
Bootstrapping two-stage quasi-maximum likelihood estimators of
time series models

Sílvia Gonçalves∗, Ulrich Hounyo†, Andrew J. Patton‡, and Kevin Sheppard§

October 30, 2019

Abstract

This paper’s main contribution is to theoretically justify the application of bootstrap methods
in multistage quasi-maximum likelihood estimation involving time series data. Two consistency re-
sults are provided: consistency of the bootstrap distribution and consistency of bootstrap variance
estimators. These results justify constructing bootstrap percentile intervals and computing boot-
strap standard errors using multi-step quasi-maximum likelihood estimation, avoiding the need to
analytically quantify the estimation uncertainty caused by the multistage estimation process. Our
results should be useful for inference in many models in finance and economics such as multivariate
copula models or large multivariate GARCH models, which are often estimated in stages.

1 Introduction

Many models in economics and finance are estimated by maximum likelihood in multiple stages.
Examples include estimation of multivariate copula models, where we first estimate parameters related
to the marginal distributions and then estimate the copula parameters (see Joe (1995) and Patton
(2006), for example); estimation of large multivariate GARCHmodels such as the Dynamic Conditional
Correlation (DCC) GARCH model of Engle and Sheppard (2001), where we first estimate univariate
GARCH models for each asset and then, using transformed residuals resulting from the first stage, we
estimate a conditional correlation estimator; regression models with generated regressors, one example
being the popular two-pass regressions used to estimate risk premium parameters, etc. In all these
cases, inference on parameters estimated at a later stage should account for estimation parameter
uncertainty in earlier stages. The bootstrap has often been used in this context as it avoids the need
to compute standard errors obtained from cumbersome analytical formulas. See e.g. Patton (2012) for
bootstrap applications in copula models and Cochrane (2001, Chapter 15.2) for bootstrap inference
in two-pass regressions.

Although the existing literature has studied the validity of the bootstrap for one-step quasi-
maximum likelihood estimators (QMLE) under very general conditions on the time series dependence
and heterogeneity (see, in particular, Gonçalves and White (2004), henceforth GW(2004)), no results
seem to be available for multistep QMLE under this level of generality. For instance, Chen et al. (2003)
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and Armstrong et al. (2014) consider the bootstrap for two-step nonlinear parametric and semipara-
metric models, but assume i.i.d. data. More recently, and also for i.i.d. observations, Cattaneo et al.
(2019) consider bootstrap inference for two-step GMM estimators, where the first step depends on a
large number of covariates. Even though these papers allow for very general estimators, e.g. in the
form of nonparametric first step estimators, their results do not cover time series applications. Our
main goal in this paper is to fill this gap. In particular, we focus on the simpler parametric multistep
QML estimator (which is popular in finance) but show bootstrap validity under general time series
dependence and heterogeneity.

We consider two approaches to this problem. The first consists of jointly resampling the contribu-
tions to the quasi-loglikelihood functions in the two (or multiple) stages. Since model misspecification
at any stage can induce time series dependence in the scores of each model, we rely on the moving
blocks bootstrap (MBB) of Künsch (1989) and Liu and Singh (1992). In particular, given a set of
bootstrap indices generated with the MBB, we first obtain α̂∗n, the bootstrap analogue of the first step
estimator α̂n, by maximizing the resampled version of the quasi-loglikelihood function of the first step
problem. We then use these same bootstrap indices to resample the contributions to the criterion
function of the second stage problem, evaluated at α̂∗n. Maximizing this function with respect to β
yields β̂

∗
n, the bootstrap analogue of the two-step QMLE β̂n.

While valid, this bootstrap method may be computationally very intensive because it requires
two (or more) sets of maximization on each bootstrap sample. For this reason, we also propose a
fast resampling method that avoids any optimization problem in the bootstrap world. In particular,
our proposal is to resample the score function underlying the asymptotic linear representation of the
two-step QMLE, evaluated at α̂n and β̂n. In contrast, the fast resampling method of Armstrong et al.
(2014) resamples only the score vector of the second step model evaluated at α̂∗n and β̂n. Whereas their
approach avoids the explicit characterization of the score vector of the first step estimation problem
(which can be diffi cult in nonparametric models), it is more computationally intensive than our fast
resampling method as it requires computation of α̂∗n.

We prove two sets of results for both bootstrap methods. First, we show the consistency of the

bootstrap distribution of
√
n
(
β̂
∗
n − β̂n

)
as an estimator of the distribution of

√
n
(
β̂n − β0

)
under

a set of regularity conditions that allow for time series dependence and heterogeneity of unknown
forms. Our conditions are an extension to the two-step QMLE of the conditions used by Gonçalves
and White (2004) to show the asymptotic validity of the MBB for inference on one-step QMLE for
nonlinear dynamic models. These results justify the construction of bootstrap percentile intervals, but
do not by themselves justify estimating the standard errors of the two-step QMLE by the bootstrap.
Hence, we also show the consistency of bootstrap variance estimators. This entails verifying a certain
uniform integrability condition and requires stronger model assumptions. In particular, we follow the
approach of Kato (2011) and Cheng (2015) and rely on empirical process theory to prove our results.
Their results apply to one-step M estimators with i.i.d. data and do not cover time series applications.
They also do not cover two-step QMLE, even under the i.i.d. assumption. Similarly, although the
results of Gonçalves and White (2005) allow for time series dependence, they are specific to the one-
step least squares estimator. Thus, no results appear to be available regarding the consistency of
bootstrap variance estimators of one or multi-stage QMLE with general time series dependence.

We provide a set of Monte Carlo simulations that illustrate the usefulness of our results. In
particular, we consider estimation of a bivariate copula model, where estimation is done by stages and
the parameter of interest is the copula parameter. In addition to the standard asymptotic theory-based
interval that relies on analytical standard errors, we consider two types of bootstrap-based intervals:
intervals that rely on bootstrap standard errors, but use the normal critical value, and bootstrap
percentile intervals. We can summarize our results as follows. First, all methods tend to provide
similarly good coverage probabilities, even for the smaller sample sizes. This is in agreement with
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the theory of the bootstrap since none of the methods promises asymptotic refinements. Moreover,
the model design does not allow for dynamic misspecification, which explains why we do not find
larger finite sample distortions even when n is small. Second, the main difference among the different
methods is their confidence interval lengths. In particular, the intervals based on the fully optimized
bootstrap method tend to be narrower than the intervals based on either the fast resampling method
or the asymptotic approach using analytical standard errors. This can be explained by the fact
that the fully optimized bootstrap standard error estimator has a smaller mean squared error than the
remaining methods, as our simulations show. Thus, although more computationally intensive than the
fast resampling method, the fully optimized bootstrap intervals have better finite sample properties.

The rest of the paper is organized as follows. In Section 2, we present the framework and provide
an example of a two-step QMLE based on the bivariate copula model. In Section 3, we describe our
two bootstrap methods and prove their consistency in Section 4. Section 5 contains the simulation
results and Section 6 concludes. Proofs are relegated to an online supplementary appendix. This
Appendix also contains a general bootstrap consistency theorem which provides a set of bootstrap
high level conditions (in the form of bootstrap uniform laws of large numbers and bootstrap central
limit theorems) under which the bootstrap distribution of any two-step bootstrap M-estimator is
asymptotically normal with the same asymptotic covariance matrix of the corresponding two-step
M estimator. This result may be of independent interest as it applies to any two-step M estimator
and does not require the first step estimators α̂n and α̂∗n to be QMLE, only assuming that they are
asymptotically linear. In addition, its high level conditions can be verified for any bootstrap scheme
as they are not specific to the moving blocks bootstrap.

2 Framework

2.1 Two-stage QMLE

Suppose
{
Xt : Ω→ Rl, t ∈ N

}
denotes a sequence of Rl-valued random vectors defined on some prob-

ability space (Ω,F , P ). Let Θ = A × B, where A and B are compact subsets of finite dimensional
Euclidean spaces. Given an observed sample {Xt : t = 1, . . . , n}, our goal is to estimate a parameter
vector β0 ∈ B ⊂ Rp by a two-stage quasi-maximum likelihood (2QMLE) estimator. For simplicity, we
focus on the two-stage QMLE, but our results generalize easily to multi-stage QMLE’s.

In the first step, we estimate α0 ∈ A ⊂ Rk with

α̂n = arg max
α∈A

Q1n (α) ,

where

Q1n (α) ≡ n−1
n∑
t=1

log f1t
(
Xt, α

)
,

with Xt ≡ (X1, . . . , Xt−1, Xt), for some quasi-likelihood function f1t
(
Xt, α

)
: Rlt × A →R+. To

simplify the notation, we sometimes write f1t (α) ≡ f1t
(
Xt, α

)
. A similar notation is used for any

other function of Xt throughout.
In the second step, we estimate β with

β̂n = arg max
β∈B

Q2n (α̂n, β)

where

Q2n (α, β) ≡ n−1
n∑
t=1

log f2t
(
Xt, α, β

)
,
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for a conditional quasi-likelihood function f2t (α, β) ≡ f2t
(
Xt, α, β

)
: Rlt ×A× B →R+. We allow for

time heterogeneity in f1t (α) and f2t (α, β) (i.e. the functional forms may depend on t) and we also
allow for the possibility that these functions depend on the past information up to time t (i.e. Xt is
a vector of possibly growing dimension).

2.2 An example: copula models

An example of time series models that are often estimated in multiple stages are copula-based mul-
tivariate models. These models combine separately estimated marginal distributions via a copula
function to form a joint distribution. When the parameters that characterize the marginal distribu-
tions are different from those that characterize the copula density function, estimation and inference
can be done in stages. Our results can be useful in this context.

To illustrate, let Xt ≡ (y1t, y2t)
′ denote a random vector whose joint conditional density we would

like to model. By the usual decomposition, we can write

log g (X1, . . . , Xn, θ) =
n∑
t=1

log gt
(
Xt|F t−1, θ

)
,

where gt
(
Xt|F t−1, θ

)
is the conditional density function ofXt given F t−1. Suppose yit|F t−1 ∼ Git (αi) ,

some distribution function parametrized by a set of parameters αi with density function git (αi). The
joint (conditional) pdf of Xt is then given by

gt
(
Xt|F t−1, θ

)
= g1t (y1t, α1) g2t (y2t, α2) ct (G1t (y1t, α1) , G2t (y2t, α2) , β) ,

where ct (·, ·, β) is a copula density function parametrized by β, and θ = (α1, α2, β)′ denotes the full
set of parameters. It follows that the joint log likelihood function can be written as

log g (X1, . . . , Xn, θ) =
n∑
t=1

log g1t
(
y1t|F t−1, α1

)
+

n∑
t=1

log g2t
(
y2t|F t−1, α2

)
+

n∑
t=1

log ct
(
G1t (y1t, α1) , G2t (y2t, α2) |F t−1, β

)
.

When the parameters characterizing the marginals and the copula function are separable (i.e. the
parameters that enter one marginal do not enter another marginal nor the copula function and there
are no cross equation restrictions), we can estimate these parameters by stages. In particular, we first
estimate αi by QMLE:

α̂in = arg max
αi

n∑
t=1

log git
(
yit|F t−1, αi

)
, for i = 1, 2,

and then estimate the copula parameters β in a second stage by

β̂n = arg max
β

n∑
t=1

log ct
(
G1t (y1t, α̂1n) , G2t (y2t, α̂2n) |F t−1, β

)
.

Thus, in our previous notation,

Q2n (α̂n, β) =

n∑
t=1

log f2t
(
Xt, α̂n, β

)
, where α̂n = (α̂1n, α̂2n)′ , and

f2t
(
Xt, α̂n, β

)
≡ ct

(
G1t (y1t, α̂1n) , G2t (y2t, α̂2n) |F t−1, β

)
.

The contributions to this quasi-log likelihood function depend on the sample on Xt = (y1t, y2t)
′ up to

time t through the integral probability transforms Git (yit, α̂in).
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2.3 Asymptotic properties of two-stage QMLE: a review

In this section, we review the asymptotic properties of the two-stage QMLE. These results are useful
to understand the properties that the bootstrap needs to have in order to be asymptotically valid.

Let α0 be the unique maximizer of Q̄1 (α) ≡ limn→∞E (Q1n (α)) on A and let β0 be the unique
maximizer of Q̄2 (α0, β) ≡ limn→∞E (Q2n (α0, β)) on B. Then, under Assumption A in the online

Appendix A.1, we can show that β̂n
P−→ β0 and

√
n
(
β̂n − β0

)
d−→ N

(
0, H−10 J0H

−1
0

)
,

where

H0 ≡ lim
n→∞

E

(
n−1

n∑
t=1

∂

∂β′
s2t (α0, β0)

)
, with s2t (α0, β0) ≡

∂

∂β
log f2t (α0, β0) ,

and

J0 ≡ lim
n→∞

V ar

(
n−

1
2

n∑
t=1

(
s2t (α0, β0)− F0A−10 s1t (α0)

))
,

where

s1t (α0) ≡
∂

∂α
log f1t (α0) , A0 ≡ lim

n→∞
E

(
n−1

n∑
t=1

∂

∂α′
s1t (α0)

)
, and

F0 ≡ lim
n→∞

E

(
n−1

n∑
t=1

∂

∂α′
s2t (α0, β0)

)
.

As this result shows, the impact of the first stage estimation of α0 is not negligible asymptotically
except when F0 = 0. This implies that we need to adjust the standard errors of β̂n for the added
estimation uncertainty of α̂n. Although a consistent estimator of J0 can be obtained by applying a

HAC (heteroskedasticity and autocorrelation covariance) estimator to
{
s2t

(
α̂n, β̂n

)
− F̂nÂ−1n s1t (α̂n)

}
(where F̂n and Ân are consistent estimators of F0 and A0) in practice the bootstrap is often used. Our
goal is to provide a set of conditions that justify this practice in time series applications.

3 Bootstrap methods

The asymptotic validity of the bootstrap depends on its ability to mimic the asymptotic variance-
covariance matrix of β̂n. The form of J0 suggests that the bootstrap should replicate the time series de-
pendence and the heterogeneity properties of the score vector

{
st (α0, β0) ≡ s2t (α0, β0)− F0A−10 s1t (α0)

}
.

Model misspecification at any stage can induce time series dependence and our approach is to use a
block bootstrap. In particular, we rely on the moving blocks bootstrap (MBB) of Künsch (1989) and
Liu and Singh (1992). See also Gonçalves and White (2002, 2004, 2005) for the validity of the MBB
under general time series dependence and heterogeneity.

We consider two different methods. One is based on resampling the contributions to the log like-
lihood functions {f1t (α)} (which yields a bootstrap QMLE α̂∗n) and {f2t (α̂∗n, β)} (which is optimized
over β to yield β̂

∗
n). The same bootstrap indices obtained with the MBB are used across the two

stages, ensuring that this method mimics the time series dependence of the extended score. Because
it requires two (or multi) sets of maximization, this method may be computationally intensive. For
this reason, we also propose another bootstrap method which resamples directly the estimated score

5



st

(
α̂n, β̂n

)
≡ s2t

(
α̂n, β̂n

)
− F̂nÂ−1n s1t (α̂n). Our simulations show that this method is less effi cient

than the fully optimized bootstrap method. In particular, the fast resampling standard errors have
larger mean squared errors compared to the fully optimized standard errors, especially for the smaller
sample sizes. This translates into wider confidence intervals for the parameter of interest.

