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Abstract

A definition for a common factor for bivariate time series is suggested by considering the

decomposition of the conditional density into the product of the marginals and the copula,

with the conditioning variable being a common factor if it does not directly enter the copula.

We show the links between this definition and the idea of a common factor as a dominant

feature in standard linear representations. An application using a business cycle indicator as

the common factor in the relationship between U.S. income and consumption found that both

series held the factor in their marginals but not in the copula.

r 2005 Elsevier B.V. All rights reserved.

JEL classification: C32

Keywords: Common factor; Dominant property; Conditional distribution; Copula
1. Introduction

This paper will initially consider common factors in a linear, bivariate framework
and then ask if similar concepts can be extended for use with conditional
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distributions. For the start, it is important to have the idea of a ‘‘dominant property’’
(DP). Throughout, the DP will be thought of as being in a component of a process. If
a series has several properties, it will be the DP that, in general will determine the
relationship of the variable with others, and how it fits into models and equations.
For the moment, we will consider only the case where there is a single DP and one
(or more) DPs. In what follows, for a pair of random processes, X t; Y t; say, X t þ Y t

is used as a convenient notation to denote the more general sum

X t þ AY tþm, (1)

where A, m are some constants and Aa0: Some assumed properties of components
are

If X t has DP and Y t does not, then X t þ Y t will have the DP.
If X t;Y t both do not have a DP, then X t þ Y t will not have the DP.
Finally, it will generally be the case that if X t and Y t both have a common DP,

then X t þ Y t has this DP.
Some of the usual examples of DPs in component processes are
(i)
 A trend (either deterministic or stochastic).

(ii)
 A strong seasonal component (either deterministic or stochastic).

(iii)
 A strong business cycle component.

(iv)
 Smooth transitions or distinct breaks in conditional mean.
In (1) a lead of m (which may be negative) is allowed but for most of the DPs it is
clear that taking m ¼ 0 is little different in practice than any non-zero value. This is
clear because there is little loss of information from knowing Y tþm rather than Y t

unless m is quite large for all of the examples, except the last, near a break.
A persistent process (denoted Ið1Þ) dominates a non-persistent process, denoted

Ið0Þ; in the sense that a linear combination of two such processes will be persistent. It
has become the common practice to think of Ið1Þ to be a unit root process, of a
narrowly defined form, and Ið0Þ to be a stationary linear process, such as an ARMA
series, but again this is not necessary.

The relevance of a DP is clear in an explanatory model such as

X t ¼ aþ bY t þ aW t þ et

as the two sides must balance, with the two sides having the same DPs. For example,
if X t has the DP whereas neither Y t nor W t does, then the error term et must have
the property.
2. Dominant common factors

A particularly interesting case involving DPs and common factors is in the form

X t ¼ AW t þ Z1t,

Y t ¼W t þ Z2t, ð2Þ
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where W t has the DP, Z1t;Z2t do not have the DP, and Aa0 is some constant. From
the rules given above, both X t;Y t will have the DP but X t � AY t ¼ Z1t � AZ2t will
not have the DP. Thus, with this construction, a particular linear combination of two
variables with a DP will not have the property.

If the DP is a trend, the variables are said to be ‘‘co-trending,’’ if it is a break
process, the variables are ‘‘co-breaking.’’ From (2) it follows, however, that the
breaks need not be simultaneous, as ma0 is allowed. Furthermore, if W t is a
business cycle component, the variables are ‘‘co-cyclical,’’ and if W t has a strong
seasonal, they can be thought of as being ‘‘co-seasonal.’’ Finally when W t is Ið1Þ but
the linear combination is Ið0Þ; they have been called ‘‘co-integrated.’’ For a recent
discussion of the co-cyclical literature, see Issler and Vahid (2001).

