.2 1.6 2.2 1.0 1.2 1.7 1.8
2000 1.2 1.5 2.2 1.9 1.0 1.3 1.6 1.5 0.9 1.2 1.6 1.3
5000 0.9 1.6 1.8 1.4 1.0 1.2 1.7 1.3 1.1 1.0 1.5 1.2

Panel B: Heteroskedastic data

100 1.0 1.1 1.5 2.6 1.2 1.0 1.4 2.3 1.3 1.1 1.2 2.0
500 1.4 1.2 2.3 2.2 1.1 1.1 1.9 1.8 1.0 1.2 1.6 1.7
2000 1.0 1.6 2.5 1.8 1.1 1.4 1.9 1.6 1.0 1.3 1.8 1.4
5000 1.0 1.6 2.7 1.4 0.9 1.3 2.0 1.2 1.0 1.1 1.7 1.2

Panel C: Autoregressive data

100 0.9 0.8 1.3 2.6 1.2 0.8 1.1 1.7 1.4 1.1 1.1 1.6
500 1.1 1.2 2.0 3.1 1.1 1.2 1.5 2.4 1.1 1.1 1.4 2.1
2000 1.1 1.2 2.2 1.8 1.2 1.1 1.8 1.5 1.0 1.1 1.6 1.4
5000 1.0 1.5 1.7 1.6 1.0 1.5 1.6 1.2 1.1 1.4 1.6 1.4

Panel D: AR-GARCH data

100 0.8 0.8 1.1 2.6 0.9 1.1 1.1 2.0 1.0 1.1 1.2 1.9
500 1.0 1.4 2.1 2.8 1.2 1.3 1.6 2.4 1.1 1.2 1.5 2.2
2000 1.0 1.4 2.3 1.8 1.0 1.1 1.8 1.4 0.9 1.2 1.7 1.3
5000 1.1 1.6 2.0 1.5 1.0 1.4 1.7 1.3 0.9 1.2 1.5 1.1

Notes: This table presents the empirical size of the mode rationality test for a Gaussian ker-
nel, varying sample sizes, varying levels of skewness in the residual distribution and different
instrument choices for a nominal significance level of 1%.
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Table S.2: Empirical size of the mode rationality test: 10% significance level

Instrument set 1 Instrument set 2 Instrument set 3

Skewness 0 0.1 0.25 0.5 0 0.1 0.25 0.5 0 0.1 0.25 0.5

Sample size
Panel A: Homoskedastic iid data

100 9.5 9.8 11.3 15.3 10.4 11.0 11.4 14.7 10.5 10.9 12.2 14.1
500 10.9 12.0 14.3 14.7 10.4 10.9 13.3 13.8 10.8 10.9 13.2 13.2
2000 11.1 12.6 14.7 12.7 10.6 11.8 13.2 12.5 10.3 11.7 12.8 12.0
5000 10.2 11.4 12.8 11.6 10.3 11.0 11.9 11.2 10.0 10.8 11.9 10.6

Panel B: Heteroskedastic data

100 10.0 10.4 12.1 15.7 10.6 10.6 11.9 14.8 11.1 10.9 11.9 14.2
500 11.4 11.6 14.4 14.8 11.5 11.1 13.6 13.1 10.9 11.1 13.4 12.5
2000 10.1 12.4 15.1 13.0 10.3 12.1 13.7 11.6 10.2 11.7 12.9 11.5
5000 10.3 13.0 15.4 12.0 10.1 11.9 13.7 11.8 10.1 11.4 12.8 11.1

Panel C: Autoregressive data

100 9.6 10.2 11.4 14.7 10.8 10.6 11.5 13.6 11.3 10.9 11.6 13.2
500 11.2 12.0 14.2 15.1 10.7 11.2 13.1 14.1 10.8 10.9 12.5 13.7
2000 10.5 12.3 13.9 12.2 10.4 11.1 12.4 11.7 10.3 11.3 12.2 11.6
5000 10.2 12.1 13.3 11.9 10.6 11.8 12.0 11.6 10.4 11.2 11.9 11.1