Both methods involve resampling certain functions of the data using the MBB to obtain new in-
dices, which can be described as follows. For a generic time series {Zt : t = 1, . . . , n}, let ` = `n ∈ N
(1 ≤ ` < n) be a block length. Define Bt,` = {Zt, Zt+1, . . . , Zt+`−1} as the block of ` consecu-
tive observations starting at Zt (` = 1 corresponds to the standard i.i.d. bootstrap). For sim-
plicity take n = k`. The MBB draws k = n/` blocks randomly with replacement from the set
of overlapping blocks {B1,`, . . . , Bn−`+1,`}. Letting I1, . . . , Ik be i.i.d. random variables distrib-
uted uniformly on {0, . . . , n− `}, we have {Z∗t = Zτ t , t = 1, . . . , n}, where τ t is defined as {τ t} ≡
{I1 + 1, . . . , I1 + `, . . . , Ik + 1, . . . , Ik + `}.

3.1 The fully optimized bootstrap method

The first method we consider requires resampling the contributions to the two (or more) likelihood
functions f1t and f2t and then computing α̂∗n and β̂

∗
n using these resampled log-likelihood functions.

More specifically, the bootstrap analogue of α̂n is given by

α̂∗n = arg max
α∈A

Q∗1n (α) ,

where

Q∗1n (α) ≡ n−1
n∑
t=1

log f∗1t (α) ,

and f∗1t (α) = f1,τ t (α) ≡ f1,τ t (Xτ t , α) is a resampled version of f1t (α) ≡ f1t
(
Xt, α

)
, where the indices

τ t are chosen by the bootstrap. Thus, we resample the functions f1t (α) rather than the data directly.
However, when f1t (α) = f1 (Zt, α) where the function f1t does not depend on t and is a function of
Zt ≡ (Xt, Xt−1, . . . , Xt−k)

′ for some finite k ≥ 0, resampling f1t (α) is equivalent to resampling the
vector Zt, i.e. f∗1t (α) ≡ f∗1t

(
X∗t, α

)
= f1 (Z∗t , α) = f1 (Zτ t , α). To better appreciate the difference

between resampling the functions f1t (α) and the data, take for instance an ARCH (1) model, where

Xt =
√
htεt, εt|F t−1 ∼ N (0, 1) ,

ht (α) = ω + aX2
t−1, where α = (ω, a)′ .

The conditional log likelihood function of Xt given F t−1 is equal to log f1
(
Xt, α

)
= −12 log (2π) −

1
2 log ht (α)− 1

2
X2
t

ht(α)
, where Xt = (Xt−1, Xt) . In this case, resampling the functions f1t (α) ≡ f1

(
Xt, α

)
is equivalent to resampling the pairs (Xt−1, Xt) . But if instead we consider a GARCH(1,1) model with
ht (α) = ω + aX2

t−1 + bht−1 (α) , where now α = (ω, a, b)′, then ht (α) is potentially a function of the
infinite history of X up to time t. In practice, we choose an initial guess for ht, say h0, and let
Xt = (Xt−1, Xt−2, . . . , X1, h0) . Because Xt now does not have a fixed dimension, we cannot resample
“pairs” of data. Our approach is to evaluate the log likelihood function at the new set of indices
{τ t} generated with the bootstrap. Thus, e.g. for the first observation in the bootstrap world, we
let log f1,τ1 (α) = −12 log (2π) − 1

2 log hτ1 (α) − 1
2

X2
τ1

hτ1 (α)
, where hτ1 (α) = ω + aX2

τ1−1 + bhτ1−1 (α), a

function of Xτ1 = (Xτ1−1, Xτ1−2, . . . , X1, h0) .

The second step bootstrap estimator β̂
∗
n is obtained as

β̂
∗
n = arg max

β∈B
Q∗2n (α̂∗n, β) ,
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where

Q∗2n (α̂∗n, β) ≡ n−1
n∑
t=1

log f∗2t (α̂∗n, β) ,

with f∗2t (α̂∗n, β) = f2,τ t (α̂∗n, β) ≡ f2,τ t (Xτ t , α̂∗n, β). Thus, we resample the functions f2t (α, β) ≡
f2t
(
Xt, α, β

)
evaluated at α = α̂∗n using the same indices τ t used in computing α̂

∗
n. Resampling both

functions f1t and f2t with the same set of indices is important because this will preserve the form of
dependence between the two functions. In particular, this will guarantee that the bootstrap is able to

mimic the dependence in the score vector st
(
α̂n, β̂n

)
. If instead we used two different sets of indices,

say τ1t and τ2t, generated independently of each other, this would induce an independence between
f∗1t and f

∗
2t which would not necessarily exist for the original functions.

3.2 A fast resampling method

Bootstrapping multi-stage extremum estimators can be computationally intensive as this may require
solving multiple optimization problems for each resample. For this reason, we also consider a fast
resampling method for bootstrapping two-step QMLE which has a closed form expression and avoids
any numerical optimization. To describe this estimator, let

Ĥn = n−1
n∑
t=1

∂

∂β′
s2t

(
α̂n, β̂n

)
, Ân = n−1

n∑
t=1

∂

∂α′
s1t (α̂n) , and F̂n = n−1

n∑
t=1

∂

∂α′
s2t

(
α̂n, β̂n

)
.

The fast resample two-step QMLE is given by

β̂
∗
1,n = β̂n − Ĥ−1n n−1

n∑
t=1

s∗t

(
α̂n, β̂n

)
,

where s∗t
(
α̂n, β̂n

)
is a resampled version of

st

(
α̂n, β̂n

)
≡ s2t

(
α̂n, β̂n

)
− F̂nÂ−1n s1t (α̂n) ,

i.e. s∗t
(
α̂n, β̂n

)
= sτ t

(
α̂n, β̂n

)
≡ s2τ t

(
α̂n, β̂n

)
− F̂nÂ−1n s1τ t (α̂n) . Thus, β̂

∗
1,n is a one-step bootstrap

QMLE which updates β̂n using the estimated Hessian Ĥn and the bootstrap scores s∗t
(
α̂n, β̂n

)
,

evaluated at α̂n and β̂n.
A special case of β̂

∗
1,n is a version of the one-step bootstrap QMLE considered in GW (2004)

in the context of one-stage QMLE. In that paper, β̂n does not depend on a first stage estimator α̂n,

implying that s2t
(
α̂n, β̂n

)
= s2t

(
β̂n

)
and st

(
α̂n, β̂n

)
= s2t

(
β̂n

)
. The only difference with respect to

GW(2004) in this case is that our proposal only resamples the estimated scores and does not involve
resampling the contributions to the Hessian Ĥn (instead, their one-step bootstrap QMLE involves
resampling both; see also Davidson and MacKinnon (2004) and Andrews (2002) who proposed k-
step bootstrap methods that resample the contributions to the Hessian and the score vector at each
iteration, starting from the original estimators).

β̂
∗
1,n is also related to a fast resampling approach proposed by Armstrong et al. (2014) in the context

of a two-step GMM estimator with i.i.d. data, where the first step is a potentially nonparametric
estimator (see also Chen et al. (2003) and Chen and Liao (2015)). In our context, it amounts to

β̃
∗
1,n = β̂n − Ĥ−1n n−1

n∑
t=1

s∗2t

(
α̂∗n, β̂n

)
.
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There are two main differences between β̂
∗
1,n and β̃

∗
1,n. First, β̃

∗
1,n requires computing α̂

∗
n whereas β̂

∗
1,n

does not. Hence, β̃
∗
1,n only avoids the computational burden of the second step and not of the first

step. Instead, our method avoids computing α̂∗n for each resample and therefore is computationally

more attractive. Second, β̃
∗
1,n resamples the scores of the second-stage model (evaluated at

(
α̂∗n, β̂n

)
),

whereas our method involves resampling st
(
α̂n, β̂n

)
= s2t

(
α̂n, β̂n

)
− F̂nÂ−1n s1t (α̂n) . We can think

of this vector as an “extended” version of the scores for the second-stage, extended by the term
−F̂nÂ−1n s1t (α̂n). This term corrects for the added uncertainty due to the first step. We note that it

would not be valid to resample s2t
(
α̂n, β̂n

)
unless F̂n = 0.

4 Bootstrap theory

We discuss two uses of the bootstrap for inference on β using β̂n. First, in Section 4.1 we consider

using the bootstrap distribution of
√
n
(
β̂
∗
n − β̂n

)
(or
√
n
(
β̂
∗
1,n − β̂n

)
) to approximate the quantiles

of the distribution of
√
n
(
β̂n − β0

)
. This approach underlies the construction of percentile bootstrap

intervals for β. Even though it does not promise asymptotic refinements, it is empirically attractive
as it does not require computing any standard errors for β̂. An alternative is to use the bootstrap to
estimate standard errors, which we consider in Section 4.2.

4.1 Bootstrap distribution consistency

The first order asymptotic validity of the MBB based on the fully optimized bootstrap two-step QMLE

β̂
∗
n follows by showing that the bootstrap distribution of

√
n
(
β̂
∗
n − β̂n

)
is consistent for the distribution

of
√
n
(
β̂n − β0

)
.

This result requires we strengthen Assumption A as follows.

Assumption B For some r > 2 and some δ > 0,

B.1: (i) {s1t (α0)} is r + δ-dominated on A uniformly in t.
(ii) {s2t (α0, β0)} is r + δ-dominated on A× B uniformly in t.

B.2: {Vt} is an α-mixing sequence of size − (2+δ)(r+δ)r−2 .

B.3: (i) The elements of {s1t (α)} are L2+δ-NED on {Vt} of size −1, uniformly on (A, ρ) .

(ii) The elements of {s2t (α, β)} are L2+δ-NED on {Vt} of size −1, uniformly on (A× B, ρ) .

B.4: (i) n−1
∑n

t=1E (s1t (α0))E (s1t (α0))
′ = o

(
`−1n
)
, where `n = o (n) and `n →∞.

(ii) n−1
∑n

t=1E (s2t (α0, β0))E (s2t (α0, β0))
′ = o

(
`−1n
)
, where `n = o (n) and `n →∞.

These assumptions are weaker than those used by GW (2004) (see their Assumption 2.1) and
are suffi cient to show that a bootstrap CLT applies to

{
s∗2t (α0, β0)− F0A−10 s∗1t (α0)

}
, as shown by

Gonçalves and de Jong (2003). Assumption B.1 requires a slight strengthening of the moment con-
ditions on the scores {s1t (α)} and {s2t (α, β)} by comparison with Assumption A.5 (we now require
slightly more than r moments versus r moments in A.5, where r > 2). Similarly, B.2 and B.3
strengthen the mixing and near epoch dependence assumptions stated in Assumption A.6 and A.7,
respectively. In particular, we require the mixing coeffi cients on {Vt} to be of size − (2+δ)(r+δ)r−2 instead
of − 2r

r−2 , and we require the scores {s1t} and {s2t} to be L2+δ-NED rather than L2-NED. Assumption
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B.4 is a restatement of Assumption 2.2 of Gonçalves and White (2002). As discussed by Gallant
and White (1988), this assumption is satisfied when the models are correctly specified or when the
scores

{
s1t
(
Xt, α0

)}
and

{
s2t
(
Xt, α0, β0

)}
are stationary (this follows if {Xt} is a strictly stationary

process, the log-likelihood functions {f1t (α)} and {f2t (α, β)} depend only on a finite number of lags
of Xt and there is no time heterogeneity on {f1t} and {f2t}). Under this assumption, the bootstrap
covariance matrix of the scaled average of

{
s∗2t (α0, β0)− F0A−10 s∗1t (α0)

}
converges to J0, the correct

asymptotic covariance matrix of
√
n
(
β̂n − β0

)
.

In the following theorem, and throughout, we let E∗, V ar∗ and P ∗ denote the bootstrap expecta-
tion, variance and probability measure induced by the resampling, conditional on the original sample.

Theorem 4.1. Let Assumption A as strengthened by Assumption B hold. If `n → ∞ and `n =
o
(
n1/2

)
, then

sup
x∈Rp

∣∣∣P ∗ (√n(β̂∗n − β̂n) ≤ x)− P (√n(β̂n − β0) ≤ x)∣∣∣ = oP (1) . (1)

To prove Theorem 4.1, we verify the conditions of Theorem A.4 in the online appendix. This
result shows the consistency of the bootstrap distribution of a general two-step M estimator β̂

∗
n (based

on an asymptotically linear first step estimator α̂∗n) under a set of bootstrap high level conditions
(Assumption B∗). We show that Assumption A strengthened by Assumption B verifies Assumption
B∗.

The first-order asymptotic validity of the fast resampling method is given in the next result. Its
proof is a by-product of the proof of Theorem 4.1 and is omitted.

Theorem 4.2. Under the same assumptions as in Theorem 4.1,

sup
x∈Rp

∣∣∣P ∗ (√n(β̂∗1,n − β̂n) ≤ x)− P (√n(β̂n − β0) ≤ x)∣∣∣ = oP (1) .

4.2 Bootstrap variance consistency

Bootstrap standard errors are often used in applied work as they are easy to compute, avoiding the
need to look up complicated formulas. This is especially true in multistage estimation, where these
formulas become quickly involved due to the need to keep track of the added uncertainty caused
by each estimation stage. Instead, bootstrap standard errors are easily computed by Monte Carlo
simulation. For instance, we can approximate the bootstrap variance estimator of the parameter β̂

∗
n,j ,

V ar∗
(
β̂
∗
n,j

)
, with the sample variance obtained across B replications of β̂

∗
n,j ,

1

B

B∑
k=1

(
β̂
∗(k)
n,j − β̂

∗(k)
n,j

)2
, where β̂

∗(k)
n,j =

1

B

B∑
k=1

β̂
∗(k)
n,j .

The corresponding bootstrap standard error is the square root of this expression.
The previous results (Theorems 4.1 and 4.2) do not justify by themselves the consistency of boot-

strap standard errors based on β̂
∗
n or β̂

∗
1,n. The reason is that convergence in distribution of a random

sequence does not imply convergence of moments. For instance, Ghosh et al. (1984) and Shao (1992)
give examples of the inconsistency of bootstrap variance estimators for the sample median and smooth
functions of sample means, respectively, in the i.i.d. context.

The main goal of this section is to provide a theoretical justification for computing bootstrap
standard errors in the context of two-step QMLE with time series data. The current bootstrap
literature does not cover this case as it has either assumed i.i.d. data (as in Kato (2011) and Cheng
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(2015), who prove the consistency of bootstrap variance estimators for one-step M-estimators) or has
considered time series least squares estimators, as in Gonçalves and White (2005). No results appear
to be available for multistage QMLE, even for i.i.d. data.

Given our previous bootstrap distribution consistency results, a suffi cient condition for showing
the consistency of the corresponding bootstrap standard errors is to show that a uniform integrability

condition holds. In particular, to show that V ar∗
(√

nβ̂
∗
n

)
is consistent, it suffi ces to show that

E∗
∣∣∣√n(β̂∗n − β̂n)∣∣∣2+δ = OP (1) for some small δ > 0. Because β̂

∗
1,n has a closed form expression, it is

substantially easier to verify this condition for the fast resampling method than for the fully optimized
bootstrap two-stage QMLE. For this reason, we focus on this estimator first.

We impose the following assumption.

Assumption B.4′ E (s1t (α0)) = 0 and E (s2t (α0, β0)) = 0 for all t = 1, . . . , n.

