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Abstract

Copulas are functions that describe the dependence between two or
more random variables. This article provides a brief review of copula
theory and two areas of economics in which copulas have played im-
portant roles: multivariate modeling and partial identification of
parameters that depend on the joint distribution of two random var-
iables with fixed or knownmarginal distributions.We focus on bivar-
iate copulas but provide references on recent advances in constructing
higher-dimensional copulas.
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1. INTRODUCTION

This article reviews the growing literature on the use of copulas in econometric research.We focus
on two primary applications: multivariate models constructed using copulas and partial identi-
fication of parameters that depend on the joint distribution of two random variables with fixed or
known marginal distributions. Whereas copulas are used as a modeling tool in the first applica-
tion, they are used as a mathematical technique in the second application.

As a first introduction to copulas, consider a pair of random variables X and Y, with (uni-
variate)marginal cumulative distribution functions (CDFs) F andG and jointCDFH. Assume that
their corresponding probability density functions (PDFs) exist and denote them as f, g, and h.
Copula theory (in particular, Sklar’s theorem; e.g., seeNelsen 2006) enables one to decompose the
joint PDF h into the product of the marginal densities and the copula density, denoted as c:

hðx, yÞ ¼ c
�
FðxÞ,GðyÞ�f ðxÞgðyÞ. ð1Þ

Recall that the joint density of a pair of independent random variables is equal simply to the
product of themarginal densities; in this case, the copuladensity function, c, is equal to unity across
its whole support.When the variables are dependent, the copula density will differ from unity and
canbe thought of as reweighting the product of themarginal densities to produce a joint density for
dependent random variables. Sklar’s theorem applies to discrete as well as continuous random
variables, and in its more general form, it is used to map the marginal CDFs to the joint CDF:

Hðx, yÞ ¼ C
�
FðxÞ,GðyÞ�. ð2Þ

This review focuses on the bivariate case for simplicity, but Sklar’s theorem applies to general
d-dimensional distributions as well:

hðy1, . . . , ydÞ ¼ c
�
G1ðy1Þ, . . . ,GdðydÞ

�Yd
i¼1

giðyiÞ,

Hðy1, . . . , ydÞ ¼ C
�
G1ðy1Þ, . . . ,GdðydÞ

�
,

ð3Þ

where Gi (gi) for i ¼ 1, 2, . . . , d are the marginal CDFs (PDFs) of the joint CDF H.
Sklar’s theorem for multivariate modeling is useful because the marginal distributions and the

copula need not belong to the same family of distributions; they can be symmetric or skewed,
continuous or discrete, fat-tailed or thin-tailed, and the jointCDF formed byusing Equation 2with
any copula function C, any univariate CDF F, and any univariate CDF G will be a valid CDF.

The characterization of a joint CDF in terms of its marginal CDFs and the copula function in
Equation 2 suggests two-step procedures for the identification and estimation of the joint CDFH.
In the first step, the identification and estimation of the marginals are investigated, and in the
second step, the identification and estimation of the copula function are analyzed. When a bi-
variate sample from the joint distribution is available, both the marginals and the copula or,
equivalently, the joint distribution are often identified. In this case, as discussed in Section 2, the
joint CDF H or generally copula-based models can often be estimated in stages (marginal dis-
tributions, then copula), which simplifies the computational burden. But when only univariate
samples from the marginal distributions are available, such as in randomized experiments, the
joint distribution may only be partially identified, as the sample information may not be sufficient
to identify the copula function. As we demonstrate in Section 3, the identified sets of the joint CDF
H and more generally parameters that depend on H may be characterized as solutions to the
general Fréchet problem studied in the probability literature. We present three important
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applications there: bivariate option pricing, evaluation of the Value at Risk (VaR) of a linear
portfolio, and evaluation of the distributional treatment effects of a binary treatment.

In the rest of this section, we provide a brief introduction to each of the two areas of applications
of copulas that we focus on in Sections 2 and 3: multivariate modeling and partial identification of
parameters that depend on the joint distribution of two random variables with fixed or known
marginal distributions. We finish this section by mentioning some other work reviewing copulas.

1.1. A Brief Introduction to Sklar’s Theorem and Copulas

A copula is a multivariate distribution function with uniform marginal distributions on [0, 1].
Sklar’s (1959) theorem states that if H is a bivariate distribution function with marginal distri-
bution functions F and G, then there exists a copula C : [0, 1]2 → [0, 1] such that

Hðx, yÞ ¼ C
�
FðxÞ,GðyÞ� for all ðx, yÞ 2R2. ð4Þ

If F andG are continuous, then the copula C in Equation 4 is unique;1 else the copula is uniquely
determined only on the range of F andG. Conversely, for any marginal distributions F andG and
any copula functionC, the functionC(F(×),G(×)) is a bivariate distribution function with marginal
distributions F andG. This theorem provides the theoretical foundation for the widespread use of
copulas in generating multivariate distributions from univariate distributions. Because the copula
functionC and themarginal distribution functions F andG in Equation 4 are not necessarily of the
same type, the researcher has a great deal of flexibility in specifying a multivariate distribution.

The copula is sometimes called the dependence function (see Joe 1997, Nelsen 2006), as it
completely describes the dependence between two random variables: Any measure of dependence
that is scale invariant (i.e., is not affected by strictly increasing transformations of the underlying
variables) can be expressed as a function of the copula alone. Such dependence measures include
Kendall’s t, Spearman’s r, and tail dependence coefficients. Importantly, Pearson’s linear cor-
relation coefficient cannot be expressed in terms of the copula alone; it also depends on the
marginal distributions. (Linear correlation is known to change when a nonlinear transformation,
for example, the logarithm or exponential, of one or both of the variables is applied.)

Recall that theprobability integral transformof a randomvariableXwith distribution function
F is defined as

U ¼ FðXÞ. ð5Þ

If F is continuous, then U will have the Unif (0, 1) distribution, regardless of the original dis-
tribution F. If we define the probability integral transformation of Y as V ¼ G(Y), then the joint
distribution of (U,V) is the copula of the original random variables (X,Y). That is, if (X,Y)∼H¼
C(F, G), then (U, V) ∼ C.

Sklar’s theorem can also be extended to apply to conditional distributions (see Patton 2006b),
which is useful for forecasting and time series applications. In particular, such models can ac-
commodate dynamics, such as time-varying conditional volatility (e.g., ARCH or stochastic
volatility) and time-varying conditional dependence (correlationorothermeasures). Let f(Xt,Yt)gt
denote a stochastic process and F t denote an information set available at time t, and let the
conditional distribution of (Xt, Yt)jF t�1 beHt, with conditional marginal distributions Ft andGt.
Then

1Genest & Ne�slehová (2007) present an excellent discussion on copulas for discrete data.
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Ht
�
x, yjF t�1

� ¼ Ct
�
FtðxjF t�1

�
,Gt

�
yjF t�1ÞjF t�1

�
. ð6Þ

The complication that ariseswhen applying Sklar’s theorem to conditional distributions is that the
information set used for the margins and the copula must be the same; if different information sets
are used, then the resulting functionHt can no longer be interpreted as a multivariate conditional
distribution. We refer interested readers to Fermanian &Wegkamp (2012) for an analysis of the
case in which differing information sets are used.