In this paper we concentrate on dominant common factors; that is a common
factor that determines the major time series properties of two (or just a few) series. In
general factor analysis, a common factor need not be dominant, but be present in
largely unrelated processes. Such common factors can become dominant under
cross-sectional aggregation (see Granger (1987)). Sometimes a common factor can be
important but not dominant such as the stock index in the Capital Asset Pricing
Model in finance. Common factors may be either directly observed or derived from
other series in the system, as in simple cointegration.
3. Conditional distributions and conditional copula

The models presented in the previous section focus on DPs that show up in the
conditional expectation of a random variable, and are therefore somewhat limited in
ambition. Similar examples can be constructed for the conditional variance. For a
complete description of a relationship between random variables, however, one
needs to consider a joint distribution. In our analysis of the joint distribution, we will
employ a theorem of Sklar (1959), who showed that a bivariate density function can
be decomposed into three parts: the two univariate marginal densities and a
‘‘copula’’ density. Suppose we concentrate just on the bivariate relationship between
X and Y, conditional on W; then

f XY ðx; yjW Þ ¼ f X ðxjW Þf Y ðyjW ÞkðF X ðxjW Þ;FY ðyjW ÞjW Þ, (3)

where k is the conditional copula density function. As an example, when X and Y are
conditionally independent given W, kðx; yjW Þ � 1: In this special case, k is not
dependent on W, although the marginals may still be dependent on W. Such
situations will be of interest later on.

Eq. (3) shows Sklar’s theorem for density functions; the original theorem applied
more generally to distribution functions:

FXY ðx; yjW Þ ¼ CðFX ðxjW Þ;FY ðyjW ÞjW Þ, (4)

where FXY is the joint conditional distribution function of X, Y, FX is the
conditional marginal distribution function of X, and similarly F Y is the conditional
marginal distribution function of Y. Sklar showed that there will always be a
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function C, called the copula distribution function, so that (4) holds. Differentiating
(4) with respect to x and y gives (3). The function C itself is a cumulative distribution
function, namely, a cumulative distribution function of two conditionally Uni-
form(0,1) distributed random variables. If X and Y are both continuous random
variables, the copula is unique, and is the joint distribution conditional on W, of the
random variables u and v which are defined as u ¼ FX ðxjW Þ and v ¼ FY ðyjW Þ:

The copula function represents the dependence between X and Y after taking out
the effects of the marginals, which may be different, see Joe (1997) and Nelson
(1999). What makes the copula important is that the marginal distributions and
linear correlations determine the joint distribution of a set of random variables only
if the latter are elliptically distributed, such as normally or t-distributed random
variables. If this is not the case, the copula will take the place of the correlations. For
discussion, see, for example, Embrechts et al. (1999, 2001). Note, however, that the
copula has a link to rank correlations. Kendall’s t for the dependence between X and
Y is defined as

tðX ;Y Þ ¼ PrfðX i � X jÞðY i � Y jÞ40g � PrfðX i � X jÞðY i � Y jÞo0g

for iaj; where ðX i;Y iÞ is a pair of observations from the joint distribution of X and
Y. Now

tðX ;Y Þ ¼ 4

Z 1

0

Z 1

0

Cðu; vÞdCðu; vÞ � 1 ¼ 4E½Cðu; vÞ� � 1.

where C is the copula of the joint distribution X and Y. While the copula is a two-
dimensional entity, Kendall’s t is a univariate measure of dependence between X and
Y. It can similarly be shown that Spearman’s rank correlation coefficient, rS; is equal
to

rSðX ;Y Þ ¼ 12

Z 1

0

Z 1

0

uvdCðu; vÞ � 3 ¼ 12E½uv� � 3.