This is a mild strengthening of Assumption B.4, which is satisfied whenever the score functions
are not heterogeneous and/or the data {Xt} are stationary. We also impose a smoothness condition
on the vector of scores {s1t} and {s2t} which we did not need for bootstrap distribution consistency.

Assumption B.5 (i) {s1t (α)} is Lipschitz continuous on A, a.s.-P with Lipschitz functions {L1t}
that satisfy the condition n−1

∑n
t=1E (L1t)

2+δ = O (1) .

(ii) {s2t (α, β)} is Lipschitz continuous on A×B, a.s.-P with Lipschitz functions {L2t} satisfying
the condition n−1

∑n
t=1E (L2t)

2+δ = O (1) .

Theorem 4.3. Under Assumptions A and B strengthened by B4′ and B5, V ar∗
(√

nβ̂
∗
1,n

)
P−→

H−10 J0H
−1
0 .

Next, we consider the fully optimized bootstrap estimator β̂
∗
n. Similarly to Theorem 4.3 , we prove

the consistency of V ar∗
(√

nβ̂
∗
n

)
by relying on Theorem 4.1 and showing that E∗

∣∣∣√n(β̂∗n − β̂n)∣∣∣2+δ =

OP (1) for some small δ > 0. Because β̂
∗
n does not have a closed form expression, this condition is

much harder to verify than for β̂
∗
1,n and requires a different method of proof and a different set of

assumptions.
Our proof and regularity conditions are inspired by Kato (2011) and Cheng (2015). Kato (2011)

shows the consistency of bootstrap moment estimators for M-estimators of parametric models, whereas
Cheng (2015) allows for semiparametric models, where the parameter of interest is a finite dimensional
parameter, but the model also contains a nuisance parameter that is potentially infinite dimensional.
Both papers focus on one-step M-estimators and give suffi cient conditions for bootstrap variance
consistency that only cover i.i.d. data. Our contribution is to extend those results to multistage
M-estimation with time series data.

To present our regularity conditions, we need to introduce more notation. First, because our

proof is based on showing that the unconditional moment of
∣∣∣√n(β̂∗n − β̂n)∣∣∣2+δ is finite, we need to

introduce the joint probability measure P = P × P ∗ that accounts for the two sources of randomness
in β̂

∗
n: the randomness that comes from the original data (and which is described by P ) and the

randomness that comes from the resampling, conditional on the original sample (described by P ∗).
In the following, we write E to denote expected value with respect to P. Second, to prove that

E
∣∣∣√n(β̂∗n − β̂n)∣∣∣2+δ <∞, we assume the uniform square integrability of the original two-step QMLE

estimator (i.e. we assume that E
∣∣∣√n(β̂n − β0)∣∣∣2+δ < ∞) and provide regularity conditions that
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allows us to show that E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ < ∞. We follow Kato (2011) and Cheng (2015) and

use an argument that entails bounding the tail probability P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > u

)
for large u. This

requires empirical process theory and maximal inequalities. In particular, we impose bounds on the
Lp-moments (with p > 2 + δ) of the supremum of certain empirical processes which we describe next.

For any class of functions F = {ft}, define the empirical process Gnf = n−1/2
∑n

t=1 (ft − Eft) and
let its norm be given by ‖Gn‖F = supf∈F |Gnf |.

Our assumptions are as follows.

Assumption B.6

(i) For any (α, β) ∈ A × B, the log likelihood function f2 (·, α, β) and its expectation Q̄2 (α, β) ≡
E
(
log f2

(
Xt, α, β

))
are time invariant.

(ii) There exists a positive constant K independent of β for which for all β ∈ B, Q̄2 (α0, β) −
Q̄2 (α0, β0) ≤ −K ‖β − β0‖2 .

(iii) Given η > 0, define the class of functions

Nη = {log f2 (α, β)− log f2 (α, β0) : ‖β − β0‖ ≤ η, (α, β) ∈ A× B} .

Then, for some p > 2 + δ, and every η > 0, there exists a positive constant K such that[
E
(
‖Gn‖pNη

)]1/p
≤ Kη, (2)

and `−1EZ,R
∥∥∥∥∥ 1√

N

N∑
i=1

ZR(i)

∥∥∥∥∥
p

Nη

1/p ≤ Kη,
where Zi =

∑`
t=1 (ft+i−1 − E (ft+i−1)) , ft+i−1 ∈ Nη, R denotes a random permutation uniformly

distributed on ΠN , the set of permutations of 1, 2, . . . , N = n − ` + 1, and EZ,R (·) denotes the
expectation with respect to Z1, . . . , ZN and R jointly.

(iv) The functions {log f2 (α, β)} ,
{

∂
∂α′ log f2 (α, β)

}
and

{
∂

∂α∂α′ log f2 (α, β)
}
satisfy a Lipschitz con-

tinuity condition on A × B, a.s.-P with Lipschitz functions {Lt}, {L1t} and {L2t} such that
E |Lt|p < ∞, E

(
|L1t|

ε
ε−1p

)
< ∞ and E

(
|L2t|

ε
ε−1p

)
< ∞, respectively, for p > 2 + δ as in (iii)

and for some ε > 1.

(v) The first step estimator α̂n and its bootstrap analog α̂∗n are such that

E
∣∣√n (α̂n − α0)

∣∣3εp = O (1) and E
∣∣√n (α̂∗n − α̂n)

∣∣3εp = O (1) , (3)

where ε > 1 and p > 2 + δ are as defined in (iv).

(vi) sup
n
E
∣∣∣√n(β̂n − β0)∣∣∣2+δ <∞.

Assumption B.6 (i) assumes that the log-likelihood functions f2t and the population criterion
function Q̄2 (α, β) ≡ E

(
log f2

(
Xt, α, β

))
are time invariant (the latter will follow from the first under

stationarity of {Xt}). To understand Assumption B.6(ii), suppose that β is a scalar and assume that
the function Q̄2 (α0, β) is twice differentiable with respect to β, e.g. Q̄2 (α0, β) = −E (yt − x̂tβ)2,
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where x̂t = xtα0, as in the generator regressor problem. Then, by a second-order Taylor expansion of
Q̄2 (α0, β) around β0, we get

Q̄2 (α0, β) = Q̄2 (α0, β0) +
∂

∂β
Q̄2 (α0, β0) (β − β0) +

1

2

∂2

∂β2
Q̄2

(
α0, β̈

)
(β − β0)2 ,

where β̈ lies between β and β0. Since (α0, β0) maximizes Q̄2 (α, β) , ∂
∂β Q̄2 (α0, β0) = 0, implying that

Q̄2 (α0, β) = Q̄2 (α0, β0) +
1

2

∂2

∂β2
Q̄2

(
α0, β̈

)
(β − β0)2 .

So, the condition will be satisfied if we can bound ∂2

∂β2
Q̄2 (α0, β) by a negative constant −K, for any

value of β. For instance, this is true if Q̄2 (α0, β) is a quadratic function of β, as in the generator
regressor problem. This is a strong condition since it imposes a global restriction on Q̄2 (α0, β), but

it is crucial for controlling the tail probability P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > u

)
, as Kato (2011) and Cheng

(2015) note. A similar condition is also used by Nishiyama (2010) to prove the moment convergence
of the original M-estimator.

Assumption B.6(iii) (cf. equation (2)) is a high level condition on the empirical process Gn. Cheng
(2015) relies on a similar assumption to show the consistency of bootstrap one-step moment estimators
of any order p ≥ 1 for i.i.d. data. This so-called Lp-maximal inequality condition can be verified under
more primitive conditions involving in particular the structure of the function class Nη, e.g. Cheng
(2015) shows that it is implied by a finite uniform entropy integral condition, which is verified when
the functions in Nη are Lipschitz continuous. Our Assumption B.6(iii) adapts Cheng (2015)’s high
level condition to the two-step QMLE context. It would be interesting to provide more primitive
conditions that apply in our time series context.

Cheng (2015) also imposes a similar high level condition on G∗n, the bootstrap version of the
empirical process Gn, namely [

E
(
‖G∗n‖

p
Nη

)]1/p
≤ Kη, (4)

a condition that he then verifies for several bootstrap methods, including the nonparametric i.i.d.
bootstrap. Using arguments similar to those of Cheng (2015), we show in the online Appendix that
the MBB satisfies this bootstrap maximal inequality condition under our assumptions. See Lemma
A.1 in the online Appendix for this result.

Assumptions B.6(iv) and (v) are new to the two-step estimators we treat here. Part (iv) imposes
a Lipschitz continuity condition on the score and the Hessian of log f2t (α, β) with respect to α. Part
(v) imposes uniform integrability conditions on the first step estimator α̂n and its bootstrap analog
α̂∗n. Similarly, part (vi) assumes the uniform integrability condition on β̂n. These high level conditions
could be derived from more primitive conditions such as the ones used by Cheng (2015) or Kato
(2011), but we prefer to state them as high level conditions since our focus in on the second step
bootstrap estimator β̂

∗
n. It is nevertheless interesting to note that stronger than usual uniform square

integrability conditions on the first step estimators are imposed in order to verify the uniform square
integrability condition on the second stage bootstrap estimator β̂

∗
n. In particular, we require the

existence of a bit more than six moments for
√
n (α̂n − α0) and its bootstrap analogue. This is three

times more than the number of moments for the second step estimators β̂n and β̂
∗
n. When the log

likelihood function f2t is quadratic in α and β, Assumption B.6 (v) can be weaken as follows

E
∣∣√n (α̂n − α0)

∣∣2εp = O (1) and E
∣∣√n (α̂∗n − α̂n)

∣∣2εp = O (1) .

Under these assumptions, we can prove the following theorem.
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Theorem 4.4. Suppose Assumptions A and B strengthened by Assumption B6 holds. Then, for some

δ > 0, sup
n
E
∣∣∣√n(β̂∗n − β̂n)∣∣∣2+δ <∞, implying that V ar∗ (√nβ̂∗n) P−→ H−10 J0H

−1
0 .

5 Monte Carlo simulations

We here assess the properties of the bootstrap approximation proposed in Sections 3 and 4. We do so
via detailed and realistic Monte Carlo simulations and we start by describing the design of the study.
We consider a copula-based model. We focus on a bivariate distribution. Each variables marginal
distribution is an AR(1)-GARCH(1,1) with standardized Student’s t errors:

yit = φ0,i + φ1,iyi,t−1 + εit

εit = σitηit

σ2it = ω̃i + α̃iε
2
i,t−1 + β̃iσ

2
i,t−1

ηit ∼ iid t (0, 1, νi) .

We examine the case where the amount of dependence between the two variables y1 and y2 is related
to the Clayton copula, with parameter β = 1, which roughly implies linear correlation of 0.5. See e.g.,
Nelsen (1999) and Patton (2012) for more on this copula. We use parameters similar to those found
in applied work (Oh and Patton, 2013). Specifically, the parameters are set as follows:[

φ0,i, φ1,i
]

= [0, 0.1] , for i = 1, 2[
ω̃i, α̃i, β̃i

]
= [0.05, 0.05, 0.9] , for i = 1, 2

ν1 = ν2 = ν, such that ν ∈ {6, 10, 30} .

Thus, we have three DGPs, which differ only in the value of the Students t parameter ν, which
control the thickness of the tail of the distributions. Note that when ν → ∞, this implies that
η ∼ N (0, 1). We generate repeated trials of length n ∈ {200, 500, 2500} from these processes and
conduct bootstrap inference based on the fitted AR(1)-GARCH(1) model for each trial.

In the following, we define the marginal parameters, the copula parameter and the vector of all
parameters as follows:

Mean i params φi =
[
φ0,i, φ1,i

]′ , for i = 1, 2

Vol i params ζi =
[
ω̃i, α̃i, β̃i

]′
All margin i params αi ≡

[
φ′i, ζ

′
i, νi

]′
All params θ ≡

[
α′1, α

′
2, β
]
.

It is easy to see that our bivariate density models constructed using copulas can be partitioned
into elements relating only to a marginal distribution and elements that relate only to the copula.
As pointed out by Joe (2005) and Patton (2006), when such a partition is not possible, the familiar
one-stage maximum likelihood estimator is the natural estimator to employ. However, when this
partitioning is possible as in our simulation setting, great computational savings may be achieved by
employing a multi-stage estimator. Therefore, in the following we consider the multi-stage maximum
likelihood estimator (MSMLE).

Our estimation steps are:

1. Estimate the conditional mean parameter φi using OLS (equivalent to using a QML with normal
log likelihood and constant variance), conditioning on the realizations for t = 1. Obtain the
estimated residuals ε̂it.
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2. Estimate the conditional variance parameter ζi using QML (with normal log-likelihood) and
the residuals from step 1, conditioning on the realizations for t = 1. Obtain the estimated
standardized residuals η̂it.

3. Estimate ν using ML and the standardized residuals from step 2. Obtain the estimated proba-
bility integral transforms (PITs) Ĝit.

4. Estimate β using ML and the estimated PITs from step 3.

More generally in a multivariate d-dimensional application (with d ≥ 2) there are a total of 3d+ 1
estimation steps: three steps for each marginal distribution, and 1 step for the copula.

To generate the bootstrap data, we use the moving blocks bootstrap. The number of Monte Carlo
trials is 1,000 with B = 999 bootstrap replications each. We implement two resampling methods: the
fully optimized bootstrap procedure BOOT1 and the fast resampling approach BOOT2. To select the
block size, we rely on the asymptotic equivalence between the MBB and the Bartlett kernel variance
estimators, and choose ` equal to the bandwidth chosen by Andrews’s automatic procedure for the
Bartlett kernel.

We consider two types of confidence intervals for the copula parameter β: asymptotic normal
theory-based confidence intervals, computed by using the quantile of the standard normal distribution,
and bootstrap percentile confidence intervals, which use the bootstrap methods (BOOT1 and BOOT2)
to compute critical values for the non studentized statistics based on β̂n. The asymptotic normal
theory-based confidence interval for β is given by

β̂n ± 1.96 · ŜE
(
β̂n

)
, (5)

where ŜE
(
β̂n

)
is a consistent estimator of SE

(
β̂n

)
=

√
V ar

(
β̂n

)
. Three choices are used to compute

ŜE
(
β̂n

)
. Our first choice is infeasible in practice (but can be used for comparison): we set ŜE

(
β̂n

)
=

SE
(
β̂n

)
, i.e., the true standard error of β̂n (obtained via 10, 000 Monte Carlo replications).

For our second choice of ŜE
(
β̂n

)
, we use the multi-stage maximum likelihood (MSML) standard

errors estimator as described in detail in Section 3.1.1 in Patton (2012) (cf. equation (41)). In
particular, the asymptotic covariance matrix estimator of the MSMLE θ̂n is

V̂ MSML = Ã−1n B̃n

(
Ã−1n

)′
, where (6)

Ãn = n−1
n∑
t=1

Ĥt, with

Ĥt =


∇211,t 0 · · · 0 0

0 ∇222,t · · · 0 0
...

...
. . .

...
...