Given theabundance of univariate time seriesmodels, it is natural to buildmultivariate time series
models from existing univariate models. The copula approach turns out to be very convenient for
thispurpose, thankstoSklar’s theoremor its conditional version (Equation6). Indeed, recentwork in
empirical finance and insurance provides ample evidence on the success of multivariate time series
models constructed by combining univariate time series models via the copula approach in risk
management and modeling the (nonlinear) dependence among different economic and financial
series (see Section 2.4 for references). Commonly used parametric copulas in these applications
include theGaussianornormal copula, Student’s t copula, theFrankcopula, theGumbel copula, and
theClayton copula.Weprovide theGaussian (normal) copulaandStudent’s t copulabelowandrefer
interested readers to Joe (1997) and Nelsen (2006) for properties of other parametric copulas.

Example 1 (normal copula):The d-dimensional normal orGaussian copula is derived
from the d-dimensional Gaussian distribution. Let F denote the scalar standard
normal CDF, and FS,d the d-dimensional normal distribution with correlation ma-
trix S. Then the d-dimensional normal copula with correlation matrix S is

Cðu;SÞ ¼ FS,d

�
F�1ðu1Þ, . . . ,F�1ðudÞ

�
,

whose copula PDF is

cðu;SÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSÞp exp

8><
>:�

�
F�1ðu1Þ, . . . ,F�1ðudÞ

�
′
�
S�1 � Id

��
F�1ðu1Þ, . . . ,F�1ðudÞ

�
2

9>=
>;.

Example 2 (Student’s t copula): The d-dimensional Student’s t copula is derived from
the d-dimensional Student’s t distribution. Let Tn be the scalar standard Student’s t
distribution with n > 2 degrees of freedom and TS,n be the d-dimensional Student’s
t distribution with n > 2 degrees of freedom and a shape matrix S. Then the
d-dimensional Student’s t copula with correlation matrix S is

Cðu;S, nÞ ¼ TS,n

�
T�1
n ðu1Þ, . . . ,T�1

n ðudÞ
�
.

The Student’s t copula density is

cðu;S, nÞ ¼
G

�
n þ d
2

�h
G
�n
2

�id�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðSÞp �

G

�
n þ 1
2

��d

	
1þ x′S�1x

n


�nþd
2 Yd
i¼1

	
1þ x2i

n


nþ1
2

,

where x ¼ (x1, . . . , xd)′ with xi ¼ T�1
n ðuiÞ.

Just as theunivariate Student’s t distribution generalizes the normal distribution to allow for fat
tails, Student’s t copula generalizes the normal copula to allow for joint fat tails (i.e., an increased
probability of joint extreme events).
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The above two copulas impose that the joint upper tails of the distribution are identical to the
joint lower tails, ruling out the asymmetric dependence often observed in asset return data.
Asymmetric dependence may be modeled via certain Archimedean copulas such as the Gumbel
copula, the Clayton copula (see, e.g., Nelsen 2006), the skewed t copula of Demarta & McNeil
(2005) and Christoffersen et al. (2012), and the factor copula model of Oh & Patton (2012).

1.2. An Introduction to the Fréchet-Hoeffding Inequality and Correlation Bounds

Besides its role in building multivariate econometric models from univariate models and in charac-
terizing thedependence structureamongmultiple randomvariables, copula theoryhas alsoproven to
be a useful mathematical tool in studying (partial) identification of parameters that depend on the
joint distribution of several random variables with fixed or known marginal distributions.

Consider the bivariate case in which the random variables denoted as X and Y have common
supportR, the whole real line. For (u, v) 2 [0, 1]2, letM(u, v)¼max(uþ v� 1, 0) andW(u, v)¼
min(u, v) denote the Fréchet-Hoeffding lower and upper bound copulas: M(u, v) � C(u, v) �
W(u, v). Then for any (x, y) 2 R2 and any bivariate CDF H with marginal CDFs F and G, the
Fréchet-Hoeffding inequality holds:

M
�
FðxÞ,GðyÞ��Hðx, yÞ�W

�
FðxÞ,GðyÞ�. ð7Þ

The bivariate distribution functions M(F(×), G(×)) and W(F(×), G(×)) are referred to as the Fréchet-
Hoeffding lower and upper bounds for bivariate distribution functions with fixed marginal dis-
tributions F and G. They are distributions of perfectly negatively dependent and perfectly positively
dependent random variables, respectively (see Joe 1997 and Nelsen 2006 for more discussion). Some
applications of the Fréchet-Hoeffding inequality include those byManski (1988), who uses it in deci-
sion theory;Manski (1997),who employs it on themixing problem inprogramevaluation;Ridder&
Moffitt (2007, section 3.1), who discuss its use in data-combination contexts; Hoderlein & Stoye
(2014),whouse it to boundviolations of the revealed-preference axioms ina repeated cross-sectional
context; and Tamer (2010), who employs it in the partial identification of the joint distribution of
potential outcomes of a binary treatment in which one of the potential outcomes is observed.

Oftentimes, onemaybe interested inparameters that are functionals of the jointCDFH, such as
the correlation coefficient of X and Y. Suppose X and Y have finite means mX and mY, finite
variances s2

X and s2
Y , and correlation coefficient r. It is known that r lies between�1 and 1 and

jrj ¼ 1 if and only ifX and Y are perfectly linearly dependent. Hoeffding (1940) (see alsoMari &
Kotz 2001) shows that the covariance of X and Y has an alternative expression:

covðX,YÞ ¼
ZZ �

Hðx, yÞ � FðxÞGðyÞ�dxdy. ð8Þ

Suppose the marginal distributions are fixed. Then applying the Fréchet-Hoeffding inequality to
Equation 8 implies sharp bounds on the correlation coefficient ofX andYwith fixedmarginals:
rL � r � rU, where

rL ¼

ZZ �
M
�
FðxÞ,GðyÞ�� FðxÞGðyÞ

�
dxdy

sXsY
,

rU ¼

ZZ �
W

�
FðxÞ,GðyÞ�� FðxÞGðyÞ

�
dxdy

sXsY
.

ð9Þ
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It is known that rL and rU are sharp (see Embrechts et al. 2002 andMcNeil et al. 2005 for detailed
discussions on this result and other properties and pitfalls of the correlation coefficient as a de-
pendence measure). Interestingly, r 2 [�1, 1] is implied by the Cauchy-Schwartz inequality, and
jrj ¼ 1 if and only if the random variables X and Y with CDFs F and G are perfectly linearly
dependent on each other. However, when F and G belong to different families of distributions,
such as one continuous and one discrete, it is typically the case that [rL, rU] is a proper subset of
[�1, 1]. In otherwords, for somemarginal CDFsF andG, the randomvariablesX andYwith these
CDFs F and G can never be perfectly linearly dependent on each other.