The interpretation of the decomposition (3) is important for later developments in
the paper. Let X t and Y t be defined as in (2) and assume that Z1t;Z2t are
independent of wt�j ; jX0: It should be noted that in (3) all of the univariate
properties of the X t process, such as the conditional mean, variance, higher
moments, and so forth, are encapsulated in the conditional marginal distribution
f Y ðxjW Þ: The copula involves none of these quantities and only contains measures
relating to the extent that X tjW t and Y tjW t are interdependent. It is a bivariate
function which generalizes the standard correlation coefficient, but which generally
depends on the conditioning variable W t: In general, the extent and manner in which
X t;Y t are interrelated may change with the conditioning variable. However, in the
system (2), without conditioning X t and Y t will be dependent largely through W t;
but on conditioning the dependence of X t and Y t will only depend on the joint
distribution of Z1t and Z2t: It should be noted that in this example it is enough to
condition on W t as conditioning on W t and its lags is not required.

Returning to the discussion in the previous section, if W has a DP, then the
equivalent of Eq. (2) in distributions would be that both of the marginal densities
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f X ðxjW Þ; f Y ðyjW Þ are not independent of W. Thus, W does have an impact
somewhere in the joint density. However, the equivalent of the linear common factor
situation could be that the relationship between X and Y as expressed by the
conditional copula density function does not depend on W. This will be discussed in
Section 6, but one may already note the above-mentioned special case in which X

and Y are conditionally independent given W.
4. Examples of DPs in conditional distribution

A process X t can be said to have a seasonally varying distribution if it has a time-
varying density f tðxÞ but, when measured monthly,

kf tðxÞ � f tþ12ðxÞk

is small, using some suitable norm for densities. A plausible pseudo-norm is the
Kullback–Leibler criterion, see White (1994) for instance. X t could be used as a
conditioning variable in the common factor framework outlined above.

Similarly, a sequence of time-varying densities f tðxÞ could be called ‘‘trending’’ if
f tðxÞ stochastically dominates (to order one) f sðxÞ for all t4s; i.e. FtðxÞ4FsðxÞ for
all x, t4s; where F tðxÞ is the distribution function corresponding to the density f tðxÞ:
If Tt is a random variable drawn from such a distribution, it might be called a trend
and be a variable with a DP.

If f tðxÞ takes the form f ðx; ytÞ where yt is some vector of parameters which are not
necessarily constant, the densities can be called ‘‘breaking’’ if yt ¼ y0; tpt0; yt ¼

y1ðay0Þ; t4t0: There could be several breaks and they could be caused by other
variables taking particular values. A variable W t drawn from the distribution can be
called a breaking process and used as a conditioning variable.

If Bt is a process that is closely linked with the business cycle, such as a coincident
indicator, then it can be used directly as a candidate for a common factor in
conditional distributions.

There are several ways that persistence can be defined. A useful way is to define a
process W t as being persistent if F ðW t;W tþnÞaF ðW tÞF ðW tþnÞ as n becomes large.
This can potentially be tested using some of the measures of dependence discussed in
Joe (1997). If W t is a persistent process, it can be used as a conditioning variable and
it will have a DP.

The class of possible processes with DPs can be extended further to include ‘‘long-
memory processes’’ for example, but these will not be considered here.

Tests for the existence or not of a particular DP will exist in some cases, such as for
first-order stochastic dominance, but others will need to be developed.

Dominant factors need not be treated individually and a group of different
trending variables, say, or a trend and a seasonal can be used jointly as conditioning
variables. Further, other variables without DPs can also be included in the
conditioning set. These extensions do complicate the picture and make analysis more
difficult, although possibly more realistic. We leave such questions to be considered
with the analysis of particular applications.
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5. Common factors in distributions

We can now formally state our definition of common factors in distributions. The
definition is adapted to time series situations where the observations are not
independent but the present ones may depend on the previous ones.

Definition 1. Let X t;Y t be a pair of processes and denote X t � X t�j ; jX0
and similarly Y t is the present and the past of the Y’s. A process W t will be
considered as one with a dominant common property, or a common factor in
distribution, if the conditional marginals F X ðX tjW t;W t�1;X t�1;Y t�1Þ and
FY ðY tjW t;W t�1;X t�1;Y t�1Þ do depend on W t and possibly the lagged terms
W t�1; but the conditional copula kðut; vtjW t;W t�1;X t�1;Y t�1Þ ¼ kðut; vtjX t�1;Y t�1Þ

does not depend on W t; either directly or through the lags.