Panel D: AR-GARCH data

100 9.6 9.7 11.1 16.6 10.2 10.5 11.4 15.2 10.7 10.6 11.8 14.8
500 11.2 12.2 14.6 15.3 11.1 11.6 13.7 14.5 11.2 10.9 13.0 13.9
2000 10.5 12.2 14.0 12.3 10.3 11.1 13.0 11.8 10.0 10.7 12.4 11.4
5000 10.0 12.2 13.9 12.0 10.5 11.4 12.5 11.5 10.3 11.3 12.0 11.2

Notes: This table presents the empirical size of the mode rationality test for a Gaussian kernel, varying
sample sizes, varying levels of skewness in the residual distribution and different instrument choices for
a nominal significance level of 10%.
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Table S.3: Empirical coverage of the confidence sets for central tendency:
Cross-sectional data

Symmetric data Skewed data

Centrality measure θMean θMed θMode 100 500 2000 5000 100 500 2000 5000

Panel A: Homoskedastic iid data

Mean 1.00 0.00 0.00 89.3 90.0 89.8 89.2 89.4 90.2 89.6 90.2
Mode 0.00 0.00 1.00 90.1 89.1 89.8 90.1 85.7 86.0 87.6 88.8
Median 0.28 0.00 0.72 90.0 88.9 89.4 89.7 91.3 93.0 93.3 92.2
Median 0.15 0.50 0.35 89.5 89.0 89.6 89.6 90.3 91.9 91.4 91.2
Median 0.00 1.00 0.00 89.5 89.5 89.7 89.6 89.5 90.2 89.8 90.4
Mean-Mode 0.15 0.00 0.85 90.1 88.9 89.3 89.9 91.1 92.2 92.2 92.1
Mean-Mode 0.08 0.18 0.74 90.1 89.0 89.4 90.0 90.7 92.2 92.0 91.9
Mean-Mode 0.00 0.37 0.63 89.9 88.7 89.6 89.8 90.6 91.9 91.8 91.9
Mean-Median 0.50 0.00 0.50 89.8 89.2 89.2 89.6 91.0 92.0 92.3 90.4
Mean-Median 0.49 0.29 0.22 89.8 89.6 89.6 89.5 90.4 91.1 90.3 90.4
Mean-Median 0.41 0.59 0.00 89.5 89.8 89.8 89.2 89.7 90.3 89.4 89.7
Median-Mode 0.08 0.00 0.92 90.1 88.9 89.6 89.9 90.2 91.0 90.8 91.3
Median-Mode 0.04 0.08 0.88 89.9 89.0 89.6 89.8 90.1 90.9 90.7 91.4
Median-Mode 0.00 0.17 0.83 89.9 88.9 89.6 89.9 90.0 90.9 90.7 91.4
Mean-Median-Mode 0.18 0.00 0.82 90.2 88.9 89.2 89.9 91.3 92.5 92.7 92.6
Mean-Median-Mode 0.10 0.24 0.66 90.1 88.9 89.5 89.8 90.9 92.3 92.3 91.8
Mean-Median-Mode 0.00 0.51 0.49 89.7 88.8 89.6 89.6 90.5 91.8 91.8 91.4