As a simple application of the correlation bounds in Equation 9, consider a randomized ex-
periment on a binary treatment with two potential outcomes. The sample information contains
two independent random samples, one on each potential outcome, and thus identifies themarginal
distributions. But it has no information on the copula of the two potential outcomes besides that
contained in the marginal distributions. So [rL, rU] is the identified set for the true correlation
coefficient of the potential outcomes.Heckman et al. (1997) use rL and rU to bound the variance of
the individual treatment effect and the correlation coefficient of the two potential outcomes for
randomized experiments. Fan et al. (2014) applyEquation9 tobounding counterfactual distributions
and treatment effect parameters when outcomes and covariates are observed in separate data sets.

1.3. Other Reviews of Copula Theory

Nelsen (2006) and Joe (1997) provide two key textbooks on copula theory, with clear and detailed
introductions to copulas and dependence modeling, emphasizing statistical foundations. Cher-
ubini et al. (2004) present an introduction to copulas using methods from mathematical finance,
and McNeil et al. (2005) present an overview of copula methods in the context of risk man-
agement. Mikosch (2006) and the associated discussions and rejoinder contain a lively discourse
on the value of copulas in multivariate modeling. Genest & Favre (2007) present a description of
semiparametric inference methods for independently and identically distributed (i.i.d.) data with
a detailed empirical illustration. This article draws on Fan (2010), Fan et al. (2013), and Patton
(2013).We refer interested readers to Patton (2013) for a detailed review of copula-basedmethods
for economic forecasting and for empirical examples illustrating some commonly used methods
and to Fan et al. (2013) for a systematic treatment of partial identification and inference for
parameters that depend on the joint distribution of two random variables with fixed or known
marginal distributions.

2. COPULAS AND MULTIVARIATE MODELS

This section describes some key steps in the estimation of copula-based multivariate models. The
majority of applications of copula-based multivariate models are in time series, so we make such
models the focus of this section (for a discussion of copula-based univariate models, see, e.g.,
Darsow et al. 1992, Chen& Fan 2006b, Chen et al. 2009, Ibragimov 2009, Beare 2010). Models
for i.i.d. data can essentially be treated as a special case of these. We consider three key aspects of
the problem:model specification, estimationand inference, andgoodness-of-fit (GoF) testing. Patton
(2013) presents a more detailed discussion of these topics, on which the discussion below is based.

2.1. Model Specification

Amajority of applications of copula models for multivariate time series build the model in stages,
startingwith aspects of themarginal distributions and thenmoving on to the copula. For example,

184 Fan � Patton

A
nn

u.
 R

ev
. E

co
n.

 2
01

4.
6:

17
9-

20
0.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 D
uk

e 
U

ni
ve

rs
ity

 o
n 

08
/2

9/
14

. F
or

 p
er

so
na

l u
se

 o
nl

y.



it is common to assume some parametric models for the conditional means and variances of the
individual variables:

E
�
XtjF t�1

�
[mxðZt�1,axoÞ,

V
�
XtjF t�1

�
[s2

xðZt�1,axoÞ,
ð10Þ

where Zt�1 2 F t�1, mx(×, ×) and s2
xð × , × Þ are of known form, axo is the finite-dimensional un-

known parameter vector, and similarly for Ytwith my(×, ×), s2
yð × , × Þ, and ayo. Models that can be

used here includemany common specifications: ARMAmodels, vector autoregressions, and linear
and nonlinear regressions. It also allows for a variety of models for the conditional variance:
ARCH and any of its numerous parametric extensions (e.g., GARCH, EGARCH,GJR-GARCH),
stochastic volatilitymodels, andothers.Givenmodels for the conditionalmeans and variances, the
standardized residuals can be constructed:

ɛx,t [
Xt � mxðZt�1,axoÞ

sxðZt�1,axoÞ and ɛy,t [
Yt � my

�
Zt�1,ayo

�
sy

�
Zt�1,ayo

� . ð11Þ

Theconditionaldistributionsof ɛx,t and ɛy,t are treated in one of twoways, either parametrically or
nonparametrically. In the former case, this distribution may vary through time as a (parametric)
function of F t�1-measurable variables (e.g., the time-varying skewed t distribution of Hansen
1994) ormaybe constant. In the nonparametric case, themajority of the literature assumes that the
conditional distribution is constant and estimates it using the empirical distribution function (see
Chen & Fan 2006a). We discuss this choice further in the next subsection.

A bivariate time series model can be constructed from the univariate time series models as
specified inEquation10by coupling the conditional distributions of ɛx,t and ɛy,tusing a conditional
copula. The (conditional) copula is the (conditional) distribution of the probability integral
transforms of the standardized residuals:

Uxt ¼ Ft
�
ɛx,t

�
and Uyt ¼ Gt

�
ɛy,t

�
, ð12Þ

where Ft andGt denote the CDFs of ɛx,t and ɛy,t. The majority of the literature considers parametric
copulamodels (for nonparametric estimation of copulas, seeGenest&Rivest 1993 andCapéraà et al.
1997 for i.i.d. data and Fermanian&Scaillet 2003, Fermanian et al. 2004, Sancetta& Satchell 2004,
and Ibragimov 2009 for time series data). The conditional copula can be assumed constant or allowed
to vary through time. Joe (1997) and Nelsen (2006) present numerous parametric copula functions
that can be used in applied work; these include the Gaussian (or normal) copula, Student’s t copula,
and Archimedean copulas, such as the Clayton, Gumbel, and Frank copulas.

Figure 1 illustrates the types of bivariate distributions that can be obtained with copula-based
models. These bivariate distributions all have standard normal marginal distributions, and the
copula parameters are calibrated to imply a linear correlationof one-half. Even after imposing such
similarity across the bivariate distributions, there remains a great deal of flexibility, arising from
the flexibility in the choice of copula. The variation across these distributions also provides an
indication of the identification problems discussed in Section 3.

Suppose the conditional copula model is parametric with unknown parameter go. Let uo [

(axo, ayo, go) denote the parameter vector for the entire multivariate distribution model. Methods
for estimating uo include the full maximum likelihood and multistage approaches, where the
former is typically asymptotically efficient, but the latter is computationally easier and thus more
commonly used in empirical work.