Thus, the effect of W t on (xt; yt) is through the marginal distributions but not
through their relationship. Although this could happen with any conditioning
variable, it is particularly noteworthy for variables with a DP. Thus, for example, a
pair of variables could have marginals that vary seasonally, but their relationship, as
characterized by the copula, does not vary seasonally. Similarly, a pair could have
marginal distributions that change with the business cycle, not just in means but
many quantities, yet the conditional copula density does not vary with the business
cycle. Such possibilities lead to interesting interpretations for economic series. Again,
suitable tests need development.

As an illustration of the definition, consider a two-factor model used to explore
cointegration relationships. X t;Y t are a pair if Ið1Þ series generated from W t which
is Ið1Þ and Zt which is Ið0Þ; by the equations

X t ¼ AW t þ C1Zt þ �Xt, (5)

Y t ¼W t þ C2Zt þ �Yt, (6)

where �Xt; �Yt are zero mean, independent series, independent of each other
with the constraint that C1 � AC2 ¼ 1: The two equations can be augmented by
the addition of a finite number of weighted lags of DX t;DY t: Such an augmentation
merely complicates the algebra without greatly changing the important aspects of the
model.

It follows directly that

Zt ¼ X t � AY t þ eZt, (7)

where eZt ¼ A�Yt � �Xt; and

W t ¼ C1Y t � C2X t þ eWt, (8)

where eWt ¼ C2�Xt � C1�Yt:
To give a specific example, suppose that DW t ¼ Zt; where Zt is zero mean iid and

Zt ¼ rZt�1 þ yt; jrjo1; yt zero mean, iid. Taking changes in (5), (6) and using this
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example gives

DX t ¼ C1ðr� 1ÞZt�1 þ g1t, (9)

DY t ¼ C2ðr� 1ÞZt�1 þ g2t, (10)

where

g1t ¼ AZt þ C1yt þ D�Xt, (11)

g2t ¼ Zt þ C2y2 þ D�Yt. (12)

In this example, X t and Y t are seen to have the dominant Ið1Þ property
because of the common Ið1Þ factor W t in Eqs. (5) and (6). However, there
is a linear combination of X t and Y t which produces an estimate of Zt with
no W t anywhere in its distribution. From (8) W t can be estimated, but with an Ið0Þ
error.

Turning to the specific example and now concentrating on Ið0Þ variables, (9) and
(10) show that the relationship between DX t and DW t has become that between DX t

and Zt: Although Zt has mean zero, and so will not affect the conditional mean of
DX t; given DX t�1;DY t�1; it will influence the conditional variance, and similarly for
DY t:

This example is standard for linear cointegration but does not quite fit into the
examples discussed in this paper, as W t is not directly observed in practice, only
estimated from the raw data, X t;Y t: As Zt contains DX t; there is simultaneity
involved in distributional relationships. If W t is separately observed, it can be
conditioned on and used in our definition.
6. Application

As an empirical example for the ideas presented above we now present an
analysis of the joint distribution of income and consumption, with a
business cycle index variable as a possible common factor. Income and
consumption are two of the most widely studied macroeconomic variables, and
they both are known to vary individually over the business cycle, i.e., both
consumption and income growth have cyclicality as a DP. The relationship
between these variables has also been widely studied, though to our knowledge
no stylized facts regarding the behavior of the conditional dependence
between these variables over the business cycle are available. We will investigate
whether the conditional dependence between these variables also exhibits
cyclicality, by testing whether a business cycle index variable influences the
conditional copula of income and consumption growth. If no evidence of influence
is found, then the index variable is a common factor, and cyclicality is a dominant
common property.
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6.1. Data and model

We used monthly data from January 1967 to November 2001 on U.S. real per
capita disposable income (denoted Y t) and U.S. real per capita consumption on
nondurables (denoted Ct). The business cycle indicator used was the Stock and
Watson experimental coincident index1 (denoted Bt). As will be seen in the model,
these variables appear in log-difference form.