0 0 · · · ∇2dd,t 0

∇21c,t ∇22c,t · · · ∇2dc,t ∇2cc,t

 ,
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such that for i = 1, . . . , d, and t = 1, . . . , n,

∇2ii,t
(6×6)

≡ ∂2

∂αi∂α′i
log git (yit, α̂i,n)

∇2ic,t
(1×6)

≡ ∂2

∂β∂α′i
log ct

(
G1t (y1t, α̂1,n) , . . . , Gdt (ydt, α̂d,n) , β̂n

)
∇2cc,t
(1×1)

≡ ∂2

∂β∂β′
log ct

(
G1t (y1t, α̂1,n) , . . . , Gdt (ydt, α̂d,n) , β̂n

)
where log git and Git are the complete log-likelihood and the CDF for yit, respectively, whereas log ct
is the Clayton copula log-likelihood for y1t, . . . , ydt. Notice that with the three-step estimation, the
matrix ∇2ii,t is block diagonal, as the estimation of α̂i is done in stages

∇2ii,t =

 ∇2ii,m,t 0 0

0 ∇2ii,v,t 0

0 0 ∇2ii,p,t


∇2ii,m,t
(2×2)

=
∂2

∂φi∂φ
′
i

log g
(m)
it

(
yit, φ̂i,n

)
∇2ii,v,t
(3×3)

=
∂2

∂ζi∂ζ
′
i

log g
(v)
it

(
ε̂it, ζ̂i,n

)
∇2ii,p,t
(1×1)

=
∂2

∂ν2i
log g

(p)
it (η̂it, ν̂i,n)

where: log g
(m)
it is the normal log-likelihood with constant variance, log g

(v)
it is the normal log-likelihood

used for QML estimation of the GARCH model and log g
(p)
it is the log-likelihood of the standardized

Student’s t distribution.
The B̃n matrix is given as follows:

B̃n = n−1
n∑
t=1

ŝtŝ
′
t + n−1

l∑
h=1

(
1− h

l + 1

) n∑
t=h+1

(
ŝtŝ
′
t−h + ŝt−hŝ

′
t

)
, where (7)

ŝt = [ŝ1t, . . . , ŝdt, ŝct]
′

ŝit =
∂

∂αi
log git (yit, α̂i,n)

ŝct =
∂

∂β
log ct

(
G1t (y1t, α̂1,n) , . . . , Gdt (ydt, α̂d,n) , β̂n

)
.

Specifically, in our simulations to compute B̃n, we use a Bartlett kernel with bandwidth selected by
the data-based rule (i.e., automatic procedure) from Andrews (1991).

We construct a MSMLE variance, asymptotic normal theory-based confidence interval for β as in

(5) by using ŜE
(
β̂n

)
= ŜE

MSML (
β̂n

)
, where ŜE

MSML (
β̂n

)
is the estimated standard error of β̂n,

obtained via equation (6) (which has a sandwich form). Specifically, in our setting ŜE
MSML (

β̂n

)
=

n−1/2
√
V̂ MSML13,13 , where V̂ MSML13,13 is the element (13, 13) of V̂ MSML.

In our third and fourth choices of ŜE
(
β̂n

)
, we use the proposed bootstrap approaches BOOT1

and BOOT2. In particular, a fully optimized bootstrap procedure variance, asymptotic normal
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theory-based confidence interval for β can be obtained as in (5) with ŜE
(
β̂n

)
= ŜE

BOOT1 (
β̂n

)
,

where ŜE
BOOT1 (

β̂n

)
is the estimated standard error of β̂n based on BOOT1. Similarly, a fast re-

sampling procedure variance, asymptotic normal theory-based confidence interval for β is obtained

by using ŜE
(
β̂n

)
= ŜE

BOOT2 (
β̂n

)
,where ŜE

BOOT2 (
β̂n

)
is the estimated standard error of β̂n

based on BOOT2 (the fast resampling approach). Note that, the standard errors ŜE
BOOT1 (

β̂n

)
and ŜE

BOOT2 (
β̂n

)
are obtained by computing the statistics

√
1
B

∑B
i=1

(
β̂
∗(i)
n − β̂∗n

)2
with β̂

∗
n =

1
B

∑B
j=1 β̂

∗(j)
n , where B is the number of bootstrap replications.

The second set of intervals we consider are bootstrap percentile confidence intervals, which are
very simple to compute since they avoid the need to explicitly compute standard errors. For each
resampling approach (BOOT1 and BOOT2), a bootstrap percentile confidence intervals for β is given
by β̂n ± q∗95, where q∗95 is the 95% quantile of the bootstrap distribution of |β̂∗n − β̂n|.

Table 1 gives the actual rates of 95% confidence intervals of the copula parameter β for the three
DGPs, respectively. Results in Table 1 are not too sensitive to the value of the Students t parameter
ν. All intervals have approximately the desired coverage rate, and we see only small differences among
them. In particular, the fast resampling procedure BOOT2 and the MSML approach perform well even
for the small sample size n = 200 (with coverage rate almost equal to the nominal). The fact that we do
not have dynamic misspecification in our models explains why we do not get larger distortions for the
smaller sample sizes using the asymptotic-based intervals. Indeed, the evidence of no serial correlation
in the scores is confirmed by the average value of the block sizes chosen by Andrews (1991) method,
which is equal to 1.80 in our simulations. However, as Table 2 suggests, there are notable differences
among the different methods when considering their confidence interval lengths. This table clearly
shows that the intervals based on BOOT1 (either using the CLT-based or the bootstrap percentile
approach) tend to mimic the lengths of the CLT-Inf intervals for all DGP’s and sample sizes, and
both tend to display shorter intervals for the smaller sample sizes compared to CLT-MSML and the
BOOT2 intervals.

Note that all three asymptotic normal theory-based confidence intervals differ only by the way
that the estimated standard errors of β̂n have been computed. In order to gain further insight into
the "relatively" good performance of these asymptotic normal theory-based confidence intervals in
finite samples, we compute the ratio of the estimated standard error over the true value and the
mean-square error (MSE) of the estimated standard errors. The results are presented in Table 3. For
small sample sizes, on average MSML and BOOT2 overestimate the standard errors, with the ratio
of estimated standard error over the true value above 1. For instance, when n = 200 and ν = 10, the
ratio of estimated standard error over the true value based on MSML and BOOT2 are 1.21 and 1.22
for MSML and BOOT2, respectively, whereas this ratio is 1.01 for BOOT1. Consequently, the length
of confidence intervals based on estimated standard error from MSML and BOOT2 are larger than
the one based on BOOT1.
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Table 1: Coverage Rates of nominal 95% intervals for β

CLT-Inf CLT-MSML CLT-BOOT1 CLT-BOOT2 BOOT1 BOOT2

ν = 6
n = 200 95.10 93.40 93.20 93.60 93.50 95.00
n = 500 94.90 94.30 94.20 94.30 94.30 94.70
n = 2500 94.20 93.60 93.80 93.50 94.00 93.90

ν = 10
n = 200 95.00 93.40 94.60 93.90 94.70 94.50
n = 500 94.80 93.90 93.40 93.90 93.70 94.30
n = 2500 93.60 93.90 93.50 93.00 93.60 94.20

ν = 30
n = 200 94.50 95.00 95.00 95.20 95.00 96.10
n = 500 95.50 93.80 93.50 93.90 93.40 95.20
n = 2500 94.70 93.70 94.20 93.70 94.40 94.90

Notes: CLT-Inf, CLT-MSML, CLT-BOOT1, and CLT-BOOT2 -intervals based on the normal using
estimated standard error based on the true standard error, the MSML, the BOOT1 and the BOOT2,
respectively; BOOT1 bootstrap percentile intervals based on the fully optimized procedure, BOOT2
bootstrap percentile intervals based on the fast resampling procedure. 1,000 Monte Carlo trials with
999 bootstrap replications each.
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Table 2: Length confidence intervals of nominal 95% intervals for β

CLT-Inf CLT-MSML CLT-BOOT1 CLT-BOOT2 BOOT1 BOOT2

ν = 6
n = 200 0.63 0.74 0.64 0.75 0.64 0.77
n = 500 0.40 0.40 0.40 0.41 0.41 0.42
n = 2500 0.18 0.18 0.18 0.18 0.18 0.18

ν = 10
n = 200 0.64 0.77 0.64 0.78 0.65 0.82
n = 500 0.42 0.42 0.41 0.42 0.41 0.43
n = 2500 0.18 0.18 0.18 0.18 0.18 0.19

ν = 30
n = 200 0.65 0.75 0.65 0.76 0.65 0.80
n = 500 0.41 0.41 0.41 0.41 0.41 0.43
n = 2500 0.19 0.18 0.18 0.18 0.18 0.19

Notes: CLT-Inf, CLT-MSML, CLT-BOOT1, and CLT-BOOT2 -intervals based on the normal using
estimated standard error based on the true standard error, the MSML, the BOOT1 and the BOOT2,
respectively; BOOT1 bootstrap percentile intervals based on the fully optimized procedure, BOOT2
bootstrap percentile intervals based on the fast resampling procedure. 1,000 Monte Carlo trials with
999 bootstrap replications each.
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The gains associated with the bootstrap methods can be quite substantial when the main goal of
the researcher and/or practitioner is to estimate the standard errors. Results in Table 3 are in favor of
the bootstrap particularly for small sample sizes. More specifically, the full resampling method BOOT1
is better than using MSML and/or BOOT2 standard errors. For small samples, the bootstrap method
BOOT1 estimates the standard error of the copulas parameter estimator β̂n more precisely than the
MSML and BOOT2 approaches. For large sample size, we have approximately the same performance
for all three methods. For instance, when n = 200 and ν = 6, the MSE of the estimated standard errors
of β̂n based on MSML, BOOT1 and BOOT2 are 0.03, 0.43 · 10−3 and 0.03, respectively. Whereas,
for n = 2, 500 and ν = 6, the MSE become 7.2 · 10−6, 4.4 · 10−6 and 7.5 · 10−6, respectively. Thus we
see that although all three methods MSML, BOOT1 and BOOT2 are asymptotically equivalent, and
the full resampling method BOOT1 may be computationally much more demanding, in small samples,
the improved estimates of the standard errors based on BOOT1 may outweigh the computational cost
of the later. Overall, the performance of BOOT2 (the fast resampling method) is comparable to that
of MSML, whereas BOOT1 outperforms BOOT2 and MSML and provides more accurate estimators
of the standard errors, specifically, when the sample size is small.

6 Conclusions

This paper proposes and theoretically justifies bootstrap methods for inference on nonlinear dynamic
models that are estimated by two (or more) steps of quasi-maximum likelihood. In particular, we
show the consistency of the bootstrap distribution of the two-step QMLE using dependence and
heterogeneity conditions similar to those used by Gonçalves and White (2004) for the one-step QMLE.
In addition, we also prove the consistency of bootstrap standard errors for the two-step QMLE, a
result that does not seem to be available even for i.i.d. data. This justifies the standard practice of
computing bootstrap standard errors instead of computing analytical standard errors, which quickly
become cumbersome in the multistage QML context. Our simulation results show that intervals based
on bootstrap standard errors or bootstrap percentile intervals obtained with the fully optimized method
that resamples the log likelihood functions jointly are shorter on average than intervals based only on
asymptotic theory or on the fast resampling method we propose. Thus, although more computationally
demanding, the fully optimized bootstrap method has better finite sample properties than the other
methods we consider.

This supplementary appendix is organized as follows. First, we provide a set of primitive as-
sumptions under which the asymptotic theory of the two-step QMLE (consistency and asymptotic
distribution) follows. A set of definitions useful to understand our assumptions is also provided. Next,
we provide asymptotic theory and bootstrap theory for general two-stage M estimators under a set
of high level conditions (which include uniform laws of large numbers, central limit theorems and an
asymptotic linear representation for α̂n and α̂∗n). These results are instrumental in proving the results
of Section 3. Then, we provide the proofs of our results. Finally, we provide two auxiliary lemmas
used in the proof of Theorem 4.4, followed by their proofs.

A.1 Assumptions

We start by providing a set of definitions which are useful to understand our assumptions.

Definition 1. We define {Xt} to be Lq-NED on a mixing process {Vt} if E (Xq
t ) < ∞ and vk ≡

supt

∥∥∥Xt − Et+kt−k (Xt)
∥∥∥
q
→ 0 as k → ∞. Here, ‖Xt‖p ≡ (E |Xt|p)1/p is the Lp norm and Et+kt−k (·) ≡

E
(
·|F t+kt−k

)
, where F t+kt−k ≡ σ (Vt−k, . . . , Vt+k) is the σ-field generated by Vt−k, . . . , Vt+k. If vk =

O
(
k−a−δ

)
for some δ > 0, we say {Xt} is Lq-NED of size −a.
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Definition 2. {Vt} is strong mixing if

λk ≡ sup
m

sup
{A∈Fm−∞,B∈F∞m+k}

|P (A ∩B)− P (A)P (B)| → 0

as k →∞ suitably fast.

Definition 3. A random function f : X × Θ → R is Lipschitz continuous on Θ a.s.-P if for all θ1
and θ2 ∈ Θ, |ft (x, θ1)− ft (x, θ2)| ≤ Lt (x) |θ1 − θ2| for all x in a set with probability one, for some
function Lt (x) such that supn

{
n−1

∑n
t=1E (Lt (x))

}
= O (1) .

Definition 4. A sequence of random functions {ft : X ×Θ→ R} is r−dominated on Θ uniformly in
t if there exists Dt : X → R such that |ft (x, θ)| ≤ Dt (x) for all θ ∈ Θ and Dt is measurable such that
‖Dt‖r ≤ ∆ <∞ for all t.

Definition 5. A sequence of random functions {ft : X ×Θ→ R} is Lq-NED on {Vt} of size −a on
(Θ, ρ) if for each θ0 ∈ Θ there exists δ0 > 0 such that the random sequences

{
f̄t (δ) = supη0(δ) ft (x, θ)

}
and

{
f
t
(δ) = infη0(δ) ft (x, θ)

}
are Lq-NED on {Vt} of size −a for all 0 < δ ≤ δ0, where η0 (δ) =

{θ ∈ Θ : ρ (θ, θ0) < δ}.

In the following and throughout the appendix, K denotes a constant, which may change from line
to line and from (in)equality to (in)equality.

The following set of assumptions extends the assumptions of GW (2004) to the two-step QMLE
context and are used to prove our bootstrap results.

Assumption A

A.1: Let (Ω,F , P ) be a complete probability space. The observed data are a realization of a stochastic
process

{
Xt : Ω→ Rl, t ∈ N

}
, with

Xt (ω) = Wt (. . . , Vt−1 (ω) , Vt (ω) , Vt+1 (ω) , . . .) ,

Vt : Ω→ Rv, and Wt : ×∞τ=−∞Rv → Rl is such that Xt is measurable for t.

A.2: (i) The functions
{
f1t
(
Xt, α

)}
are such that f1t (·, α) is measurable for each α ∈ A, where A is a

compact subset of Rk, f1t
(
Xt, ·

)
is continuous on A, a.s.-P , and f1t

(
Xt, ·

)
is twice continuously

differentiable on int (A), a.s-P .

(ii) The functions
{
f2t
(
Xt, α, β

)}
are such that f2t (·, α, β) is measurable for each (α, β) ∈ A×B,

where B is a compact subset of Rp, f2t
(
Xt, ·, ·

)
is continuous on Θ = A × B, a.s.-P , and

f2t
(
Xt, ·, ·

)
is twice continuously differentiable on int (Θ), a.s-P .

A.3: (i) α0 is the unique maximizer of Q̄1 (α) ≡ limn→∞E (Q1n (α)) on A.
(ii) β0 is the unique maximizer of Q̄2 (α0, β) ≡ limn→∞E (Q2n (α0, β)) on B.
(iii) θ0 = (α0, β0) is interior to Θ = A× B.