Panel B: Heteroskedastic data

Mean 1.00 0.00 0.00 89.2 89.9 89.6 90.3 88.7 89.6 89.4 89.5
Mode 0.00 0.00 1.00 89.5 89.5 89.9 89.8 85.8 86.4 87.9 88.7
Median 0.28 0.00 0.72 89.3 89.2 89.9 90.1 90.4 91.1 91.1 91.8
Median 0.15 0.50 0.35 89.0 89.8 90.1 89.9 90.0 90.9 90.8 90.7
Median 0.00 1.00 0.00 89.3 89.9 90.1 90.2 89.3 89.9 89.7 89.5
Mean-Mode 0.15 0.00 0.85 89.3 89.4 89.8 89.9 90.2 91.3 91.1 91.4
Mean-Mode 0.08 0.18 0.74 89.2 89.5 89.8 90.0 90.0 91.1 91.0 90.9
Mean-Mode 0.00 0.37 0.63 89.3 89.7 89.9 90.0 89.9 90.8 90.7 91.0
Mean-Median 0.50 0.00 0.50 89.1 89.4 90.1 90.3 89.5 90.0 89.6 90.5
Mean-Median 0.49 0.29 0.22 89.2 89.6 90.0 90.5 89.3 90.2 89.7 90.0
Mean-Median 0.41 0.59 0.00 89.2 89.8 89.9 90.6 89.0 89.8 89.2 88.1
Median-Mode 0.08 0.00 0.92 89.3 89.3 89.8 89.9 89.2 90.0 90.3 90.8
Median-Mode 0.04 0.08 0.88 89.3 89.4 89.8 90.0 89.0 90.0 90.3 90.8
Median-Mode 0.00 0.17 0.83 89.4 89.5 89.9 90.0 89.1 90.1 90.1 90.4
Mean-Median-Mode 0.18 0.00 0.82 89.2 89.4 89.7 90.0 90.6 91.3 91.1 91.5
Mean-Median-Mode 0.10 0.24 0.66 89.2 89.7 89.9 90.1 90.3 91.2 91.1 91.3
Mean-Median-Mode 0.00 0.51 0.49 89.2 89.6 89.8 90.0 90.1 90.9 90.6 90.9

Notes: This tables presents the empirical coverage rates of the confidence sets for the forecasts of central tendency
with a nominal coverage rate of 90%. We report the results for symmetric (γ = 0) and skewed data (γ = 0.5), for
four sample sizes (T = 100, 500, 2000, 5000) and the two cross-sectional DGPs. We fix the instruments ht = (1, Xt)
and use a Gaussian kernel. In this application the set of identification function weights (θ) corresponding to a
particular forecast combination weight vector is either a singleton (for the mean and mode) or a line. For the cases
where the set is a line we present results for the end-points and the mid-point of this line.
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Table S.4: Empirical coverage of the confidence sets for central tendency:
Time series data

Symmetric data Skewed data

Centrality measure θMean θMed θMode 100 500 2000 5000 100 500 2000 5000

Panel A: Autoregressive data

Mean 1.00 0.00 0.00 89.2 90.1 89.9 90.3 89.4 89.4 89.8 90.3
Mode 0.00 0.00 1.00 89.2 89.8 89.3 89.9 85.4 86.2 88.0 88.7
Median 0.28 0.00 0.72 89.1 89.7 89.0 89.6 91.5 92.3 93.5 91.7
Median 0.15 0.50 0.35 89.0 89.8 89.1 89.7 90.4 90.7 92.3 90.7
Median 0.00 1.00 0.00 88.9 90.0 89.2 89.9 89.0 89.2 90.7 89.9
Mean-Mode 0.15 0.00 0.85 89.1 89.6 89.1 89.8 90.5 92.0 92.7 91.7
Mean-Mode 0.08 0.18 0.74 88.9 89.9 89.2 89.7 90.5 91.6 92.5 91.3
Mean-Mode 0.00 0.37 0.63 89.0 89.9 89.4 89.6 90.2 91.4 92.3 91.5
Mean-Median 0.50 0.00 0.50 88.9 89.8 89.3 89.9 90.8 91.0 92.8 90.1
Mean-Median 0.49 0.29 0.22 88.8 90.2 89.3 89.9 90.0 89.8 91.2 89.7
Mean-Median 0.41 0.59 0.00 88.8 90.5 89.6 90.0 89.2 88.8 90.0 89.4
Median-Mode 0.08 0.00 0.92 89.2 89.7 89.1 89.8 89.4 90.8 91.4 91.1
Median-Mode 0.04 0.08 0.88 89.1 89.9 89.1 89.9 89.4 90.5 91.5 91.1
Median-Mode 0.00 0.17 0.83 89.1 90.0 89.1 89.8 89.3 90.6 91.5 91.0
Mean-Median-Mode 0.18 0.00 0.82 89.0 89.7 89.1 89.7 91.2 92.2 93.2 92.2
Mean-Median-Mode 0.10 0.24 0.66 89.0 89.7 89.2 89.6 90.7 91.7 92.7 91.7
Mean-Median-Mode 0.00 0.51 0.49 89.1 89.7 89.2 89.6 90.2 91.1 92.0 91.2