We specified linear models for the conditional means of the two series and the
autoregressive conditional heteroscedasticity (ARCH) model of Engle (1982) for the
conditional variances. Our choice of specification for the marginal densities was
guided by our desire to allow for conditional non-normality. Two of the most
common deviations from normality are fat tails (excess kurtosis) and asymmetry or
skewness. Two distributions that are commonly used to allow for excess kurtosis are
the Student’s t and the generalized error distribution (GED). Both of these
distributions have been generalized to allow for skewness, and we selected the
skewed Student’s t of Hansen (1994) for its simplicity and its past success in
modeling economic variables. The skewed t distribution has two parameters: one for
skewness and one for tail thickness. The distribution is not generally elliptical and
thus the conditional copula is the appropriate measure of conditional dependence
between the two variables. The functional form of the skewed t density is given
below.

Skewed tðy; l; vÞ ¼

bc 1þ
1

uþ 2

byþ a

1� l

� �� ��ðuþ1Þ=2
for yp�

a

b
;

bc 1þ
1

uþ 2

byþ a

1þ l

� �� ��ðuþ1Þ=2
for y4�

a

b
;

8>>>><
>>>>:

(13)

where a ¼ 4lc
u� 2

u� 1

� �
with

c ¼

G
uþ 1

2

� �

G
u
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðuþ 2Þ

p and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3l2 � a2

p
.

Since the two marginal densities and the copula define a joint distribution, the
natural estimation method is maximum likelihood. We employ the multi-stage
maximum likelihood estimator presented in Patton (2001). Multi-stage estimation
allows us to first estimate the marginal distributions separately, and then model the
copula, which greatly simplifies the estimation of the model.

We used the Akaike information criterion (AIC) and goodness-of-fit tests to find
appropriate models for the each of the conditional moments of the two series. Lags
of consumption, income and the business cycle variable were allowed to enter as
1The data on consumption and income were taken from the St. Louis Federal Reserve web page, http://

www.stls.frb.org/fred. The business cycle index series was taken from Jim Stock’s web page, http://

ksghome.harvard.edu/� :JStock.Academic.Ksg/xri/0201/xindex.asc.

http://www.stls.frb.org/fred
http://www.stls.frb.org/fred
http://ksghome.harvard.edu/~.JStock.Academic.Ksg/xri/0201/xindex.asc
http://ksghome.harvard.edu/~.JStock.Academic.Ksg/xri/0201/xindex.asc
http://ksghome.harvard.edu/~.JStock.Academic.Ksg/xri/0201/xindex.asc
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explanatory variables for both dependent variables. In our particular example it
happened that the best fitting models did not require lags of the ‘‘other’’ variable
(i.e., lags of Y t in the model for Ct; and vice versa). This will not always be the case,
and must be tested in each specific situation, as emphasized in Patton (2002).

The final models and parameter estimates are presented below; standard errors are
provided in parentheses, and parameter estimates significant at the 5% level are
marked with an asterisk. We used the modified logistic transformation, L; to keep
the skewness parameter, lt; in ð�1; 1Þ at all times.

D logCt ¼ 0:15�
ð0:03Þ
� 0:42�
ð0:05Þ

D logCt�1 � 0:20�
ð0:05Þ

D logCt�2 � 0:15�
ð0:04Þ

D logCt�12

� 0:20�
ð0:04Þ

D logCt�24 þ 0:32�
ð0:03Þ

D logBt þ �t,

where �tffiffiffiffi
hC

t

p jI t�1 � Skewed tðlC
t ; u

C
t Þ

hC
t ¼ 0:31�

ð0:03Þ
� 0:01�
ð0:02Þ

�2t�1 þ 0:06�
ð0:02Þ

D logBtð Þ
2,

lC
t ¼ L � 0:01

ð0:17Þ
þ 0:36�
ð0:10Þ
ðD logBtÞ

2

� �
,

uC
t ¼ 7:95�

ð3:12Þ
, ð14Þ

where LðaÞ ¼
1:998

1þ expf�ag
� 0:999;