A.4: (i) The functions
{

log f1t
(
Xt, α

)}
and

{
∂
∂α′ s1t

(
Xt, α

)}
are Lipschitz continuous on A, a.s.-P ,

where s1t
(
Xt, α

)
≡ ∂

∂α log f1t
(
Xt, α

)
.

(ii) The functions
{

log f2t
(
Xt, α, β

)}
,
{

∂
∂β′
s2t
(
Xt, α, β

)}
and

{
∂
∂α′ s2t

(
Xt, α, β

)}
are Lipschitz

continuous on A× B, a.s.-P , where s2t
(
Xt, α, β

)
≡ ∂

∂β log f2t
(
Xt, α, β

)
.
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A.5: For some r > 2,

(i) The functions
{

log f1t
(
Xt, α

)}
,
{
s1t
(
Xt, α

)}
and

{
∂
∂α′ s1t

(
Xt, α

)}
are r-dominated on A

uniformly in t.

(ii) The functions
{

log f2t
(
Xt, α, β

)}
,
{
s2t
(
Xt, α, β

)}
,
{

∂
∂β′
s2t
(
Xt, α, β

)}
and

{
∂
∂α′ s2t

(
Xt, α, β

)}
are r-dominated on Θ = A× B uniformly in t.

A.6: {Vt} is an α-mixing sequence of size − 2r
r−2 , with r > 2.

A.7: The elements of (i)
{

log f1t
(
Xt, α

)}
and

{
∂
∂α′ s1t

(
Xt, α

)}
are L2-NED on {Vt} of size −12 , and

those of
{
s1t
(
Xt, α

)}
are L2-NED on {Vt} of size −1, uniformly on (A, ρ), where ρ is a metric

on Rk;

(ii)
{

log f2t
(
Xt, α, β

)}
,
{

∂
∂β′
s2t
(
Xt, α, β

)}
and

{
∂
∂α′ s2t

(
Xt, α, β

)}
are L2-NED on {Vt} of size

−12 , and those of
{
s2t
(
Xt, α, β

)}
are L2-NED on {Vt} of size −1, uniformly on (A× B, ρ), where

ρ is a metric on Rk × Rp.

A.8: (i) A0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂α′ s1t

(
Xt, α0

))
is nonsingular and

B0 ≡ limn→∞ V ar
(
n−

1
2
∑n

t=1 s1t
(
Xt, α0

))
is positive definite.

(ii) H0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂β′
s2t
(
Xt, α0, β0

))
is nonsingular,

J0 ≡ lim
n→∞

V ar

(
n−

1
2

n∑
t=1

(
s2t
(
Xt, α0, β0

)
− F0A−10 s1t

(
Xt, α0

)))

is positive definite, and F0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂α′ s2t

(
Xt, α0, β0

))
<∞.

A.2 General results for two-step M-estimators

In this section, we provide results for a general two-step M estimator β̂n based on a first step estimator
α̂n which has an asymptotic linear representation. Specifically, in the first step, we estimate α0 ∈ A ⊂
Rk with some asymptotically linear estimator α̂n (which does not need to be an M estimator; e.g. it
could be a GMM estimator). In the second step, we estimate β0 with

β̂n = arg min
β∈B

Q2n (α̂n, β) ,

where

Q2n (α̂n, β) ≡ n−1
n∑
t=1

q2t
(
Xt, α̂n, β

)
,

and q2t : Rlt×A× B →R is an objective function that depends on β and α andXt ≡ (X1, . . . , Xt−1, Xt).
The two-step QMLE of Section 3 is a special case of β̂n when q2t

(
Xt, α̂n, β

)
= − log f2t

(
Xt, α̂n, β

)
,

where f2t denotes the conditional likelihood function of Xt given Xt−1, and α̂n is also a QMLE.
We follow White (1994) and Wooldridge (1994) and provide a set of high level conditions that

allow us to derive general results.

Assumption A.

A.1 Let (Ω,F , P ) be a complete probability space. The observed data are a realization of a stochastic
process

{
Xt : Ω→ Rl, t ∈ N

}
.
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A.2 The functions
{
q2t
(
Xt, α, β

)}
are such that q2t (·, α, β) is measurable for each (α, β) ∈ A × B,

where A and B are compact subsets of Rk and Rp, respectively, and q2t
(
xt, ·, ·

)
is continuous on

A× B for all xt in some set Ft with P (Ft) = 1.

A.3 (i) α̂n →P α0 ∈ int (A).

(ii)
√
n (α̂n − α0) = n−1/2

∑n
t=1 ψt

(
Xt, α0

)
+ oP (1) , for some function

{
ψt
(
Xt, α0

)}
such that√

n (α̂n − α0) = OP (1) .

A.4 (i) Q̄2 (α, β) ≡ limn→∞E (Q2n (α, β)) exists and is continuous on A× B.
(ii) β0 is the unique minimizer of Q̄2 (α0, β) ≡ limn→∞E (Q2n (α0, β)) on B.
(iii) β0 ∈ int (B) .

A.5
{
q2t
(
Xt, α, β

)}
satisfies a weak ULLN on A× B (i.e. supα,β

∣∣Q2n (α, β)− Q̄2 (α, β)
∣∣ = oP (1) ).

A.6 (i)
{
q2t
(
Xt, α, β

)}
is twice continuously differentiable on int (A)× int (B) .

(ii) The functions
{

∂
∂α′ϕ2t

(
Xt, α, β

)}
and

{
∂
∂β′
ϕ2t
(
Xt, α, β

)}
satisfy a weak ULLN on A× B,

where ϕ2t
(
Xt, α, β

)
≡ ∂

∂β q2t
(
Xt, α, β

)
.

A.7 (i) H0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂β′
ϕ2t
(
Xt, α0, β0

))
> 0.

(ii) F0 ≡ limn→∞E
(
n−1

∑n
t=1

∂
∂α′ϕ2t

(
Xt, α0, β0

))
<∞.

A.8 The function
{
ϕ2t
(
Xt, α0, β0

)
+ F0ψt

(
Xt, α0

)}
satisfies the CLT, i.e.

n−1/2
n∑
t=1

(
ϕ2t
(
Xt, α0, β0

)
+ F0ψt

(
Xt, α0

))
→d N (0, J0) ,

where

J0 ≡ lim
n→∞

V ar

(
n−1/2

n∑
t=1

(
ϕ2t
(
Xt, α0, β0

)
+ F0ψt

(
Xt, α0

)))
> 0.

Assumption A.3(ii) assumes that α̂n admits an asymptotic linear representation, which includes
not only M-estimators but also other estimators such as GMM estimators.

Theorem A.1. Under Assumptions A.1, A.2, A.3(i), A.4(i)-(ii) and A.5, β̂n →P β0.

Theorem A.2. Under Assumptions A.1−A.8,
√
n
(
β̂n − β0

)
→d N

(
0, H−10 J0H

−1
0

)
.

Theorems A.1 and A.2 are well known in the literature (see e.g. White (1994), Newey and Mc-
Fadden (1994) and Wooldridge (1994)) and are only given here for completeness, but their proof is
omitted for brevity.

Next, we provide a set of general conditions for bootstrap validity. Suppose that the bootstrap
two-step M-estimator is defined as

β̂
∗
n = arg min

β∈B
Q∗2n (α̂∗n, β) ,

where α̂∗n is the first-step bootstrap analogue of α̂n, and

Q∗2n (α̂∗n, β) ≡ n−1
n∑
t=1

q∗2t
(
X∗t, α̂∗n, β

)
,
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and where for each β ∈ B, we let q∗2t
(
X∗t, α̂∗n, β

)
= q2,τ t (Xτ t , α̂∗n, β) with τ t denoting a set of indices

chosen by the bootstrap. The first step bootstrap estimator α̂∗n is not necessarily an M-estimator. All
we require in Assumption B∗ below is that it has an asymptotic linear representation of the same type
as α̂n but with ψt

(
Xt, α0

)
replaced with ψ∗t

(
X∗t, α̂n

)
= ψτ t (Xτ t , α̂n). Thus, both α̂∗n and β̂

∗
n depend

on the same set of bootstrap indices {τ t}.

Assumption B∗

B∗.1 (i) α̂∗n − α̂n →P ∗ 0, in prob-P.

(ii)
√
n (α̂∗n − α̂n) = n−1/2

∑n
t=1 ψ

∗
t

(
X∗t, α̂n

)
+ oP ∗ (1) , in prob-P.

B∗.2 The functions
{
q∗2t
(
X∗t, α, β

)}
satisfy a bootstrap ULLN on A× B, i.e.

sup
α,β
|Q∗2n (α, β)−Q2n (α, β)| →P ∗ 0,

in prob-P.

B∗.3 The functions
{

∂
∂α′ϕ

∗
2t

(
X∗t, α, β

)}
and

{
∂
∂β′
ϕ∗2t
(
X∗t, α, β

)}
satisfy a bootstrap ULLN on A×B,

where ϕ∗2t
(
X∗t, α, β

)
≡ ∂

∂β q
∗
2t

(
X∗t, α, β

)
.

B∗.4 n−1/2
∑n

t=1

(
ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0ψ

∗
t

(
X∗t, α̂n

))
→d∗ N (0, J0) , in prob-P , where

J0 ≡ lim
n→∞

V ar

(
n−1/2

n∑
t=1

(
ϕ2t
(
Xt, α0, β0

)
+ F0ψt

(
Xt, α0

)))
> 0.

Assumption B∗ imposes high level conditions on the bootstrap first step estimator and on the
bootstrap second step objective function and its derivatives. These conditions can be verified for any
particular bootstrap method used to obtain α̂∗n and β̂

∗
n, where β̂

∗
n is a QMLE estimator and α̂

∗
n is any

estimator admitting an asymptotic linear representation (as specified by Assumption B∗.2). We verify
these conditions for the two-step QMLE studied in Section 3.

Theorem A.3. Suppose Assumptions A.1, A.2, A.3(i), A.4(i)-(ii) hold. If in addition Assumptions
B∗.1(i) and B∗.2 are satisfied, then β̂∗n − β̂n →P ∗ 0, in prob-P.

Theorem A.4. Suppose Assumptions A.1 − A.8 hold. If in addition Assumptions B∗.1 − B∗.4 are
satisfied, then

√
n
(
β̂
∗
n − β̂n

)
→d∗ N

(
0, H−10 J0H

−1
0

)
, in prob-P.

Theorems A.2 and A.4 imply that

sup
x∈Rp

∣∣∣P ∗ (√n(β̂∗n − β̂n) ≤ x)− P (√n(β̂n − β0) ≤ x)∣∣∣→P 0,

as n → ∞, thus justifying the use of the bootstrap distribution of
√
n
(
β̂
∗
n − β̂n

)
as a consistent

estimator of the distribution of
√
n
(
β̂n − β0

)
.
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A.3 Proofs of Theorems A.3, A.4, 4.1, 4.3 and 4.4

Proof of Theorem A.3. Let Q̃n (β) = Q2n (α̂n, β) = n−1
∑n

t=1 q2t
(
Xt, α̂n, β

)
. We apply Lemma

A.2 of GW (2004) with Qn (·, θ) = Q̃n (β) . We can easily verify that Q̃n (β) satisfies the first part of
this lemma, implying that β̂n →P β0. Next, we verify that the function

Q̃∗n (β) = Q∗2n (α̂∗n, β)

satisfies the second part of Lemma A.2. First, note that β̂
∗
n = arg maxβ Q̃

∗
n (β) , where Q̃∗n (β) satisfies

the measurability and continuity assumptions given in particular Assumptions A.2. Therefore, the
result follows if we show that

sup
β∈B

∣∣∣Q̃∗n (β)− Q̃n (β)
∣∣∣→P ∗ 0, prob-P.

To see that this is the case, note that

sup
β∈B

∣∣∣Q̃∗n (β)− Q̃n (β)
∣∣∣ = sup

β∈B
|Q∗2n (α̂∗n, β)−Q2n (α̂n, β)|

≤ sup
β∈B
|Q∗2n (α̂∗n, β)−Q2n (α̂∗n, β)|+ sup

β∈B

∣∣Q2n (α̂∗n, β)− Q̄2 (α̂∗n, β)
∣∣

+ sup
β∈B

∣∣Q2n (α̂n, β)− Q̄2 (α̂n, β)
∣∣+ sup

β∈B

∣∣Q̄2 (α̂∗n, β)− Q̄2 (α̂n, β)
∣∣

≤ sup
α∈A,β∈B

|Q∗2n (α, β)−Q2n (α, β)|+ 2 sup
α∈A,β∈B

∣∣Q2n (α, β)− Q̄2 (α, β)
∣∣

+ sup
β∈B

∣∣Q̄2 (α̂∗n, β)− Q̄2 (α̂n, β)
∣∣ .

The first two terms are oP ∗ (1) and oP (1) , respectively, given B∗.2 and A.5. The third term is oP ∗ (1)
in prob-P , given the fact that Q̄2 (α, β) is continuous on A×B, where A and B are compact subsets of
finite dimensional Euclidean spaces, and the fact that that α̂∗n − α̂n →P ∗ 0, in prob-P by Assumption
B∗.1.

Proof of Theorem A.4. By a mean value expansion of n−1/2
∑n

t=1 ϕ
∗
2t

(
X∗t, α̂∗n, β̂

∗
n

)
around β̂n,

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂∗n, β̂n

)
+

[
n−1

n∑
t=1

∂

∂β′
ϕ∗2t

(
X∗t, α̂∗n, β̈

∗
n

)]√
n
(
β̂
∗
n − β̂n

)
,

where β̈
∗
n lies between β̂

∗
n and β̂n. A second mean value expansion of n−1/2

∑n
t=1 ϕ

∗
2t

(
X∗t, α̂∗n, β̂n

)
around α̂n yields

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂n, β̂n

)
+

[
n−1

n∑
t=1

∂

∂α′
ϕ∗2t

(
X∗t, α̈∗n, β̂n

)]√
n (α̂∗n − α̂n)

+

[
n−1

n∑
t=1

∂

∂β′
ϕ∗2t

(
X∗t, α̂∗n, β̈

∗
n

)]√
n
(
β̂
∗
n − β̂n

)
,

where α̈∗n lies between α̂
∗
n and α̂n. By a ULLN applied to ∂

∂α′ϕ
∗
2t

(
X∗t, α, β

)
and ∂

∂β′
ϕ∗2t
(
X∗t, α, β

)
(Assumption B∗.3), we have that

n−1
n∑
t=1

∂

∂α′
ϕ∗2t

(
X∗t, α̈∗n, β̂n

)
− n−1

n∑
t=1

∂

∂α′
ϕ2t
(
Xt, α0, β0

)
→P ∗ 0, in prob-P,
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which implies that

n−1
n∑
t=1

∂

∂α′
ϕ∗2t

(
X∗t, α̈∗n, β̂n

)
→P ∗ F0, in prob-P,

since α̂∗n →P ∗ α0, β̂n →P β0, and n
−1∑n

t=1
∂
∂α′ϕ2t

(
Xt, α0, β0

)
→P F0. Similarly,

n−1
n∑
t=1

∂

∂β′
ϕ∗2t

(
X∗t, α̂∗n, β̈

∗
n

)
→P ∗ H0, in prob-P,

since α̂∗n →P ∗ α0 and β̂
∗
n →P ∗ β0. It follows that

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0

√
n (α̂∗n − α̂n) +H0

√
n
(
β̂
∗
n − β̂n

)
+ oP ∗ (1) .