In the next subsection, we review the basic idea underlying themultistage approach to estimating
copula-based models and point to work that establishes asymptotic properties of such estimators.
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Normal copula, ρ = 0.5

−2 −1 0 1 2
−2

−1

0

1

2
Student’s t copula, ρ = 0.5, ν = 3

−2 −1 0 1 2
−2

−1

0

1

2

Clayton copula, κ = 1

−2 −1 0 1 2
−2

−1

0

1

2
Gumbel copula, κ = 1.5

−2 −1 0 1 2
−2

−1

0

1

2

SJC copula, τU = 0.45, τL = 0.2

−2 −1 0 1 2
−2

−1

0

1

2
Mixed normal copula, ρ1 = 0.95, ρ2 = 0.05

−2 −1 0 1 2
−2

−1

0

1

2

Figure 1

Isoprobability contours from six bivariate densities, all with standard normal margins and all implying
a linear correlation of one-half. The parameters listed in the heading of each panel are those that describe the
copula in that panel. Abbreviation: SJC, symmetrized Joe-Clayton copula.
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2.2. Estimation and Inference

To simplify the exposition of the idea underlying the multistage approach to estimating copula-
based models, we first assume away the dynamics and use the log-likelihood function for an i.i.d.

sample denoted as


ðxt, ytÞ

�T

t¼1
. As in most existing applications, we assume that the copula is

parametric, but the marginal distributions could be either parametric or nonparametric. The
decomposition of a joint density into the product of the marginal densities and the copula density,
as in Equation 1, reveals a convenient decomposition of the joint log-likelihood:

1
T

XT
t¼1

log hðxt, yt; uÞ ¼ 1
T

XT
t¼1

log f ðxtÞ þ 1
T

XT
t¼1

log gðytÞ þ 1
T

XT
t¼1

log c
�
FðxtÞ,GðytÞ; g

�
, ð13Þ

where u ¼ (ax, ay, g) when the marginal distributions are parametric, for example, F(xt) [ F(xt,
axo) andG(yt)[G(yt, ayo) for some finite-dimensional parameters axo and ayo, and u¼ (F,G, g)
when the marginal distributions are nonparametric.

If themarginal distributions are parametric, themost natural estimationmethod is the full (one-
stage) maximum likelihood. Under regularity conditions (see, e.g., White 1994), standard results
can be used to show that the maximum likelihood estimator is consistent and asymptotically
normal, and an estimator of the asymptotic covariancematrix can also be obtained using standard
methods. The drawback of this approach is that even for relatively simple bivariate models, the
number of parameters to be estimated simultaneously can be large, creating a computational
burden. This burden is of course even greater in higher dimensions.

If the parameters of the marginal distributions are separable from those for the copula, as
suggested by our use of the (ax, ay, g) notation, then we may estimate those parameters in a first
stage and then estimate the copula parameters in a second stage. Specifically, let

âx ¼ arg min
ax

XT
t¼1

log f ðxt,axÞ and ây ¼ arg min
ay

XT
t¼1

log f
�
xt,ay

�
.

Then the two-stage estimator of the copula parameter go can be computed as follows:

ĝ ¼ arg min
g

XT
t¼1

log c
�
F
�
xt, âx

�
,G

�
yt, ây

�
; g
�
.

This two-stage approach is sometimes called inference functions for margins in the copula literature
(see Joe & Xu 1996, Joe 1997), although more generally this is known as multistage maximum
likelihood estimation (see White 1994). Of course, two- or multistage estimation will yield pa-
rameters that are less efficient than one-stage maximum likelihood,2 although simulation studies
in Joe (2005) and Patton (2006a) indicate that the loss of efficiency is not great. As for one-stage
maximum likelihood, under regularity conditions (see White 1994, Patton 2006a), the multistage
maximum likelihood estimator is asymptotically normal, but the asymptotic covariancematrix now
takes a nonstandard form (see Patton 2013 for details on how to obtain this covariance matrix).

An attractive feature of the copula decomposition of a joint distribution is that it allows the
marginal distributions and copula to be estimated separately, potentially via different methods.
Semiparametric copula-based models exploit this feature and employ nonparametric models for

2Song et al. (2005) propose a maximization-by-parts algorithm for copula-based models, which upon convergence generates
asymptotically efficient estimators from the two-stage estimator of the copula parameter (see also Fan et al. 2012).
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the marginal distributions and a parametric model for the copula. In such cases, the estimation of
the copula parameter is usually conducted in two steps. The first step estimates themarginal CDFs
via rescaled empirical CDFs:

F̂TðxÞ ¼
1

T þ 1

XT
t¼1

Ifxt � xg and ĜTðyÞ ¼
1

T þ 1

XT
t¼1

Ifyt � yg.

The second step estimates the copula parameter by maximizing the estimated log-likelihood
function with the marginal CDFs replaced by the rescaled empirical CDFs:

ĝS ¼ arg min
g

XT
t¼1

log c
�
F̂TðxtÞ, ĜTðytÞ; g

�
.

This estimator is sometimes called canonical maximum likelihood in this literature. The asymp-
totic distributionof this estimatorwas studiedbyGenest et al. (1995) for i.i.d. data and by Chen&
Fan (2006b) for (univariate) time series data. Chen et al. (2006) propose a (semiparametric) sieve
maximum likelihood method that achieves full efficiency.

For the copula-based multivariate time series models described in the previous subsection with
parametric or nonparametric distributions for ɛx,t and ɛy,t, an additional step of prefiltering must be
done before applying the two-step approaches discussed above for i.i.d. data, so the estimated
standardized residualswould replace the rawdata. The prefiltering step can be done via any existing
methods for estimating the univariate models specified in Equation 10. Chan et al. (2009) and
Chen& Fan (2006a) provide conditions under which an asymptotic normal distribution for the
estimator of the copula parameter is obtained and provide amethod for estimating the asymptotic
covariance matrix. Rémillard (2010) provides additional analyses of estimators of this type and
suggests a bootstrap approach for conducting inference. Oh & Patton (2013) consider simulated
method of moments–type estimation of the parameters of semiparametric copula-based models.
One surprising result inChan et al. (2009) andChen&Fan (2006a) in cases inwhich themarginal
distributions are nonparametric is that under regularity conditions, the asymptotic distribution
of the estimator of the copula parameter is not affected by the filtering step. Therefore, in practice,
one can just proceed as though the parameters characterizing the dynamics were known (see
Rémillard 2010 for some similar results).

Importantly, we note that the asymptotic theory for the estimation of semiparametric copula-
based models, such as that in Chan et al. (2009), Chen & Fan (2006a), Rémillard (2010), and
Oh & Patton (2013), only applies when the conditional copula is constant. The marginal dis-
tributionmeans and variances are allowed to vary (subject to regularity conditions), but the vector
of standardized residuals is assumed to be i.i.d. Theory for the case inwhich the conditional copula
is time varying is not available in the literature to date. Fully parametricmodels (i.e., those inwhich
the marginal distributions as well as the copula are parametric) can handle time-varying con-
ditional copula specifications, although verifying the regularity conditions required for the as-
ymptotic distribution theory can be difficult.