D logY t ¼ 0:14�
ð0:04Þ
� 0:30�
ð0:10Þ

D logY t�1 � 0:16�
ð0:07Þ

D logY t�2 þ 0:33�
ð0:04Þ

D logBt þ Zt,

where
Ztffiffiffiffiffiffi
hY

t

q jI t�1 � Skewed tðlY
t ; u

Y
t Þ;
hY
t ¼ 0:26�

ð0:11Þ
þ 0:46�
ð0:18Þ

Z2t�1 þ 0:03
ð0:03Þ

D logBt,

lY
t ¼ L 0:07

ð0:17Þ
þ 0:37
ð0:29Þ

Z2t�1 þ 0:02
ð0:06Þ
ðD logBtÞ

2

� �
,

uY
t ¼ 2:1þ � 0:66�

ð0:26Þ
þ 0:29
ð0:20Þ

Z2t�1 � 0:43
ð0:25Þ

D logBt

� �2

, ð15Þ

1:998

where L að Þ ¼

1þ expf�ag
� 0:999:
No dynamics in the degrees of freedom parameter in the consumption density
model were found, and so it was modeled as being constant. Many of the coefficients
on the business cycle index variable in the conditional moment specifications were
significant at conventional levels, confirming that both consumption and income
vary over the business cycle. Although not all of the coefficients on the Bt terms are
significant at the 5% level, these variables were needed for model to pass the
specification tests employed to check the adequacy of the proposed model. We
conducted the specification tests presented in Patton (2002) to check the goodness-
of-fit of the above specifications, and found no evidence that they are inadequate.
The test results are presented in Appendix A.
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In our search for the best specification of the conditional copula for these two variables,
we considered eight alternative copula functional forms: normal, Clayton, rotated
Clayton, Gumbel, rotated Gumbel, Plackett, Frank and the symmetrised Joe–Clayton.
The first seven of these are presented in Joe (1997) and Nelsen (1999), while the eighth was
introduced in Patton (2002). Each of these copulas implies a different type of dependence
between the variables. For example, the Clayton copula would fit best if negative changes
in consumption and income are more highly correlated than positive changes; the Gumbel
and the rotated Clayton would fit best in the opposite situation. The Plackett and
Frank copulas are symmetric, like the normal, but imply slightly different
dependence structures. Without any economic theory to guide us on the choice of
dependence structure, it becomes an empirical question to find the best fitting model.

We estimated constant versions of these copulas, and the Gumbel was found to
provide the best fit in terms of the log-likelihood value.2 We proceeded to use the
Gumbel copula for the time-varying conditional copula specifications. The forms of
the Gumbel copula cumulative distribution function and probability density
function (Cgumbel and kgumbel; respectively) are given below.

Cgumbelðu; v; kÞ ¼ expf�ðð� log uÞk þ ð� log vÞkÞ1=kg,

kgumbelðu; v; kÞ ¼
Cgumbelðu; v; kÞððlog uÞðlog vÞÞk�1

uvðð� log uÞk þ ð� log vÞkÞ2�1=k

�ððð� log uÞk þ ð� log vÞkÞ1=k þ k� 1Þ. ð16Þ

We allowed the parameter of the Gumbel copula, k; to vary through time, setting it
to be a function of the change and squared change in the business cycle index
variable, and the average distance between the ‘transformed’ residuals, Ut and Vt:
This average distance is a measure of the degree of dependence between the variables
over the last six months,3 as under perfect positive dependence it always equals zero,
under independence it is equal to one-third in expectation, and under perfect
negative dependence it is equal to one-half in expectation.