By Assumption B∗.1(ii),

√
n (α̂∗n − α̂n) = n−1/2

n∑
t=1

ψ∗t
(
X∗t, α̂n

)
+ oP ∗ (1) ,

which implies that

0 = n−1/2
n∑
t=1

ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0

(
n−1/2

n∑
t=1

ψ∗t
(
X∗t, α̂n

))
+H0

√
n
(
β̂
∗
n − β̂n

)
+ oP ∗ (1) .

Hence,

√
n
(
β̂
∗
n − β̂n

)
= −H−10 n−1/2

n∑
t=1

(
ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0ψ

∗
t

(
X∗t, α̂n

))
+ oP ∗ (1) .

The result now follows from Assumption B∗.4.
Proof of Theorem 4.1. We verify that the high level conditions of Theorem A.4 are satisfied

for the two-step QMLE under Assumption A as strengthened by Assumption B. In particular, we
can show that Assumption B∗.1(i) is satisfied for α̂∗n = arg maxαQ

∗
1n (α) ≡ n−1

∑n
t=1 log f∗1t

(
X∗t, α

)
by relying on GW (2004)’s Theorem 2.1 under Assumption A.1., A.6 and part (i) of Assumptions
A.2-A.5 and A.7, A.8. Similarly, we can apply Theorem 2.2 of GW (2004) to conclude that B∗.1(ii) is
verified with ψ∗t

(
X∗t, α̂n

)
= −A−10 s∗1t

(
X∗t, α̂n

)
. To verify Assumption B∗.2, we let q∗2t

(
X∗t, α, β

)
=

− log f∗2t
(
X∗t, α, β

)
and apply Lemmas A.4 and A.5 of GW (2004). Assumptions A.4(ii) and A.5(ii)

together with the requirement that `n = o (n) suffi ce to prove that B∗.2 holds. B∗.3 can be verified
similarly by showing that a bootstrap ULLN applies to the derivatives of s∗2t

(
X∗t, α, β

)
with respect to

α and β under A.4(ii) and A.5(ii) and the rate condition on the block size `n. Finally, to check that the

bootstrap CLT (cf. Assumption B∗.4) holds for s∗t
(
α̂n, β̂n

)
≡ ϕ∗2t

(
X∗t, α̂n, β̂n

)
+ F0ψ

∗
t

(
X∗t, α̂n

)
=

−s∗2t
(
X∗t, α̂n, β̂n

)
+ F0A

−1
0 s∗1t

(
X∗t, α̂n

)
we proceed as in the proof of Theorem 2.2 of GW (2004).

Specifically, we write

−n−1/2
n∑
t=1

s∗t

(
α̂n, β̂n

)
= n−1/2

n∑
t=1

(
s∗2t

(
α̂n, β̂n

)
− F0A−10 s∗1t (α̂n)

)
≡ ξ1n + ξ2n + ξ3n + ξ4n,
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with

ξ1n = n−1/2
n∑
t=1

((
s∗2t (α0, β0)− F0A−10 s∗1t (α0)

)
−
(
s2t (α0, β0)− F0A−10 s1t (α0)

))
;

ξ2n = n−1/2
n∑
t=1

(
s2t

(
α̂n, β̂n

)
− s2t (α0, β0)

)
− F0A−10 n−1/2

n∑
t=1

(s1t (α̂n)− s1t (α0)) ;

ξ3n = n−1/2
n∑
t=1

(
s∗2t

(
α̂n, β̂n

)
− s∗2t (α0, β0)

)
− F0A−10 n−1/2

n∑
t=1

(s∗1t (α̂n)− s∗1t (α0)) ;

ξ4n = n−1/2
n∑
t=1

s2t

(
α̂n, β̂n

)
− F0A−10 n−1/2

n∑
t=1

s1t (α̂n) .

By arguing exactly as in GW (2004), we can show that under Assumption A strengthened by Assump-
tion B, ξ1n →d∗ N (0, J0), in prob-P , and ξ2n + ξ3n = oP ∗ (1) in prob-P , whereas ξ4n = oP (1) by the
first order conditions that define α̂n and β̂n.

Proof of Theorem 4.3. For some small δ > 0,

E∗
∣∣∣√n(β̂∗1,n − β̂n)∣∣∣2+δ ≤ ∥∥∥Ĥ−1n ∥∥∥2+δ

1
E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

,

where ‖A‖1 is the spectral norm of a matrix A, i.e. ‖A‖21 = maxx 6=0
x′A′Ax
x′x . Since Ĥn is a symmetric

matrix,
∥∥∥Ĥ−1n ∥∥∥2+δ

1
=
(
λ−1min

(
Ĥn

))2+δ
= OP (1) since λmin

(
Ĥn

)
→P λmin (H0) 6= 0 by the assumption

that H0 is nonsingular. Thus, it suffi ces to show that E∗
∣∣∣n−1/2∑n

t=1 s
∗
t

(
α̂n, β̂n

)∣∣∣2+δ = OP (1). Using

the definition of s∗t , we can decompose this expectation as

E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

≤ E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗2t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

+
∥∥∥F̂n∥∥∥2+δ ∥∥∥Â−1n ∥∥∥2+δ

1
E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗1t (α̂n)

∣∣∣∣∣
2+δ

.

Each of the bootstrap expectations on the RHS of the display can be shown to be OP (1) under
our assumptions. The arguments are similar to those used by GW (2005). Take e.g. the sec-
ond of these expectations. Adding and subtracting appropriately, we can bound it by I1 + I2,
where I1 = 21+δE∗

∣∣n−1/2∑n
t=1 s

∗
1t (α0)

∣∣2+δ and I2 = 21+δE∗
∣∣n−1/2∑n

t=1 (s∗1t (α̂n)− s∗1t (α0))
∣∣2+δ.

Under Assumption B4′, E (s1t (α0)) = 0 and we can show that {s1t (α0)} is L2+δ-mixingale with
bounded mixingale constants and absolutely summable coeffi cients given in particular the L2+δ-
NED assumption on the score function s1t (α) . Hence, by Lemma A.1 of GW (2005), we have that

E (I1) = O (1) +O

((
`2n
n

)(2+δ)/2)
= O (1) since `2n/n→ 0 by assumption. To show that I2 = OP (1),

we rely on Assumption B5, the Lipschitz continuity assumption on s1t (α). This assumption implies
that

E∗

∣∣∣∣∣n−1/2
n∑
t=1

(s∗1t (α̂n)− s∗1t (α0))

∣∣∣∣∣
2+δ

≤
(
n−1

n∑
t=1

E∗ |L∗1t|
2+δ

)∣∣√n (α̂n − α0)
∣∣2+δ ,

where |
√
n (α̂n − α0)|2+δ = OP (1) and

n−1
n∑
t=1

E∗ |L∗t |
2+δ = n−1

n∑
t=1

|L1t|2+δ +OP

(
`n
n

)
.
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where n−1
∑n

t=1E |L1t|
2+δ = O (1) under Assumption B5. The proof that

E∗

∣∣∣∣∣n−1/2
n∑
t=1

s∗2t

(
α̂n, β̂n

)∣∣∣∣∣
2+δ

= OP (1)

follows under similar arguments.
Proof of Theorem 4.4. The result follows from the triangle inequality if

sup
n
E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ <∞ and sup

n
E
∣∣∣√n(β̂n − β0)∣∣∣2+δ <∞.

The moment condition on
√
n
(
β̂n − β0

)
holds by assumption. Then, the moment condition on

√
n
(
β̂
∗
n − β0

)
follows by an argument similar to that used in Kato (2011). In particular, note that for

any positive random variable Z and any q ≥ 1, we can write E |Z|q = q
∫∞
0 tq−1P (Z > t) dt. Hence,

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ = (2 + δ)

∫ ∞
0

t2+δ−1P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
dt.

We will show that P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
≤ Kt−p for p > 2 + δ and some constant K. This will

imply the result since

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ ≤ K ∫ ∞

0
t2+δ−p−1dt <∞ if p > 2 + δ.

Let Q̃n (β) = Q2n (α̂n, β) = n−1
∑n

t=1 q2t
(
Xt, α̂n, β

)
, such that q2t

(
Xt, α̂n, β

)
= log f2t

(
Xt, α̂n, β

)
.

Note that β̂
∗
n = arg maxβ Q̃

∗
n (β) , where

Q̃∗n (β) = Q∗2n (α̂∗n, β) .

Partition the parameter space B into “shells” Sj,n =
{
β ∈ B : 2j−1 < |

√
n (β − β0)| ≤ 2j

}
for any

integer j ≥ 1. If
∣∣∣√n(β̂∗n − β0)∣∣∣ is larger than 2j0 for a given integer j0, then

∣∣∣√n(β̂∗n − β0)∣∣∣ is in
one of the shells Sj,n with j ≥ j0. In that case, the supremum of the map β 7−→ Q̃∗n (β)− Q̃∗n (β0) must
be nonnegative by the definition of β̂

∗
n. This implies

P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > 2j0

)
≤
∞∑
j=j0

P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)
. (8)

Next decompose Q̃∗n (β)− Q̃∗n (β0) as follows:

Q̃∗n (β)− Q̃∗n (β0) = [Q∗2n (α̂∗n, β)−Q∗2n (α̂∗n, β0)]− [Q∗2n (α0, β)−Q∗2n (α0, β0)]

+Q∗2n (α0, β)−Q∗2n (α0, β0)− E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]

+E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]− E (E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)])

+E [E∗ (Q∗2n (α0, β)−Q∗2n (α0, β0))]

≡ I2-step,n (β) + I1,n (β) + I2,n (β) + I3,n (β) .

Note that

E∗ (Q∗2n (α0, β)−Q∗2n (α0, β0)) = E∗

(
n−1

n∑
t=1

q∗2t (α0, β)− q∗2t (α0, β0)

)

=

n∑
t=1

γnt (q2t (α0, β)− q2t (α0, β0)) ,
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where the weighting function γnt is defined as

γnt =


t

`n(n−`n+1) , if t ∈ {1, . . . , `n}
1

n−`n+1 , if i ∈ {`n + 1, . . . , n− `n}
n−t+1

`n(n−`n+1) , if i ∈ {n− `n + 1, . . . , n}
,

such that
∑n

t=1 γnt = 1. It follows that

I3n (β) =

n∑
t=1

γntE (q2t (α0, β)− q2t (α0, β0)) = Q̄2 (α0, β)− Q̄2 (α0, β0) ,

given the time homogeneity of the moments E (q2t (α, β)) (which is part of Assumption B6(i)) and
the fact that

∑n
t=1 γnt = 1. By the quadratic behavior assumption, we can conclude that −I3,n (β) ≥

K |β − β0|2 ≥ K 22j−2

n on Sj,n, for some K > 0. Then, for each j the following inclusion holds{
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

}

⊂
{

sup
β∈Sj,n

|I2-step,n (β)|+ sup
β∈Sj,n

|I1,n (β)|+ sup
β∈Sj,n

|I2,n (β)| ≥ K 22j−2

n

}
.

It follows that the right-hand side of (8) i.e.,
∑∞

j=j0
P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)
can be bounded

by

∞∑
j=j0

P

(
sup
β∈Sj,n

|I2-step,n (β)| ≥ K 22(j−1)

n

)

+

∞∑
j=j0

P

(
sup
β∈Sj,n

|I1,n (β)| ≥ K 22(j−1)

n

)
+

∞∑
j=j0

P

(
sup
β∈Sj,n

|I2,n (β)| ≥ K 22(j−1)

n

)
.

Thus, by Markov’s inequality (with p > 2 + δ) we have

∞∑
j=j0

P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)

≤ K


∑∞

j=j0

(
22(j−1)

n

)−p
E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

+
∑∞

j=j0

(
22(j−1)

n

)−p
E

(
sup
β∈Sj,n

|I1,n (β)|p
)

+
∑∞

j=j0

(
22(j−1)

n

)−p
E

(
sup
β∈Sj,n

|I2,n (β)|p
)


≤ K


∑∞

j=j0
2−2pjnpE

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

+
∑∞

j=j0
2−2pjnpE

(
sup
β∈Sj,n

|I1,n (β)|p
)

+
∑∞

j=j0
2−2pjnpE

(
sup
β∈Sj,n

|I2,n (β)|p
)
 ,

where the constant K has changed from the first to second inequality. The crucial part of the proof is
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to bound each expectation by O
(
n−p2pj

)
. This will imply that

P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > 2j0

)
≤

∞∑
j=j0

P

(
sup
β∈Sj,n

{
Q̃∗n (β)− Q̃∗n (β0)

}
≥ 0

)
≤ K

∑
j≥j0

2−pj

=
∑
j≥j0

(
1

2

)pj
= (1/2)pj0 + (1/2)p(j0+1) + . . .

=

(
1

2

)pj0 (
1 + (1/2)p + (1/2)2p + . . .

)
︸ ︷︷ ︸

= 1
1−(1/2)p<K

≤ K2−pj0 .

Since

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ = p

∫ ∞
0

t2+δ−1P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
dt,

we can take the above result with j0 = log2 t. This implies

P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
≤ K2−p log2 t = K2log2 t

−p
= Kt−p,

and since p > 2 + δ, we can conclude

E
∣∣∣√n(β̂∗n − β0)∣∣∣2+δ = p

∫ ∞
0

t2+δ−1P
(∣∣∣√n(β̂∗n − β0)∣∣∣ > t

)
dt

≤ K

∫ ∞
0

t2+δ−1t−pdt = K

∫ ∞
0

t−1−(p−2+δ)dt <∞.

Bounding E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

:

Recall that

I2-step,n (β) = [Q∗2n (α̂∗n, β)−Q∗2n (α̂∗n, β0)]− [Q∗2n (α0, β)−Q∗2n (α0, β0)]

= [Q∗2n (α̂∗n, β)−Q∗2n (α0, β)]− [Q∗2n (α̂∗n, β0)−Q∗2n (α0, β0)]

= n−1
n∑
t=1

(q∗2t (α̂∗n, β)− q∗2t (α0, β))− n−1
n∑
t=1

(q∗2t (α̂∗n, β0)− q∗2t (α0, β0))

By taking the Taylor series expansion of q2t around (α, β) = (α0, β0) , we have

q2t (α, β) = q2t (α0, β0) +
∂

∂α′
q2t (α0, β0) (α− α0) +

∂

∂β′
q2t (α0, β0) (β − β0) +R2 (α, β) , (9)

such that

R2 =
1

2!

[
(α− α0)′ ∂

∂α∂α′ q2t
(
ᾱ, β̄

)
(α− α0) + (β − β0)′ ∂

∂β∂β′
q2t
(
ᾱ, β̄

)
(β − β0)

+ (α− α0)′ ∂
∂α∂β′

q2t
(
ᾱ, β̄

)
(β − β0) + (β − β0)′ ∂

∂β∂α′ q2t
(
ᾱ, β̄

)
(α− α0)

]
where ᾱ lies between α and α0 and β̄ lies between β and β0.