2.3. Goodness-of-Fit Testing and Model Selection

As with any parametric model, multivariate models constructed using a parametric copula are
subject tomodelmisspecification, thusmotivatingGoF testing. Twowidely usedGoF tests of copula
models are the Kolmogorov-Smirnov (KS) and the Cramér–von Mises (CvM) tests (see Rémillard
2010), both of which are based on comparing the fitted copula to the empirical copula:
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ĈT
�
ux, uy

�
[

1
T

XT
t¼1

1
�
Ûxt � ux, Ûyt � uy

�
, ð14Þ

where Ûxt is the probability integral transform of the (estimated) standardized residual, based
either on the fitted parametric marginal distribution or on a nonparametric estimate of this, and
similarly for Ûyt. As for parameter estimation, inference or GoF tests differ depending on whether
the model under analysis is parametric or semiparametric. The presence of estimation error,
whether parametric or nonparametric in nature, means that standard critical values for the KS and
CvM tests cannot be used. Simulation-based alternatives are available (see Rémillard 2010 and
Patton 2013 for further discussion).

An alternative, although similar, GoF test is based on Rosenblatt’s transform, which is a form
ofmultivariate probability integral transformation (seeDiebold et al. 1999, Rémillard 2010). This
approach is particularly useful when the copula is time varying. In this approach, the data are first
transformed so that, if the model is correct, the transformed data are independent Unif(0, 1)
random variables, and then KS and CvM tests are applied to the transformed data. GoF tests that
use the empirical copula of the data rely on the assumption that the conditional copula is constant
and so are inappropriate for time-varying copula models.

Related to the problem ofGoF testing is that ofmodel selection. Rather than comparing a fitted
copula model to the unknown true copula, model selection tests seek to identify the best model(s)
from a given set of competing specifications. The problem of finding the model that is best,
according to some criterion, among a set of competing models (i.e., the problem of model selec-
tion) may be undertaken either using the full sample (in sample) of data or using an out-of-sample
(OOS) period. The treatment of these two cases differs, as does the treatment of parametric and
semiparametric models. Below we discuss pair-wise comparisons of models (for comparisons of
large collections of models, see White 2000, Romano & Wolf 2005, and Hansen et al. 2011 for
general models and Chen & Fan 2005, 2006a, 2007 for copula models).

Full sample (or in-sample) comparisons of nested copulamodels can generally be accomplished
via a likelihood ratio test or aWald test,3 with null being that the smaller model is correct, and the
alternative that the larger model is correct. For example, a comparison of a normal copula with
Student’s t copula can be achieved via a test that the inverse degree of freedom parameter is equal
to, versus larger than, zero. Full sample comparisons of nonnested, fully parametric, copula-based
models can be conducted using the test of Vuong (1989) for i.i.d. data andRivers&Vuong (2002)
for time series data. The latter paper allows for a variety of (parametric) estimation methods and
a variety of evaluation metrics. For copula applications, their results simplify greatly if the
marginals and the copula are estimated by maximum likelihood (one-stage or multistage) and we
compare models using their joint log-likelihood. In such cases, a test of equal accuracy can be
conducted as a simple t-test that the per period difference in log-likelihood values ismean zero. The
only complication is that a heteroskedasticity andautocorrelation robust estimator (e.g.,Newey&
West 1987) of the variance of the difference in log-likelihoods will generally be needed. Chen &
Fan (2006a) consider a similar case to Rivers & Vuong (2002) for semiparametric copula-based
models, under the assumption that the conditional copula is constant. Chen& Fan (2006a) show
that the likelihood ratio t test statistic is again normally distributed under the null hypothesis,

3The problem becomesmore complicated if the smallermodel lies on the boundary of the parameter space of the larger model,
or if some of the parameters of the larger model are unidentified under the null that the smaller model is correct. Readers are
referred to Andrews (2001) and Andrews & Ploberger (1994) for a discussion of these issues.
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although the asymptotic variance is slightlymore complicated, as the estimation error coming from
the use of the nonparametric marginal distributions must be incorporated.

In forecasting applications, OOS comparisons of models are widely used (see West 2006
for a general review of this topic). Diks et al. (2010) propose comparing copula-based models
via their OOS log-likelihoods, using the theory of Giacomini & White (2006) to conduct
inference.

2.4. Applications of Copula-Based Multivariate Models in Economics and Finance

One of the main areas of applications of copula-based multivariate models has been in financial
economics. For applications to risk management, readers are referred to Hull & White (1998),
Embrechts et al. (2002), and Kaas et al. (2009) on VaR and to Rosenberg & Schuermann (2006)
andMcNeil et al. (2005) on general riskmanagement issues. Li (2000), Giesecke (2004), Hofert&
Scherer (2011), and Duffie (2011) provide applications to the pricing of credit derivatives. Appli-
cations of copulas in other derivative markets include Rosenberg (2003), Cherubini et al. (2004),
van den Goorbergh et al. (2005), and Zimmer (2012). Applications of copula-based models to
consider portfolio decisions are presented by Patton (2004), Hong et al. (2007), Garcia&Tsafack
(2011), and Christoffersen et al. (2012).

The use of copula-based analyses in other economic applications is broad and growing.
Bonhomme&Robin (2009) utilize copulas tomodel the dynamics in a panel of earnings data, and
Smith et al. (2010) similarly employ them to capture dynamics in a longitudinal analysis of
electricity prices. In health economics, Cameron et al. (2004) use copulas to study differences
between actual and self-reported visits to a physician, Zimmer & Trivedi (2006) employ them to
model the health care demandofmarried couples, and vanOphem (2011)models the determinants
of visits to a physician. Brendstrup & Paarsch (2007) work with a semiparametric copula-based
model to identify and estimate the joint distributions of valuations in amultiobject English auction,
and Hubbard et al. (2012) utilize a similar model to study first-price sealed bid auctions. Rothe
(2012) uses copulas to study distributional policy effects.

3. COPULAS AND PARTIAL IDENTIFICATION

TheFréchet-Hoeffding inequality in Equation 7 and the correlation bounds in Equation 9 provide
sharp bounds on the joint distribution of X and Y and the correlation coefficient of X and Y,
respectively, when their marginal distributions are fixed. Both are examples of the general Fréchet
problem, which is concerned with finding sharp bounds on functionals of the joint distribution of
X and Y with fixed marginals.

Let uo [ Eo[m(X, Y)] 2 Q ⊂ R denote the parameter of interest, where m(×, ×) is a real-valued
measurable function, andEo[m(X,Y)] denotes the expectation ofm(X,Y) taken with respect to the
true joint distribution of X, Y. To distinguish between the true joint CDF of X and Y and any
bivariate CDF with marginals F and G, we denote the true joint CDF of X and Y as Ho.

