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Supplemental Appendix A: Proofs of main results

In this appendix, we prove the results in the main text. Results in Sections 3 and 4 of the main

text are proved in Appendices A.1 and A.2, respectively. These proofs use three technical lemmas

(Lemmas A1–A3), which we prove in Appendix A.3. Below, we use K to denote a generic constant,

which may change from line to line but does not depend on the time index t.

A.1 Proofs for Section 3

Proof of Proposition 3.1. (a) The assertion of part (a) holds because

∥∥∥E[f̄∗T ]− E[f̄ †∗T ]
∥∥∥ ≤ P−1

T∑
t=R

E
∥∥∥f (Yt+τ , Ft+τ (β∗))− f

(
Y †t+τ , Ft+τ (β∗)

)∥∥∥
≤ KT−1

T∑
t=1

E
∥∥∥∥mt+τ

∥∥∥Yt+τ − Y †t+τ∥∥∥h∥∥∥∥
≤ KT−1

T∑
t=1

‖mt+τ‖p/(p−1)

∥∥∥∥∥∥∥Yt+τ − Y †t+τ∥∥∥h∥∥∥∥
p

≤ KT−1
T∑
t=1

∥∥∥Yt+τ − Y †t+τ∥∥∥h
hp

= O

(
T−1

T∑
t=1

dθht

)
,

where the first line is by the triangle inequality; the second line is by condition (ii) and P � T ;

the third line is by Hölder’s inequality; the fourth inequality follows from supt ‖mt‖p/(p−1) < ∞;

and the last line is by condition (3.2).

(b) If aT � T k, we have aT (E[f̄∗T ]− E[f̄ †∗T ]) � T k−1
∑T

t=1 d
θh
t by part (a). Under the condition∑T

t=1 t
k−1dθht <∞, we deduce Assumption C using Kronecker’s Lemma. Q.E.D.

Proof of Proposition 3.2. (a) Under H†0 , E[f̄ †∗T ] = χ. By Assumptions A1 and C, (aT (f̄T −
χ), a′TST )

d−→ (ξ, S). By the continuous mapping theorem and Assumption A2, ϕT
d−→ ϕ (ξ, S).

By Assumption A3, EφT → α.

Now consider H†1a, so Assumption B1(ii) is in force. Under H†1a, the nonrandom sequence

aT (E[f̄ †∗j,T ] − χj) diverges to +∞; by Assumption C, aT (E[f̄∗j,T ] − χj) diverges to +∞ as well.

Hence, by Assumption A1 and Assumption B1(ii), ϕT diverges to +∞ in probability. Since the

law of (ξ, S) is tight, the law of ϕ (ξ, S) is also tight by Assumption A2. Therefore, zT,1−α = Op (1).

It is then easy to see EφT → 1 under H†1a.

The case with H†2a can be proved similarly.
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(b) Under H†0 , aT (f̄T −χ) ≤ aT (f̄T −E[f̄ †∗T ]). Let φ̃T = 1{ϕ(aT (f̄T −E[f̄ †∗T ]), a′TST ) > zT,1−α}.
By monotonicity (Assumption B1(i)), φT ≤ φ̃T . Following a similar argument as in part (a),

Eφ̃T → α. Then lim supT→∞ EφT ≤ α readily follows. The case under H†a follows a similar

argument as in part (a). Q.E.D.

A.2 Proofs for Section 4

We prove Theorems 4.1–4.6 in this subsection. Throughout this appendix, we denote

X ′t = X0 +

∫ t

0
b′sds+

∫ t

0
σsdWs, X ′′t = Xt −X ′t, (A.1)

where the process b′s is defined in Assumption HF. Below, for any process Z, we denote the ith

return of Z in day t by ∆t,iZ = Zτ(t,i) − Zτ(t,i−1).

Proof of Theorem 4.1. Denote βt,i = στ(t,i−1)∆t,iW/d
1/2
t,i . Observe that for m = 2/p and

m′ = 2/(2− p),

E
∣∣∣g(∆t,iX/d

1/2
t,i )− g(βt,i)

∣∣∣p
≤ KE

[(
1 + ‖βt,i‖pq + ‖∆t,iX/d

1/2
t,i ‖

pq
)
‖∆t,iX/d

1/2
t,i − βt,i‖

p
]