Then using (9), we can write

q∗2t (α̂∗n, β)− q∗2t (α0, β) =
∂

∂α′
q∗2t (α0, β) (α̂∗n − α0)

+
1

2!
(α̂∗n − α0)

′ ∂

∂α∂α′
q∗2t (ᾱ1, β) (α̂∗n − α0)

30



where ᾱ1 lies between α̂∗n and α0. Similarly, we have

q∗2t (α̂∗n, β0)− q∗2t (α0, β0) =
∂

∂α′
q∗2t (α0, β0) (α̂∗n − α0)

+
1

2!
(α̂∗n − α0)

′ ∂

∂α∂α′
q∗2t (ᾱ2, β0) (α̂∗n − α0) ,

where ᾱ2 lies between α̂∗n and α. It follows that

I2-step,n (β) = n−1
n∑
t=1

(
∂

∂α′
q∗2t (α0, β)− ∂

∂α′
q∗2t (α0, β0)

)
(α̂∗n − α0)

+
1

2!
n−1

n∑
t=1

(α̂∗n − α0)
′
(

∂

∂α∂α′
q∗2t (ᾱ1, β)− ∂

∂α∂α′
q∗2t (ᾱ2, β0)

)
(α̂∗n − α0) .

Suppose that
{

∂
∂α′ q2t (α, β)

}
and

{
∂

∂α∂α′ q2t (α, β)
}
are Lipschitz continuous in (α, β) :∣∣∣∣ ∂∂α′ q2t (α, β)− ∂

∂α′
q2t (α0, β0)

∣∣∣∣ ≤ L1t (Xt
)

(|α− α0|+ |β − β0|) ,

and ∣∣∣∣ ∂

∂α∂α′
q2t (α, β)− ∂

∂α∂α′
q2t (α0, β0)

∣∣∣∣ ≤ L2t (Xt
)

(|α− α0|+ |β − β0|) ,

where the functions L1t
(
Xt
)
and L2t

(
Xt
)
do not depend on α nor β. Thus, we have∣∣∣∣ ∂∂α′ q∗2t (α0, β)− ∂

∂α′
q∗2t (α0, β0)

∣∣∣∣ ≤ L∗1t (|β − β0|) , (10)

and similarly, ∣∣∣∣ ∂

∂α∂α′
q∗2t (α1, β)− ∂

∂α∂α′
q∗2t (α2, β0)

∣∣∣∣ ≤ L∗2t (|ᾱ1 − ᾱ2|+ |β − β0|)

≤ L∗2t (|α̂∗n − α0|+ |β − β0|) , (11)

where the last inequality follows because both ᾱ1 and ᾱ2 lie between α̂∗n and α0. Therefore by the
triangular inequality and using (10) and (11), we have

|I2-step,n (β)| ≤ n−1

(
n−1

n∑
t=1

L∗1t

)∣∣√n (α̂∗n − α0)
∣∣ ∣∣√n (β − β0)

∣∣
+n−3/2

1

2!

(
n−1

n∑
t=1

L∗2t

)∣∣√n (α̂∗n − α0)
∣∣2 (√n |α̂∗n − α0|+ ∣∣√n (β − β0)

∣∣) .
Hence, successive applications of the Hölder’s inequality yields
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E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

≤ Kn−p
(
E
(∣∣√n (α̂∗n − α0)

∣∣εp)) 1ε E
(n−1 n∑

t=1

L∗1t

) ε
ε−1p

sup
β∈Sj,n

∣∣√n (β − β0)
∣∣ ε
ε−1p

 ε−1
ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣3εp)) 1ε E(n−1 n∑
t=1

L∗2t

) ε
ε−1p

 ε−1
ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣2εp)) 1ε E
(n−1 n∑

t=1

L∗2t

) ε
ε−1p

sup
β∈Sj,n

∣∣√n (β − β0)
∣∣ ε
ε−1p

 ε−1
ε

for some ε > 1. Note that for β ∈ Sj,n, we have |
√
n (β − β0)| ≤ 2j . This implies that

E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)

≤ Kn−p
(
E
(∣∣√n (α̂∗n − α0)

∣∣εp)) 1ε 2pj

E
(n−1 n∑

t=1

L∗1t

) ε
ε−1p

 ε−1
ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣3εp)) 1ε E(n−1 n∑
t=1

L∗2t

) ε
ε−1p

 ε−1
ε

+Kn−
3p
2

(
E
(∣∣√n (α̂∗n − α0)

∣∣2εp)) 1ε 2pj

E
(n−1 n∑

t=1

L∗2t

) ε
ε−1p

 ε−1
ε

Suppose we assume that E
(
|
√
n (α̂∗n − α0)|

3εp
)
<∞. If in addition we assume that E

(
|L1t|

ε
ε−1p

)
<

∞ and E
(
|L2t|

ε
ε−1p

)
< ∞, we can show that the expectations of average of the functions involving

L∗1t and L
∗
2t are bounded. For instance,

E

(
n−1

n∑
t=1

L∗1t

) ε
ε−1p

≤ Kn−1
n∑
t=1

E
(
|L∗1t|

ε
ε−1p

)
= Kn−1

n∑
t=1

(
E
(
E∗
(
|L∗1t|

ε
ε−1p

)))
= KEE∗

(
n−1

n∑
t=1

|L∗1t|
ε
ε−1p

)

= KE

(
n∑
t=1

γnt |L1t|
ε
ε−1p

)
<∞ if E

(
|L1t|

ε
ε−1p

)
<∞.

Thus, under these assumptions

E

(
sup
β∈Sj,n

|I2-step,n (β)|p
)
≤ Kn−p2pj ,

32



which implies

∞∑
j=j0

2−2pjnpE

(
sup
β∈Sj,n

|I2-step,n (β)|p
)
≤ K

∞∑
j=j0

2−2pj2pjnpn−p︸ ︷︷ ︸
=1

= K

∞∑
j=j0

2−pj

≤ K2−pj0 .

Bounding E

(
sup
β∈Sj,n

|I1,n (β)|p
)

:

Note that by definition of I1,n (β), we have that

I1,n (β) = Q∗2n (α0, β)−Q∗2n (α0, β0)− E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]

= n−1
n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))− E∗
(
n−1

n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))

)
≡ n−1/2G∗n (q2 (α0, β)− q2 (α0, β0)) ,

where for a class of functions F = {f}, we define the empirical process G∗nf as

G∗nf = n−1/2
n∑
t=1

(f∗t − E∗f∗t ) .

Define the Lp norm of G∗nf over F as

(
E |G∗n|

p
F
)1/p

=

(
E

(
sup
f∈F
|G∗nf |

)p)1/p
.

With this notation,

E

(
sup
β∈Sj,n

|I1,n (β)|p
)

= E

(
sup
β∈Sj,n

∣∣∣n−1/2G∗n (q2t (α0, β)− q2t (α0, β0))
∣∣∣p)

= n−p/2E

(
sup
β∈Sj,n

|G∗n (q2t (α0, β)− q2t (α0, β0))|p
)

= n−p/2


(
E

(
sup
β∈Sj,n

|G∗n (q2t (α0, β)− q2t (α0, β0))|p
))1/p

p

= n−p/2
((
E |G∗n|

p
Nδ

)1/p)p
,

where we let Nη = {q2 (α0, β)− q2 (α0, β0) : |β − β0| ≤ η, (α, β) ∈ A× B} . Lemma A.1 shows that

for any η > 0,
(
E |G∗n|

p
Nη

)1/p
≤ η holds under our assumptions. Thus, letting η = 2j√

n
yields(

E |G∗n|
p
Nη

)1/p
≤
(
2j√
n

)p
, implying that

E

(
sup
β∈Sj,n

|I1,n (β)|p
)
≤ n−p/2 2pj

np/2
= n−p2pj
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It follows that

∞∑
j=j0

2−2pjnpE

(
sup
β∈Sj,n

|I1,n (β)|p
)
≤
∞∑
j=j0

2−2pjnpn−p2pj =

∞∑
j=j0

2−pj ≤ K2−pj0 ,

as above.

Bounding E

(
sup
β∈Sj,n

|I2,n (β)|p
)

:

The argument is similar. By definition of I2,n (β), we have

I2,n (β) = E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)]− E (E∗ [Q∗2n (α0, β)−Q∗2n (α0, β0)])

= n−1
n∑
t=1

E∗ (q∗2t (α0, β)− q∗2t (α0, β0))− n−1
n∑
t=1

E (E∗ (q∗2t (α0, β)− q∗2t (α0, β0)))

=
n∑
t=1

γnt [(q2t (α0, β)− q2t (α0, β0))− E (q2t (α0, β)− q2t (α0, β0))]

= n−1/2

(
n∑
t=1

√
nγnt [(q2t (α0, β)− q2t (α0, β0))− E (q2t (α0, β)− q2t (α0, β0))]

)
= n−1/2Gn,γ (q2 (α0, β)− q2 (α0, β0)) ,

where we define the empirical process Gn,γ as

Gn,γf =
n∑
t=1

√
nγnt (ft − Eft) ,

with weights defined as above. Similarly, we define the Lp norm of Gn,γf over F = {f} as

(
E |Gn,γ |pF

)1/p
=

(
E

(
sup
f∈F
|Gn,γf |

)p)1/p
.

With this notation

E

(
sup
β∈Sj,n

|I2,n (β)|p
)

= n−p/2
((
E |Gn,γ |pF

)1/p)p
.

It suffi ces to bound
(
E |Gn,γ |pF

)1/p. Assumption B6(ii) provides a bound on the Lp-norm of the
empirical process Gn, which differs from Gn,γ due to presence of the weights γnt. It is well known
that these weights are introduced by the fact that the MBB puts less weight on the first and last `
observations in the sample. In particular, we can show that for any function ft, the MBB expectation
E∗
(
f̄∗n
)

=
∑n

t=1 γntft = n−1
∑n

t=1 ft +OP
(
`
n

)
. Using this insight, we can show that

Gn,γf =
n

n− `+ 1
Gnf −

n

n− `+ 1
R1nf −

n

n− `+ 1
R2nf,

where

R1nf =
1√
n

∑̀
t=1

(
1− t

`

)
(ft − Eft) ,

R2nf =
1√
n

∑̀
t=1

(
1− t

`

)
(fn−t+1 − Efn−t+1) .
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By Minkowski’s inequality,(
E |Gn,γ |pF

)1/p ≤ n

n− `+ 1

{(
E |Gn|pF

)1/p
+
(
E |R1n|pF

)1/p
+
(
E |R2n|pF

)1/p}
≤ K

((
E |Gn|pF

)1/p
+
(
E |R1n|pF

)1/p
+
(
E |R2n|pF

)1/p)
, (12)

for some constant K since `→∞ such that ` = o (
√
n) under our assumptions. This implies that

E

(
sup
β∈Sj,n

|I2,n (β)|p
)

= n−p/2
((
E |Gn,γ |pF

)1/p)p
≤ Kn−p/2

((
E |Gn|pF

)1/p
+
(
E |R1n|pF

)1/p
+
(
E |R2n|pF

)1/p)p
≤ Kn−p/2

(
2jp

np/2
+ E |R1n|pF + E |R2n|pF

)
,

where we have used Assumption B6(ii) with η = 2j√
n
to bound

(
E |Gn|pF

)1/p. The remainder terms
can be bounded by O

((
√̀
n

)p
2jp

np

)
using the Lipschitz condition given in Assumption B6(iii), where

the Lipschitz function for the log likelihood function {q2t (α, β)} has a finite pth order moment. Since
` = o (

√
n) by assumption, the contribution of the two remainder terms is smaller than that of the

first term. We can then claim that

E

(
sup
β∈Sj,n

|I2,n (β)|p
)
≤ Kn−p/2 2jp

np/2
= Kn−p2jp,

and the proof follows as above.

A.4 Auxiliary lemmas used in the proof of Theorem 4.4

The main goal of this section is to show that a bootstrap version of the Lp maximal inequality stated
in Assumption B6(iii) holds under our assumptions. In particular, we show that for some p > 2 + δ,(
E |G∗n|

p
Nη

)1/p
≤ η holds when Nη is as defined in Assumption B6(iii) and G∗n is defined as

G∗n (q2 (α0, β)− q2 (α0, β0))

= n−1
n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))− E∗
(
n−1

n∑
t=1

(q∗2t (α0, β)− q∗2t (α0, β0))

)
,

where q∗2t (α, β) is a MBB version of q2t (α, β) = log f2t (α, β). This result is as follows.

Lemma A.1. Suppose that Assumption B6(iii) holds, and assume that {log f2t (α, β)} satisfies a
Lipschitz continuity condition on A× B, a.s.-P , with Lipschitz functions {Lt} such that E |Lt|p <∞
for p > 2 + δ, for some δ > 0. Then,

(
E |G∗n|

p
Nη

)1/p
≤ η for any η > 0.

To prove Lemma A.1, we rely on the following Lp multiplier inequality, which extends Lemma 4.1
of Praestgaard and Wellner (1993) by allowing for p ≥ 1 rather than just p = 1.

To state this result, we need to introduce some notation. Recall that for a generic time series
{Xt : t = 1, . . . , n} , letting k = n

` denote the number of blocks of size ` needed to define a MBB
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sample of size n and letting {Ij : j = 1, . . . , k} be an i.i.d. uniform sequence of indices distributed on
{1, . . . , n− `+ 1} allows us to write the MBB average as

X̄∗n = n−1
n∑
t=1

X∗t = k−1
k∑
j=1

(
`−1

∑̀
t=1

X∗t+(j−1)`

)
= k−1

k∑
j=1

(∑̀
t=1

Xt+Ij−1

)
= n−1

k∑
j=1

ZIj .

Another way to write this average is as follows. Let N = n−`+1, and letWN = (W1, . . . ,WN )′ denote
a triangular array of weights whose distribution is the Multinomial

(
k,
(
N−1, . . . , N−1

))
distribution1.

Note that these are non-negative exchangeable random variables. We can then think of X̄∗n as a
weighted average of the block sums Zj =

∑`
t=1Xt+j−1, weighted by Wj :

X̄∗n = n−1
N∑
j=1

WjZj ,

where Wj denotes the number of times the jth block sum Zj is drawn in the bootstrap sample. Note
that if ` = 1, thenN = k = n, and this way of writing the bootstrap average is exactly the same as when
studying the nonparametric i.i.d. bootstrap using the Multinomial distribution

(
n,
(
n−1, . . . , n−1

))
.

Thus, our framework is an extension of the usual framework to the MBB. Our goal in Lemma A.1 is
to bound the Lp moment of the bootstrap empirical process

G∗nf = n−1/2
n∑
t=1

(f∗t − E∗ (f∗t )) .

With this new notation, we can write

G∗nf = n−1/2
N∑
j=1

(Wj − EW (Wj))

(∑̀
t=1

ft+j−1

)
,

where EW (·) (and PW (·)) denotes expectation (and probability) with respect to the random vector
WN defined above. The Lp-multiplier we are about to state gives a bound on the Lp moments of
averages defined as n−1/2

∑N
j=1WjZj , where Zj will play the role of the block sum

∑`
t=1 ft+j−1 in our

application.
To state this result, define the joint probability P = P ×PW , which we wrote before as P ×P ∗, and

let ‖W1‖2,1 =
∫∞
0

√
PW (W1 ≥ u)du. Some expressions below may be non-measurable; probability and

expectation of these expressions are understood in terms of outer probability and outer expectation
(see, e.g. van der Vaart and Wellner, 1996, p. 6). Application of Fubini’s theorem to such expectations
requires additional care. We assume that a measurability condition that restores the Fubini theorem
is satisfied in all our applications below.