In this section, we present the general Fréchet problem as that of partial identification of uo and
review explicit solutions to the general Fréchet problem for two important classes of functions in
Section 3.1. In Section 3.2, we present three applications of the general Fréchet problem in eco-
nomics and finance—bivariate option pricing, VaR evaluation of a linear portfolio, and evaluation
of distributional treatment effects of a binary treatment. We conclude this section with a brief
discussion on inference in Section 3.3. The presentation in this section draws heavily fromFan et al.
(2013).
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3.1. The General Fréchet Problem

ThegeneralFréchet problem can be regarded as the problemof partial identification of uowhen the
marginal CDFs F andG are known or fixed. Let C denote the class of bivariate copula functions.
For a general function m, the identified set for uo is given by

QI ¼
n
u2Q : u ¼ EH

�
mðX,YÞ�, where H ¼ CðF,GÞ for some C2C

o
, ð15Þ

where EH denotes the expectation taken with respect to H.
The Fréchet-Hoeffding inequality and the correlation bounds presented in Equations 7 and

9 provide explicit characterizations ofQI for two examples of the m function: m(X, Y)¼ IfX� x,
Y � yg for a given (x, y) 2 R2 and m(X, Y) ¼ (XY � mXmY)/(sXsY). Both functions belong to
a general class of functions m known as supermodular functions. Section 3.1.1 reviews explicit
characterizations of QI for general supermodular functions extending the Fréchet-Hoeffding
inequality and the correlation bounds. Section 3.1.2 reviews another well-known example of the
Fréchet problem—finding sharp bounds on the distribution functions of the four basic
arithmetic operations, such as the sum and product of X and Y with fixed marginals. The
corresponding functions m are neither supermodular nor submodular.

3.1.1. Supermodular functions. We first provide the definition of a supermodular function.

Definition 1: A function m(×, ×) is called supermodular if for all x � x′ and y � y′,

mðx, yÞ þ m
�
x′, y′

�� m
�
x, y′

�� m
�
x′, y

�� 0, ð16Þ
and is submodular if �m(×, ×) is supermodular.

Ifm(×, ×) is absolutely continuous, then it is supermodular if andonly if ∂2m(x, y)/∂x∂y� 0 almost
everywhere. Cambanis et al. (1976) provide many examples of supermodular or submodular
functions (see also Tchen 1980). Many parameters of the joint distribution of potential outcomes
of interest, including the correlation coefficient of the potential outcomes and many inequality
measures of the distribution of treatment effects, can bewritten as functions of uo corresponding to
some supermodular (submodular) functions m and parameters that depend on the marginal
distributions of potential outcomes only. Many payoff functions of bivariate options also are
either supermodular or submodular (see Section 3.2).

Suppose m(×, ×) is a supermodular and right continuous function. Sharp bounds on uo can be
found inCambanis et al. (1976), Tchen (1980), andRachev&Ruschendorf (1994).4 Let uL and uU
denote the lower and upper bounds on uo, respectively. They are

uL [EHð�Þ
�
mðX,YÞ� ¼ Z 1

0
m
�
F�1ðuÞ,G�1ð1� uÞ�du,

uU [EHðþÞ
�
mðX,YÞ� ¼ Z 1

0
m
�
F�1ðuÞ,G�1ðuÞ�du,

whereF�1(u)¼ inffx : F(x)� ug denotes the u-th quantile of F,G�1(u)¼ inffy :G(y)� ug denotes
the u-th quantile of G, H(�)(x, y) [ M(F(x), G(y)), and H(þ)(x, y) [ W(F(x), G(y)).

Belowwe restate theorem2ofCambanis et al. (1976), which generalizes the Fréchet-Hoeffding
inequality and the correlation bounds presented in Equations 7 and 9.

4Results for submodular functions follow straightforwardly from the corresponding results for supermodular functions. To
save space, we do not present results for submodular functions here.
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Lemma 1: Suppose m(x, y) is supermodular and right continuous. If EHð�Þ
�
mðX,YÞ�

and EHðþÞ
�
mðX,YÞ� exist (even if infinite valued), then the identified set for uo isQI¼

[uL, uU] when either of the following conditions is satisfied: (a) m(x, y) is symmetric,
and E[m(X, X)] and E[m(Y, Y)] are finite; (b) there are some fixed constants x and y
such thatE

�
mðX, yÞ� andE�mðx,YÞ� are finite, and at least one ofEHð�Þ

�
mðX,YÞ� and

EHðþÞ
�
mðX,YÞ� is finite.

The idea underlying the proof of this lemma is not difficult to understand. By definition,

uo ¼
ZZ

mðx, yÞdHoðx, yÞ ¼
ZZ

mðx, yÞdCo
�
FðxÞ,GðyÞ�.

Under the conditions stated in the lemma, one can express the right-hand side expression for uo as
anondecreasing functionof the copulaCo and the fixedmarginalCDFsFandG. BecauseM(u, v)�
Co(u, v) � W(u, v) for all (u, v) 2 [0, 1]2, we obtain the lemma.

3.1.2. The distribution function of (X1Y). LetZ¼XþYwith CDF FZ(×). For a given z2R, let
uo¼Eo[m(X, Y)]¼Eo[IfZ� zg]. Then we obtain uo¼ FZ(z). The sharp bounds on FZ(z) can be
found inMakarov (1981), Rüschendorf (1982), and Frank et al. (1987) (see Lemma 2 below).
Frank et al. (1987) demonstrate that copulas provide useful tools for finding sharp bounds on the
distribution function of the sum of two random variables with fixed marginals. In this section, we
present sharp bounds for the distribution function of Z and refer readers to Schweizer & Sklar
(1983), Williamson &Downs (1990), and Fan et al. (2013) for sharp bounds for the distribution
functions of other arithmetic operations on X and Y.

Franket al. (1987)demonstrate that their proofbasedoncopulas canbe extended tomoregeneral
functions than the sum (see Williamson & Downs 1990 and Embrechts et al. 2003 for details).

Lemma 2: Let

Fmin,ZðzÞ ¼ sup
x2R

max
�
FðxÞ þGðz� xÞ � 1, 0

�
,

Fmax,ZðzÞ ¼ 1þ inf
x2R

min
�
FðxÞ þGðz� xÞ � 1, 0

�
.

ð17Þ

Then the identified set for FZ(z) is QI ¼ [Fmin,Z(z), Fmax,Z(z)]. If either F(×) or G(×)
is a degenerate distribution, then for all z, we have Fmin,Z(z) ¼ FZ(z) ¼ Fmax,Z(z),
so FZ(×) is point identified.

Unlike the sharp bounds for supermodular functions in Lemma 1, which are reached at the
Fréchet-Hoeffding lower and upper bounds for the distribution of X and Y (when X and Y are
perfectly negatively dependent or perfectly positive dependent), the sharp bounds for FZ(z) are not
reached at the Fréchet-Hoeffding lower and upper bounds for the distribution of X and Y. Frank
et al. (1987) provide explicit expressions for copulas that reach the bounds on FZ(z).

3.2. Three Applications of the General Fréchet Problem

In this section, we present three important applications of the results reviewed in Section 3.1:
bivariate option pricing, evaluation of the VaR of a linear portfolio, and evaluation of the dis-
tributional treatment effects of a binary treatment.

3.2.1. Bivariate option pricing. LetX andYdenote the values of two individual assets or risks and
uo denote the price of a European-style option on X and Y with the discounted payoff m(X, Y).
Following Rapuch & Roncalli (2001) and Tankov (2011), we assume that the econometrician
observes random samples of prices on single-asset options on X and Y and that there is no ar-
bitrage. It is known from option pricing theory that there exists a risk-neutral probability measure
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denoted asQ such that the option price is given by the discounted expectation of its payoff under
Q; that is, uo ¼ EQ[m(X, Y)].