Panel B: AR-GARCH data

Mean 1.00 0.00 0.00 89.2 90.4 89.9 90.0 89.5 89.9 89.9 89.8
Mode 0.00 0.00 1.00 90.0 89.0 89.6 89.9 85.9 86.1 88.4 88.9
Median 0.28 0.00 0.72 89.5 89.1 89.1 89.4 91.1 92.5 93.1 92.0
Median 0.15 0.50 0.35 88.8 89.4 89.3 89.5 90.1 91.2 91.3 90.8
Median 0.00 1.00 0.00 88.6 89.5 89.8 89.6 89.1 89.7 89.8 90.1
Mean-Mode 0.15 0.00 0.85 89.9 88.9 89.4 89.7 90.4 91.5 92.7 91.5
Mean-Mode 0.08 0.18 0.74 89.6 89.1 89.6 89.6 90.3 91.3 92.3 91.3
Mean-Mode 0.00 0.37 0.63 89.5 89.1 89.6 89.6 90.2 91.2 92.1 91.1
Mean-Median 0.50 0.00 0.50 89.0 89.3 89.1 89.3 90.9 91.6 92.1 90.5
Mean-Median 0.49 0.29 0.22 88.7 89.7 89.3 89.4 90.1 90.7 90.8 89.9
Mean-Median 0.41 0.59 0.00 88.8 89.8 89.6 89.6 89.2 89.7 89.9 89.3
Median-Mode 0.08 0.00 0.92 90.2 89.0 89.5 89.7 89.4 90.5 92.1 91.0
Median-Mode 0.04 0.08 0.88 90.1 89.0 89.5 89.7 89.4 90.6 92.0 91.1
Median-Mode 0.00 0.17 0.83 90.0 89.2 89.6 89.7 89.3 90.5 91.8 90.8
Mean-Median-Mode 0.18 0.00 0.82 89.9 88.9 89.3 89.7 91.0 92.0 92.8 92.4
Mean-Median-Mode 0.10 0.24 0.66 89.6 89.2 89.3 89.7 90.4 91.7 92.3 91.2
Mean-Median-Mode 0.00 0.51 0.49 89.4 89.2 89.3 89.6 89.9 91.4 91.9 91.1

Notes: This tables presents the empirical coverage rates of the confidence sets for the forecasts of central tendency
with a nominal coverage rate of 90%. We report the results for symmetric (γ = 0) and skewed data (γ = 0.5), for
four sample sizes (T = 100, 500, 2000, 5000) and the two time-series DGPs. We fix the instruments ht = (1, Xt) and
use a Gaussian kernel. In this application the set of identification function weights (θ) corresponding to a particular
forecast combination weight vector is either a singleton (for the mean and mode) or a line. For the cases where the
set is a line we present results for the end-points and the mid-point of this line.
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Figure S.4: Coverage rates of the confidence regions for central tendency measures for the
homoskedastic DGP.

(a) Cross Sectional Homoskedastic DGP with skewness γ = 0
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(b) Cross Sectional Homoskedastic DGP with skewness γ = 0.5
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This figure shows coverage rates of 90% confidence regions for the measures of central tendency for the
homoskedastic DGP. The true forecasted functional is given in the text above the triangle. The points
inside the triangle correspond to convex combinations of the vertices, which are the mean, median and mode
functionals. The color of the points indicates how often a specific point is contained in the 90% confidence
regions. The upper panel shows results for the symmetric DGP, where all central tendency measures are
equal. The lower panel uses a skewed DGP, with γ = 0.5. We use a red circle or a red line to indicate the
(set of) central tendency measure(s) that correspond(s) to the forecast. We consider sample size T = 2000,
instruments ht = (1, Xt) and use a Gaussian kernel.
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