≤ K
(
E
[(

1 + ‖βt,i‖pqm
′
+ ‖∆t,iX/d

1/2
t,i ‖

pqm′
)])1/m′ (

E‖∆t,iX/d
1/2
t,i − βt,i‖

pm
)1/m

≤ Kdp/2t,i ,

(A.2)

where the first inequality follows the mean-value theorem, the Cauchy–Schwarz inequality and

condition (ii); the second inequality is due to Hölder’s inequality; the third inequality holds because

of condition (iii) and E‖∆t,iX/d
1/2
t,i − βt,i‖2 ≤ Kdt,i. Hence, ‖g(∆t,iX/d

1/2
t,i ) − g(βt,i)‖p ≤ Kd

1/2
t,i ,

which further implies ∥∥∥∥∥Ît(g)−
nt∑
i=1

g
(
βt,i
)
dt,i

∥∥∥∥∥
p

≤ Kd1/2
t . (A.3)

Below, we write ρ (·) in place of ρ ( · ; g) for the sake of notational simplicity. Let ζt,i =

g(βt,i)−ρ(cτ(t,i−1)). By construction, ζt,i forms a martingale difference sequence. By condition (iv),

for all i, E[(ζt,i)
2] ≤ E[ρ(cτ(t,i−1); g

2)] ≤ K. Hence, E|
∑nt

i=1 ζt,idt,i|2 =
∑nt

i=1 E[(ζt,i)
2]d2

t,i ≤ Kdt,

yielding ∥∥∥∥∥
nt∑
i=1

ζt,idt,i

∥∥∥∥∥
p

≤

∥∥∥∥∥
nt∑
i=1

ζt,idt,i

∥∥∥∥∥
2

≤ Kd1/2
t . (A.4)
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In view of (A.3) and (A.4), it remains to show∥∥∥∥∥
∫ t

t−1
ρ(cs)ds−

nt∑
i=1

ρ
(
cτ(t,i−1)

)
dt,i

∥∥∥∥∥
p

≤ Kd1/2
t . (A.5)

First note that∫ t

t−1
ρ (cs) ds−

nt∑
i=1

ρ
(
cτ(t,i−1)

)
dt,i =

nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

(
ρ (cs)− ρ

(
cτ(t,i−1)

))
ds. (A.6)

We then observe that, for all s ∈ [τ(t, i− 1), τ(t, i)] and with m = 2/p and m′ = 2/ (2− p),∥∥ρ (cs)− ρ
(
cτ(t,i−1)

)∥∥
p

≤ K
(
E
[(

1 + ‖cs‖pq/2 + ‖cτ(t,i−1)‖pq/2
)
‖cs − cτ(t,i−1)‖p

])1/p

≤ K
(
E
[(

1 + ‖σs‖pqm
′
+ ‖στ(t,i−1)‖pqm

′
)])1/pm′ (

E‖cs − cτ(t,i−1)‖pm
)1/pm

≤ Kd1/2
t,i ,

(A.7)

where the first inequality follows from the mean-value theorem, the Cauchy–Schwarz inequality

and condition (ii); the second inequality is due to Hölder’s inequality; the third inequality follows

from condition (iii) and the standard estimate E‖cs− cτ(t,i−1)‖2 ≤ Kdt,i. From here (A.5) follows.

This finishes the proof. Q.E.D.

We now turn to the proof of Theorem 4.2. Recalling (A.1), we set

ĉ′τ(t,i) =
1

kt

kt∑
j=1

d−1
t,i+j(∆t,i+jX

′)(∆t,i+jX
′)ᵀ. (A.8)

The proof of Theorem 4.2 relies on the following technical lemmas, which are proved in Appendix

A.3.

Lemma A1. Let w ≥ 2 and v ≥ 1. Suppose (i) Assumption HF holds for some k ≥ 2wv and (ii)

kt � d−1/2
t as t→∞. Then

∥∥∥E [∥∥∥ĉ′τ(t,i) − cτ(t,i)

∥∥∥w∣∣∣Fτ(t,i)

]∥∥∥
v
≤

{
Kd

1/2
t in general,

Kd
w/4
t if σt is continuous.

(A.9)

Lemma A2. Let w ≥ 1 and v ≥ 1. Suppose (i) Assumption HF holds for some k ≥ 2wv and (ii)

kt � d−1/2
t as t→∞. Then∥∥∥∥∥∥E [ ĉ′τ(t,i) − cτ(t,i)

∣∣∣Fτ(t,i)

]∥∥∥w∥∥∥
v
≤ Kdw/2t . (A.10)
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Lemma A3. Let w ≥ 1. Suppose Assumption HF hold with k ≥ 2w. We have E‖ĉτ(t,i)−ĉ′τ(t,i)‖
w ≤

Kd
θ̄(k,w,$,r)
t , where

θ̄ (k,w,$, r)

= min {k/2−$ (k − 2w)− w,
1−$r + w(2$ − 1), w($ − 1/2) + (1−$r) min{w/r, (k − w)/k}} .