LetHo denote the distribution function implied byQwith marginal CDFs F andG. Then uo¼
Eo[m(X, Y)] is the price of such an option. The sample information allows the identification of the
marginal distributions ofX and Y underQ. For example, ifX is the price of an asset at time T and
call options on this asset with prices PX(K)[ EQ[exp(�rT)(X� K)þ] are available, where r is the
interest rate and K is the strike price, then the CDF of X is given by

FðKÞ ¼ 1� expðrTÞ ∂PXðKÞ
∂K

. ð18Þ

Many options have payoff functions that are either supermodular or submodular. For example,
the payoff function of a call on the minimum with strike K is supermodular, given by m(X, Y) ¼
(min(X,Y)�K)þ, and the payoff function of aworst-off call option is also supermodular, given by
m(X, Y)¼minf(X�K1)þ, (Y�K0)þg, where (x)þ ¼max(x, 0) andK1 andK0 are strike prices. A
basket option with payoff function (X þ Y � K)þ is yet another example. We refer interested
readers to Rapuch & Roncalli (2001, table 1) and Tankov (2011) for more examples.

Applying Lemma 1 to the payoff functions of bivariate options with supermodular payoff
functions yields the identified sets for the bivariate option prices. For example, the identified set for
the price of a call on the minimum with strike K is given by�

EHð�Þ
��
minðX,YÞ � K

�
þ
�
,EHðþÞ

��
minðX,YÞ � K

�
þ
��

. ð19Þ

The above bounds were first obtained by Rapuch & Roncalli (2001). Tankov (2011) establishes
improved bounds when additional information on the dependence between X and Y is available.
Fan et al. (2013) provide closed-form expressions for the above bounds and bounds on the price of
a worst-off call option.

3.2.2. The worst VaR of a linear portfolio. LetX and Y denote the values of two assets or two
individual risks,Z¼XþYdenote a linear portfolio ofX andY, and uodenote theVaRof the linear
portfolio Z. The VaR of Z at level a 2 (0, 1) is defined as the a quantile of the distribution of Z
denoted as F�1

Z ðaÞ. Although F�1
Z ðaÞ cannot be written as Eo[m(X, Y)] for some function m, the

distribution function ofZ can, and the bounds on the VaR ofZ follow straightforwardly from the
bounds on its distribution function. So with slight abuse of notation, we also refer to the VaR of
a linear portfolio of X and Y as an example of uo.

The VaR of Z is of interest in risk management and is identified when a bivariate sample
from the joint distribution of X and Y is available. However, when only univariate samples onX
and Y are available, we cannot point identify the VaR ofZ. To resolve this issue, researchers have
adopted the independence assumption onX and Y. This assumption is often violated (see McNeil
et al. 2005, and references therein, for a detailed discussion). Without the independence or any
other specific assumption on the dependence ofX andY, one can find sharp bounds on the VaR of
Z by inverting the sharp bounds on FZ(z) in Lemma 2: For a 2 (0, 1), it holds that

F�1
Z ðaÞ 2

"
inf

u2ða,1Þ

�
F�1ðuÞ þG�1ða� uþ 1Þ

�
, sup
u2ð0,aÞ

�
F�1ðuÞ þG�1ða� uÞ

�#
. ð20Þ

These were first established in Makarov (1981). The upper bound on F�1
Z ðaÞ in Equation 20 is

known as the worst VaR of Z (see Embrechts et al. 2003, 2005). Kaas et al. (2009) present
the worst VaR ofZwhen additional information on the dependence betweenX andY is available.
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3.2.3. Distributional treatment effects. Let D be a binary treatment indicator such that an in-
dividual with D ¼ 1 receives the treatment with a continuous outcome X and an individual with
D ¼ 0 does not receive the treatment with a continuous outcome Y. In addition to the average
treatment effect parameters, such as the average treatment effect and the treatment effect for the
treated, distributional treatment effect parameters such as the proportion of people who benefit
from the treatment and the quantile of the distribution of treatment effects may be of interest as
well. Parameters in the latter category depend on the copula of the potential outcomes X and Y.

When themarginal distributions ofX andY are identified, the bounds reviewed in Section 3.1 can
be used to bounddistributional treatment effect parameters (seeManski 2003, and references therein,
for scenariosunderwhich themarginal distributionsofXandYarepartially identified).Wereviewthe
recent work in this area for randomized experiments and threshold-crossing models below.

Randomized experiments. Data from randomized experiments contain two independent univariate
randomsamples, oneon eachpotential outcome, so theypoint identify themarginal distributionsofX
andY and thus point identify average treatment effects. But they do not point identify the copula ofX
andY because they contain no information on the dependence ofX andYbesides that in themarginal
distributions. Because distributional treatment effects such as the proportion of people receiving
treatmentwhobenefit from the treatment and themedianof the individual treatment effect dependon
the copula ofX andY, they are not point identified from randomized experiments. Fan&Park (2009,
2010, 2012) provide a systematic study of partial identification and inference for these distributional
treatment effect parameters using Lemma 2. Below we review some of their results.

Let D ¼ X � Y denote the individual treatment effect with CDF FD(×). Given the marginals F
and G, sharp bounds on FD(d) for d in the support of the distribution of D can be obtained from
Lemma 2 (see also Williamson & Downs 1990): FL

DðdÞ� FDðdÞ� FU
D ðdÞ, where

FLDðdÞ ¼ sup
y

max
�
FðyÞ �Gðy� dÞ, 0� and FUD ðdÞ ¼ 1þ inf

y
min

�
FðyÞ �Gðy� dÞ, 0�.

ð21Þ

Note that the proportion of people receiving treatment who benefit from it is given by

P
�
X>YjD ¼ 1

�
¼ P

�
D> 0jD ¼ 1

�
¼ 1� FD

�
0jD ¼ 1

�
,

where FD(×jD ¼ 1) denotes the conditional CDF of D given D ¼ 1. For ideal randomized
experiments,P(X>YjD¼1)¼1�FD(0). Applying the bounds inEquation21 toFD(0) leads to the
identified set for P(X > YjD ¼ 1).

Inverting the bounds on FD(d) in Equation 21, we get QL
DðaÞ� F�1

D ðaÞ�QU
D ðaÞ, where

QL
DðaÞ ¼ sup

u2ð0,aÞ

�
F�1ðuÞ �G�1ðuþ 1� aÞ

�
,

QU
D ðaÞ ¼ inf

u2ða,1Þ

�
F�1ðuÞ �G�1ðu� aÞ

�
.

Fan& Park (2012) explore these bounds to construct inference procedures for F�1
D ðaÞ for ideal

randomized experiments.