D logCt � mC
tffiffiffiffiffiffi

hC
t

q ;
D logY t � mY

tffiffiffiffiffiffi
hY

t

q
0
B@

1
CA � F XY

¼ CðFX ;FY Þ

¼ CgumbelðSkewed tðlC
t ; u

C
t Þ;Skewed tðlY

t ; u
Y
t Þ; ktÞ, ð17Þ

where kt ¼ 1þ ðg0 þ g1D logBt þ g2D logB2
t þ g3

P6
j¼1 jut�j � vt�jjÞ

2:
The Gumbel copula parameter must be greater than or equal to one at all times,

and we constrain the evolution equation for kt to ensure that this is the case.
2As the Gumbel copula has a single parameter, and all the other copulas considered have either one or

two parameters, selecting the Gumbel copula by the likelihood value is equivalent to selection by AIC or

BIC.
3We also experimented with averaging over the preceding 12 and 24 months and found no significant

improvement over using only 6 months.
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Table 1

Copula parameter estimates and standard errors

Coefficient Standard error t-statistic Log-likelihood

Constant conditional copula

Constant 1.0977 0.0361 2.7064a 7.9785

Time-varying conditional copula

Constant ðg0Þ 0.2883 0.2106 1.3694 8.5526

D logBtðg1Þ 0.0329 0.1040 0.3167

D logB2
t ðg2Þ 0.0490 0.0490 0.9987P

ju� vjðg3Þ �0.0913 0.5870 �0.1555

aThis t-statistic is for the test of the null hypothesis that the parameter equals one (rather than zero),

which corresponds to independence of the two variables.

C.W.J. Granger et al. / Journal of Econometrics 132 (2006) 43–57 53
We computed the covariance matrix of the parameter estimates of the joint
distribution model, and present the results for the copula parameters in Table 1.

As the results in the table show, none of the individual coefficient estimates of the
variables used in the evolution equation for the conditional copula parameter are
significant, and the joint hypothesis of no time variation in the conditional copula
cannot be rejected either (a likelihood ratio test yields a p-value of 0.7655). This
suggests that the conditional dependence between consumption and income is
constant. We can, however, reject the hypothesis that the variables are independent
at the 5% level. Most interestingly, our results suggest that the business cycle index
variable is not important in describing the dependence between these two series, and
thus may be a common factor in distribution for consumption and income.

In Fig. 1 we present the time path of kt according to this model, along with the
NBER recession periods. This figure confirms that the time variation in the
conditional copula parameter is essentially unrelated to the business cycle.

It should be noted that for us to conclude with certainty that the dependence
structure between these variables is independent of the business cycle we would need
to try all possible functions of the business cycle index variable, not just the quadratic
specification used above. It is of course possible that some other function of the
business cycle index variable does influence the conditional dependence structure.
Further, the results may be sensitive to the choice of Bt versus, say, Bt�1; or any other
lag of Bt; or possibly the vector ½Bt;Bt�1; . . . ;Bt�p�:While we found no evidence that
Bt affected the conditional copula, in unreported results we did find some evidence
that Bt�1 was important for the conditional copula. Thus our conclusion is affected
by the choice of lag on the business cycle index variable.

Overall, our preliminary results on this question give some support to the
claim that the impact of the business cycle on the joint distribution of
consumption and income is through the marginal distributions and not through
their dependence structure, making it a ‘‘common factor in distribution’’ for
consumption and income.
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Fig. 1. This figure shows the time path of the Gumbel copula parameter using the model in Eq. (17), along

with its value in the constant conditional copula model. The vertical dotted lines are the NBER recession

periods.
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7. Conclusion

The paper proposes a definition for common factors in conditional distributions
that is the analogy to that used in the linear context of the first and second moments.
A wide variety of possible dominant factors are suggested and an application is
presented concerning the income and consumption relationships over the business
cycle. We find some evidence that a business cycle indicator variable is a common
factor in the distribution of consumption and income. Many questions in this are
remain unresolved, both concerning testing and also some properties of the common
factor representation in particular cases. They are left for further research.
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Appendix A. Marginal distribution specification test results

Before proceeding to model the conditional copula, it is critical to test the
goodness-of-fit of the models employed for the conditional marginal distributions.
Mis-specification in the marginal densities implies that the probability integral
transforms, denoted Ut and V t above, will not be uniformly distributed on ð0; 1Þ; and
thus any copula will automatically be mis-specified. Mis-specification in the
dynamics of the conditional marginal distribution models can lead to spurious
findings for the dynamics of the conditional copula.