Lemma A.2. Let WN = (W1, . . . ,WN )′ be an array of non-negative exchangeable random variables
such that, for every N, ‖W1‖2,1 =

∫∞
0

√
PW (W1 ≥ u)du <∞, and let R denote a random permutation

uniformly distributed on ΠN , the set of permutations of 1, 2, . . . , N. Let Z1, . . . , ZN be a sequence of
random elements such that (WN , R) and (Z1, . . . , ZN ) are independent, and write ‖Zj‖ = sup

h∈F
|Zj (h)| .

1For simplicity, we will drop the array notation and will write Wj rather than WN,j . Similarly, we will omit the index
n in the definition Nn.
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Then for any N0 such that 1 ≤ N0 <∞ and any N > N0, the following inequality holds for any p ≥ 1 :E
∥∥∥∥∥∥n−1/2

N∑
j=1

WjZj

∥∥∥∥∥∥
p1/p ≤ N0√

n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
 1

N

N∑
j=1

E ‖Zj‖p
1/p

+ ‖W1‖1/p2,1 ·

EZ,R
 max
N0<k≤N

∥∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥∥
p1/p ,

where we let EZ,R (·) denote the expectation with respect to Z1, . . . , ZN and R jointly.

This result extends Lemma 4.1 of Praestgaard and Wellner (1993) from p = 1 to p ≥ 1. As
in Praestgaard and Wellner (1993), we do not assume any particular dependence structure on the
vector (Z1, . . . , ZN ), the only assumption being that it is independent of the pair (WN , R). This is
in contrast with the Lp multiplier provided by Cheng (2014, p. 17), which assumes Z1, . . . , ZN to be
i.i.d., while also allowing for any p ≥ 1. The i.i.d. assumption on the random functions Zj is too
strong for our applications, where Zj will be given by block sums of contributions to the log likelihood
function. These are typically serially dependent in the time series context and this is the reason for
given Lemma A.2, a result that might be of independent interest.

Next, we prove Lemma A.1 and then we prove Lemma A.2.
Proof of Lemma A.1 In the following ’.’denote smaller than, up to an universal constant K > 0.

Recalling the definition of G∗nf , where f is in the function class Nη, and the property of the MBB
weights, in particular,

∑N
j=1Wj = k, implying that EW (Wj) = k

N , we can rewrite G
∗
nf as follows:

G∗nf = n−1/2
N∑
j=1

(Wj − EW (Wj))

(∑̀
t=1

ft+j−1

)

= n−1/2
N∑
j=1

(
Wj −

k

N

)(∑̀
t=1

ft+j−1

)
, since EW (Wj) =

k

N

= n−1/2
N∑
j=1

(
Wj −

k

N

)[(∑̀
t=1

ft+j−1

)
− E

(∑̀
t=1

ft+j−1

)]
,

since
∑N

t=1

(
Wj − k

N

)
= 0, and the expectation of E

(∑`
t=1 ft+j−1

)
is time invariant under Assumption

B6(i). For j = 1, 2, . . . , N, let

Yj (f) =
∑̀
t=1

ft+j−1 − E
(∑̀
t=1

ft+j−1

)
=
∑̀
t=1

(ft+j−1 − E (ft+j−1)) . (13)

With this notation, G∗nf can be rewritten as

G∗nf = n−1/2
N∑
j=1

(
Wj −

k

N

)
Yj (f) . (14)

Our goal is to bound the Lp moment of the supremum of this empirical process. To do so, we follow
the same arguments as in Cheng (2015, p. 19) to show that(

E ‖G∗n‖
p
Nη

)1/p
=

(
E

(
sup
f∈Nη

∣∣∣∣∣n−1/2
N∑
t=1

(
Wj −

k

N

)
Yj (f)

∣∣∣∣∣
)p)1/p

. 2

(
E

(
sup
f∈Nη

∣∣∣∣∣n−1/2
N∑
t=1

WjYj (f)

∣∣∣∣∣
)p)1/p

. (15)
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Next, we apply the Lp multiplier inequality in Lemma A.2 (using (15)) with Zj = Yj (f) and
F = Nη. This yields

(
E ‖G∗n‖

p
Nη

)1/p
. N0√

n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
(

1

N

N∑
i=1

E ‖Zi‖pNη

)1/p

+
(
` ‖WN,1‖2,1

)1/p`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥∥
Nη


p

1/p

. N0
`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
(

1

N`p

N∑
i=1

E ‖Zi‖pNη

)1/p

+

`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥∥
Nη


p

1/p

. I+ II. (16)

for any 1 ≤ N0 < ∞ and N > N0, (the second inequality follows because the MBB weight verifies
the condition lim supN→∞ ` ‖WN,1‖2,1 <∞, where W1 = WN,1). We first bound the first term in the
preceding equation, then we bound the second term.

For the first term, note that

1

N`p

N∑
i=1

E ‖Zi‖pNη

≤ 1

N`p

N∑
j=1

`p−1
∑̀
t=1

E ‖(ft+j−1 − E (ft+j−1))‖pNη = n−1/2
√
n

N`

N∑
j=1

∑̀
t=1

E ‖(ft+j−1 − E (ft+j−1))‖pNη

from Minkowski’s inequality. Using the same arguments as in the proof of Theorem 4.4 (see equation
(12))), it follows that (and given Assumption B6(iii)),

(
1

N`p

N∑
i=1

E ‖Zi‖pNη

)1/p
.

 1

N`

N∑
j=1

∑̀
t=1

E ‖(ft+j−1 − E (ft+j−1))‖pNη

1/p

=

(
EE∗

(
1

n

n∑
t=1

∥∥(f∗t+j−1 − E (ft+j−1)
)∥∥p
Nη

))1/p

.

(n−1 n∑
t=1

E ‖(ft − E (ft))‖pNη

)1/p
+ ηO

(
`√
n

) , (17)

where the last term is asymptotically negligible given the condition ` = o (
√
n). Next, we can show

that (
n−1

n∑
t=1

E ‖(ft − E (ft))‖pNη

)1/p
. (E ‖Nη‖p)1/p , (18)

where Nη is the envelope of the function class Nη. Given the Lipschitz continuity assumption (cf.
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Assumption B6(iv)), we can show that (E ‖Nη‖p)1/p ≤ η. This implies

N0
`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
(

1

N`p

N∑
i=1

E ‖Zi‖pNη

)1/p

.
[
`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p
]

︸ ︷︷ ︸
o(1)

(E ‖Nη‖p)1/p︸ ︷︷ ︸
.η

= o (η) ,

provided the second factor is o (1). Given that max1≤j≤N W
p
j ≥ 1, (EW |max1≤j≤N Wj |p)1/p ≤

EW

(
max1≤j≤N W

p
j

)
. Therefore, we have

`√
n

(
EW

∣∣∣∣ max
1≤j≤N

Wj

∣∣∣∣p)1/p .
√
N

n︸ ︷︷ ︸
→1

`√
N
EW

(
max
1≤j≤N

W p
j

)
.

Next, we appeal to Lemma 4.7 of Praestgaard and Wellner (1993) to show that

`√
N
EW

(
max
1≤j≤N

W p
j

)
= o (1) .

To do so, we verify that `W p
1 satisfies the necessary conditions of Lemma 4.7 of Praestgaard and

Wellner (1993), i.e., the following two conditions

lim sup
N→∞

‖`W p
1 ‖2,1 <∞, (19)

and
lim
λ→∞

lim sup
N→∞

sup
u≥λ

u2PW (`W p
1 > u) = 0, (20)

where we recall that W1 is a an element of a triangular array, i.e. W1 = WN,1. As argued by Cheng
(2015), cf. his equation (29), a suffi cient condition to obtain both conditions (19) and (20) is that

lim sup
N→∞

EW

(
`W

(2+ε)p
1

)
<∞, (21)

for some ε > 0, which in turn is implied by

lim sup
N→∞

EW
(
`W 5

1

)
<∞,

because for a small enough ε > 0, we can always choose p = 5/ (2 + ε) > 2. Using the property of
multinomial distribution, we have

EW
(
W 5
1

)
=

k

Nn
+ 15

k (k − 1)

N2
n

+ 25
k (k − 1) (k − 2)

N3
n

+ 10
k (k − 1) (k − 2) (k − 3)

N4
n

+
k (k − 1) (k − 2) (k − 3) (k − 4)

N5
n

=

n
`n
N4
n + 15 n

`n

(
n
`n
− 1
)
N3
n + 25 n

`n

(
n
`n
− 1
)(

n
`n
− 2
)
N2
n

N5
n

+
10 n

`n

(
n
`n
− 1
)(

n
`n
− 2
)(

n
`n
− 3
)
Nn

N5
n

+

n
`n

(
n
`n
− 1
)(

n
`n
− 2
)(

n
`n
− 3
)(

n
`n
− 4
)

N5
n

.
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Given the condition ` = o (
√
n) , it follows that

lim sup
N→∞

EW
(
`W 5

1

)
= 1 <∞.

We follow the same arguments as in Cheng (2015, p. 19) and writeEZ,R
 max
N0<k≤N

∥∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥∥
Nη


p

1/p

.

EZ,R
 max
N0<k≤N

∥∥∥∥∥ 1√
k

k∑
i=1

ZR(i)

∥∥∥∥∥
Nη

p1/p +

EZ,R

∥∥∥∥∥∥ 1√

N0

N∑
i=N0+1

ZR(i)

∥∥∥∥∥∥
Nη


p

1/p

≤ 2

EZ,R
 max
N0≤k≤N

∥∥∥∥∥ 1√
k

k∑
i=1

ZR(i)

∥∥∥∥∥
Nη

p1/p

where the last inequality follows by the triangular inequality. Thus, the proof of Lemma A.1 is
completed when

II .

`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥∥
Nη


p

1/p

,

holds for p > 2 + δ. Let

G̃k =
1√
k

k∑
i=1

ZR(i),

for N0 ≤ k ≤ N. It follows that when k = N, we have

G̃N =
1√
N

N∑
i=1

ZR(i),

Recall that for any positive random variable Y, the following holds

EY q =

∫ ∞
0

quq−1P (Y > u) du,

for any q > 0. The Levy inequality (see e.g., proposition A.1.2 of van der Vaart and Wellner (1996))
implies that,

P

(
max
k≤N

∥∥∥G̃k∥∥∥
Nη

> λ

)
≤ KP

(∥∥∥G̃N∥∥∥
Nη

> λ

)
, (22)

for every λ > 0. Hence, we can deduce that

II .

`−1EZ,R
 max
N0<k≤N

∥∥∥∥∥∥ 1√
k

k∑
i=N0+1

ZR(i)

∥∥∥∥∥∥
Nη


p

1/p

. K1/p

(
`−1EZ,R

∥∥∥G̃N∥∥∥p
Nη

)1/p
.

Proof of Lemma A.2 The proof follows closely that of Lemma 4.1 in Praestgaard and Wellner
(1993). Define a random permutation S of {1, . . . , N} such that WS(1) ≥ . . . ≥WS(N), and if WS(t) =
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WS(t+1) then S (t) < S (t+ 1) . Then, let R be a random permutation uniformly distributed on ΠN

(i.e., the set of permutations of 1, 2, . . . , N) and independent of (W,S) . Using the same arguments as
in Praestgaard and Wellner (2003), and given the exchangeability ofWN , we have thatE

∥∥∥∥∥∥n−1/2
N∑
j=1

WjZj

∥∥∥∥∥∥
p1/p =

E
∥∥∥∥∥∥n−1/2

N∑
j=1

W(j)ZR(j)

∥∥∥∥∥∥
p1/p

≤

E
∥∥∥∥∥∥n−1/2

N0∑
j=1

W(j)ZR(j)

∥∥∥∥∥∥
p1/p +

E
∥∥∥∥∥∥n−1/2

N∑
j=N0+1

W(j)ZR(j)

∥∥∥∥∥∥
p1/p

≡ I (N0, N) + II (N0, N) .

where W(j) = WS(j). We can bound the term I (N0, N) by

I (N0, N) ≤ n−1/2
N0∑
j=1

(
E
∥∥W(j)ZR(j)

∥∥p)1/p by Minkowski’s inequality
≤ n−1/2

N0∑
j=1

(
EW

∣∣W(j)

∣∣p)1/p (E∥∥ZR(j)∥∥p)1/p by independence between W and R

≤
(
EW

(
n−1/2 max

1≤j≤N
Wj

)p)1/p N0∑
j=1

(
E
∥∥ZR(j)∥∥p)1/p

=

(
EW

(
n−1/2 max

1≤j≤N
Wj

)p)1/p N0∑
j=1

(
1

N

N∑
i=1

E ‖Zi‖p
)1/p

by the properties of R

≤ N0√
n

(
EW

(
max
1≤j≤N

Wj

)p)1/p( 1

N

N∑
i=1

E ‖Zi‖p
)1/p

.

Note in particular that

E
∥∥ZR(j)∥∥p = EZER|Z

(∥∥ZR(j)∥∥p) by the LIE
= EZ

(
1

N

N∑
i=1

‖Zi‖p
)

=
1

N

N∑
i=1

E ‖Zi‖p .

If E ‖Zi‖p does not depend on i, then this is equal to E ‖Z1‖p and we get that

I (N0, N) ≤ N0√
n

(
EW

(
max
1≤j≤N

Wj

)p)1/p
(E ‖Z1‖p)1/p ,

which is what Cheng (2015) get.
Next, in order to bound the second term i.e., II(N0, N) , we follow Cheng (2015) and write

N∑
j=N0+1

W(j)ZR(j) =

N∑
j=N0+1

√
j
(
W(j) −W(j+1)

)
Tj ,
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where Tj = j−1/2
∑j

i=N0+1
ZR(i) and W(N+1) = 0. Hence, following Cheng (2015),

II (N0, N)

=

E
∥∥∥∥∥∥n−1/2

N∑
j=N0+1

W(j)ZR(j)

∥∥∥∥∥∥
p1/p

=

E
∥∥∥∥∥∥n−1/2

N∑
j=N0+1

√
j
(
W(j) −W(j+1)

)
Tj

∥∥∥∥∥∥
p1/p

≤
(
EZ,R

∥∥∥∥ max
N0<k≤N

‖Tk‖
∥∥∥∥p)1/p ·

EW
∥∥∥∥∥∥n−1/2

N∑
j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥∥
p1/p

=

EZ,R
∥∥∥∥∥∥ max
N0<j≤N

∣∣∣∣∣∣ 1√
k

k∑
j=N0+1

ZR(j)

∣∣∣∣∣∣
∥∥∥∥∥∥
p1/p ·

EW
∥∥∥∥∥∥n−1/2

N∑
j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥∥
p1/p .

Thus, the proof is completed if we can show thatEW
∥∥∥∥∥∥n−1/2

N∑
j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥∥
p1/p ≤ n−1/2

EW
∥∥∥∥∥∥

N∑
j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥∥
p1/p

≤ n−1/2
(
n1/2 ‖W1‖1/p2,1

)
≤ ‖W1‖1/p2,1

i.e., if we can show that

EW

∥∥∥∥∥∥
N∑

j=N0+1

√
j
(
W(j) −W(j+1)

)∥∥∥∥∥∥
p

≤ np/2 ‖W1‖2,1 . (23)

It is easy to see that the proof is completed by using exactly the same arguments as in Cheng (2015)
(cf. the proof of their equation (43)).
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