Latent threshold-crossing model. The identification results for randomized experiments extend
straightforwardly to the selection-on-observables framework—D is independent of (X, Y) con-
ditional on observable covariates (see Fan et al. 2013). When selection into treatment is based not
only on observable but also on unobservable covariates, Heckman (1990) and Heckman &
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Vytlacil (2005) provide a systematic studyof the identification of average treatment effects in latent
threshold-crossingmodels. Building on the results ofHeckman (1990), Fan&Wu (2010) establish
the identified sets for distributional treatment effect parameters in the latent threshold-crossing
model of Heckman (1990). We review some of the results of Fan & Wu (2010) below.

Consider the semiparametric threshold-crossingmodel with continuous outcomes inHeckman
(1990):

X ¼ g1ðX1,XcÞ þU1,Y ¼ g0ðX0,XcÞ þU0,

D ¼ I


ðW,XcÞ′g þ e> 0

�
,

ð22Þ

whereX1,X0,Xc, andW are observable covariates,U1,U0, and e are unobservable covariates, and
g1(x1, xc), g0(x0, xc), and the distribution of (U1, U0, e)′ are completely unknown.

The sample informationcontainsobservationson thecovariates (X1,X0,Xc,W) and the treatment
indicatorD for each individual in the sample but only contains observations onX for individualswith
D ¼ 1 and observations on Y for individuals with D ¼ 0. When conditional on the observable
covariates (X1,X0,Xc,W), e is independent of (U1,U0), and the selection-on-observables assumption
holds; otherwise, the unobservable error e affects both the individual’s decision to select into treat-
ment and his or her potential outcomes. Suppose the unobservable covariates are independent of the
observable covariates.Heckman (1990) provides conditions underwhich the distributions of (U1, e)′,
(U0, e)′, g1(x1, xc), g0(x0, xc), and g are point identified from the sample information alone.However,
the joint distribution of (U1, U0)′ is only partially identified (see Fan & Wu 2010 for details).

Lemmas 1 and 2 allow us to establish sharp bounds for distributional treatment effect
parameters that dependon the copula ofX andY orU1 andU0. For example, the covariance ofU1

and U0 can be bounded as follows:

Z � ZZ
M
�
F1jeðuÞ, F0jeðvÞ

�
dudv

�
dFeðeÞ� covðU1,U0Þ

�
Z � ZZ

W
�
F1jeðuÞ, F0jeðvÞ

�
dudv

�
dFeðeÞ,

ð23Þ

where Fjje(u) denotes the conditional CDF of Uj on e, and Fe(e) is the CDF of e. The bounds in
Equation 23 may be used to infer the sign of cov(U1, U0) and are typically narrower than those
based on the marginal CDFs of U1 and U0 only.

Similarly, consider the distribution of D ¼ X � Y. Let ATE ¼ g1(x1, xc) � g0(x0, xc). Then
FD(d)¼E[P(U1�U0�fd�ATEgje)]. Applying Lemma2 toP(U1�U0�fd�ATEgje), we obtain
the sharp bounds on the distribution function of treatment effects: FL

DðdÞ� FDðdÞ� FU
D ðdÞ, where

FLDðdÞ ¼
Z þ1

�1

�
sup
u

max
n
FXjeðuÞ � FYje

�
u� fd� ATEg

�
, 0
o�

dFeðeÞ,

FUD ðdÞ ¼
Z þ1

�1

�
inf
u
min

n
1� FYje

�
u� fd� ATEg

�
þ FXjeðuÞ, 1

o�
dFeðeÞ,

whereFXje(u) and FYje(u) are the conditional CDFs ofX andY on e. For both examples, the bounds
are point identified under the same conditions as in Heckman (1990).

3.3. Inference

The expressions in Equations 9, 20, and 21 share one common feature; that is, they depend on the
marginal distributions only. As a result, they can be consistently estimated without requiring any
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dependence information between X and Y, provided that univariate samples from F and G are
available. For example, consider a linear portfolioZ ofmarket riskX and credit riskY. Estimating
the VaR of Z requires a bivariate sample from the joint distribution of X and Y, which may not
always be available. In contrast, Equation 20 implies that the smallest and worst VaR can be
estimatedwith only univariate samples from F andG. Inference on r, FD(d), and F�1

Z ðaÞ belongs to
a recent, but fast-growing area in econometrics: inference for partially identified parameters
pioneered by Imbens&Manski (2004) (see also Chernozhukov et al. 2007, Stoye 2009, Andrews
& Soares 2010).We refer interested readers to Fan et al. (2013) for a detailed discussion andmore
references on recent developments on inference for partially identified parameters.

4. CONCLUSION

We conclude this article by mentioning two active research areas on copulas in the current liter-
ature: the generalizedFréchet problemwith additional constraints, and the construction of higher-
dimensional copulas and the Fréchet problem in higher dimensions.

Section 3 reviews the general Fréchet problem and its applications in bivariate option pricing,
VaR evaluations, and distributional treatment effects. In each application, the available information
is just enough to identify the marginal distributions, and solutions to the general Fréchet problem
provide the identified sets for parameters of interest. Oftentimes, additional information might be
available that helps restrict the class of copulas to which the true copula of X and Y belongs. For
example,X andYmay be known to be nonnegatively dependent; the value of a dependencemeasure
such as Kendall’s t may be known; or the values of the true copula at some specific points in [0, 1]2

may be known. Nelsen & Ubeda-Flores (2004) and Nelsen et al. (2001, 2004) establish improved
Fréchet-Hoeffding bounds when such partial dependence information is available. Using the im-
proved Fréchet-Hoeffding bounds, Tankov (2011) shows that the bounds in Cambanis et al. (1976)
for supermodular functions can be tightened. Similar results for the distribution function of a sum of
two random variables can be obtained using the methods of Williamson & Downs (1990) and
Embrechts et al. (2003) (see Fan & Park 2010 and Fan et al. 2013 for details).

Copulas have found most success in bivariate modeling, as there are numerous parametric
families of bivariate copulas from which the researcher can choose (see Joe 1997, Nelsen 2006).
Comparedwith bivariate parametric copulas, the number of higher-dimensional parametric copulas
is rather limited. So far, most applications in higher dimensions have focused on Gaussian copulas
and Student’s t copulas (see Christoffersen et al. 2012 for a high-dimensional application based on
a skew t copula). It is well known that construction of higher-dimensional copulas is very difficult.
Several methods have been proposed recently, including those for constructing higher-dimensional
Archimedean copulas (see Hering et al. 2010, Hofert & Scherer 2011), and the pair-copula con-
structionapproachknownas vines (seeKurowicka&Cooke2006,Aas et al. 2009,Acar et al. 2012).
Oh&Patton (2012)propose anewclass of“factor copulas”and show that theyhave somedesirable
features in high-dimensional applications. The Fréchet problem in higher dimensions has also drawn
attention recently; readers are referred to Embrechts (2009) for a brief account and references.
Finally, Kallsen & Tankov (2006) present a version of Sklar’s theorem that allows for the con-
struction of a general multivariate Lévy process from arbitrary univariate Lévy processes and an
arbitrary Lévy copula.
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