A simple test for a density specification (ignoring the impact of estimation error) is
the Kolmogorov–Smirnov test, see Shao (1999). Applying this test to the series Ut

and Vt we obtain test statistics (p-values) of 0.0228 (0.9834) and 0.0246 (0.9650),
suggesting that both densities are well-specified.

To test jointly for the adequacy of the dynamics and the density specifications in
the marginal distribution models we employ a test discussed in Patton (2002),
variations of which were also presented in Clements (2002) and Wallis (2003). This
test divides the support of the density into regions, Ri; and then applies interval
forecast evaluation techniques to each region separately, and then all regions jointly.
If the entire density is well-specified, then the derived interval forecast in each region
should also be well-specified. We break the support of U and V into 5 regions:
½0; 0:1�; ð0:1; 0:25�; ð0:25; 0:75�; ½0:75; 0:9Þ and ½0:9; 1�: We construct ‘hit’ variables for
each region, as HitUi;t ¼ 1fUt 2 Rig and HitVi;t ¼ 1fV t 2 Rig; which take the value 1 if
the realized value is in the region, and 0 otherwise. Under the null of correct
specification, each of these Hit variables should be iid Bernoulli(U-L), where L and
U are the lower and upper boundaries of the region.

To test individual regions we estimate a logistic regression of the hit variables on a
constant and variables that should, if the model is well specified, have no influence
on the hit variable. We used the first lag of the both hit variables for the same region
(i.e., both HitUi;t�1 and HitVi;t�1) to capture serial correlation, and the lagged business
cycle index variable in levels and squares4 to capture any information in this variable
that may have been omitted from the model. Under the null hypothesis that the
density models are well specified the test statistic is a w25 random variable.

To test all regions jointly we estimate a multinomial logit model, with the same
specifications for each region as for the individual tests. The test statistic for the joint
4We also tried adding other variables, which counted the number of hits over the past 6 and/or 12

periods, to capture higher-order serial dependence. Further, we tried using only levels of the business cycle

variable, and only using ‘‘own’’ lagged hits. None of these changes affected the final conclusion.
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Table 2

Marginal distribution model specification test results

Region Ut Vt

½0; 0:1� 0.5935 0.9824

ð0:1; 0:25� 0.5320 0.3008

ð0:25; 0:75� 0.5343 0.5794

ð0:75; 0:9� 0.6833 0.4782

ð0:9; 1� 0.2264 0.1801

Joint test 0.6395 0.7116

Note. This table presents the p-values from the goodness-of-fit tests discussed in Appendix A. A p-value of

less than 0.05 indicates a significant lack of fit by the density model.
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test is a w220 under the null hypothesis. The p-values for each test statistic are
presented in Table 2.

This table shows that both specifications pass all of the individual region tests (p-
values are all greater than 0.05) and the joint test. We thus conclude that these
specifications are adequate representations of the conditional marginal distributions,
and move on to modeling the copula.
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Statistique de l’Université de Paris, vol. 8, pp. 229–231.

Wallis, K.F., 2003. Chi-squared tests of interval and density forecasts and the bank of England’s fan

charts. International Journal of Forecasting 19, 165–175.

White, H., 1994. Estimation, Inference, and Specification Analysis. Cambridge University Press,

New York.


	Common factors in conditional distributions for bivariate time series
	Introduction
	Dominant common factors
	Conditional distributions and conditional copula
	Examples of DPs in conditional distribution
	Common factors in distributions
	Application
	Data and model

	Conclusion
	Acknowledgements
	Appendix A. Marginal distribution specification test results
	References