(A.11)

Proof of Theorem 4.2. Step 1. Throughout the proof, we denote E[ · |Fτ(t,i)] by Ei[ · ]. Consider

the decomposition: Î?t (g)− I?t (g) =
∑4

j=1Rj , where

R1 =

nt−kt∑
i=0

(
g(ĉ′τ(t,i))− g(cτ(t,i))− ∂g(cτ(t,i))

ᵀ(ĉ′τ(t,i) − cτ(t,i))
)
dt,i (A.12)

R2 =

nt−kt∑
i=0

∂g(cτ(t,i))
ᵀ(ĉ′τ(t,i) − cτ(t,i))dt,i (A.13)

R3 =

nt−kt∑
i=0

g(cτ(t,i))dt,i −
∫ t

t−1
g(cs)ds (A.14)

R4 =

nt−kt∑
i=0

(g(ĉτ(t,i))− g(ĉ′τ(t,i)))dt,i; (A.15)

note that in the first two lines of the above display, we have treated ĉ′τ(t,i) and cτ(t,i) as their

vectorized versions so as to simplify notations. In this step, we show that

‖R1‖p ≤

{
Kd

1/(2p)
t in general,

Kd
1/2
t if σt is continuous.

(A.16)

By Taylor’s expansion and condition (i),

|R1| ≤ K

nt−kt∑
i=0

dt,i(1 + ‖cτ(t,i)‖q−2 + ‖ĉ′τ(t,i)‖
q−2)‖ĉ′τ(t,i) − cτ(t,i)‖2

≤ K

nt−kt∑
i=0

dt,i

(
(1 + ‖cτ(t,i)‖q−2)‖ĉ′τ(t,i) − cτ(t,i)‖2 + ‖ĉ′τ(t,i) − cτ(t,i)‖q

)
.

(A.17)
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Let v = q/2 and v′ = q/(q − 2). Notice that

E
[
(1 + ‖cτ(t,i)‖q−2)p‖ĉ′τ(t,i) − cτ(t,i)‖2p

]
≤ K

∥∥(1 + ‖cτ(t,i)‖q−2)p
∥∥
v′

∥∥∥Ei‖ĉ′τ(t,i) − cτ(t,i)‖2p
∥∥∥
v

≤

{
Kd

1/2
t in general,

Kd
p/2
t when σt is continuous,

(A.18)

where the first inequality follows from repeated conditioning and Hölder’s inequality, and the

second inequality is derived by using Lemma A1 with w = 2p. Applying Lemma A1 again (with

w = qp and v = 1), we derive E‖ĉ′τ(t,i) − cτ(t,i)‖qp ≤ Kd
1/2
t and, when σt is continuous, the bound

can be improved as Kd
qp/4
t ≤ Kdp/2t . The claim (A.16) then follows from (A.17).

Step 2. In this step, we show that

‖R2‖p ≤ Kd
1/2
t . (A.19)

Denote ζi = ∂g(cτ(t,i))
ᵀ(ĉ′τ(t,i)−cτ(t,i)), ζ

′
i = Ei[ζi] and ζ ′′i = ζi−ζ ′i. Notice that ζ ′i = ∂g(cτ(t,i))

ᵀEi[ĉ′τ(t,i)−
cτ(t,i)]. By condition (i) and the Cauchy–Schwarz inequality, |ζ ′i| ≤ K(1 + ‖cτ(t,i)‖q−1)‖Ei[ĉ′τ(t,i) −
cτ(t,i)]‖. Observe that, with v = q and v′ = q/(q − 1),

E
∣∣ζ ′i∣∣p ≤ K

∥∥∥1 + ‖cτ(t,i)‖p(q−1)
∥∥∥
v′

∥∥∥‖Ei[ĉ′τ(t,i) − cτ(t,i)]‖p
∥∥∥
v

≤ Kd
p/2
t ,

(A.20)

where the first inequality is by Hölder’s inequality, and the second inequality is derived by using

Lemma A2 (with w = p). Hence, ∥∥∥∥∥
nt−kt∑
i=0

ζ ′idt,i

∥∥∥∥∥
p

≤ Kd1/2
t . (A.21)

Next consider ζ ′′i . First notice that

E
∣∣ζ ′′i ∣∣2 ≤ KE |ζi|

2 (A.22)

≤ KE
[
(1 + ‖cτ(t,i)‖q−1)2‖ĉ′τ(t,i) − cτ(t,i)‖2

]
(A.23)

≤ K
∥∥∥1 + ‖cτ(t,i)‖2(q−1)

∥∥∥
v′

∥∥∥Ei‖ĉ′τ(t,i) − cτ(t,i)‖2
∥∥∥
v

(A.24)

≤ Kd
1/2
t , (A.25)

where the first inequality is obvious; the second inequality follows from condition (i) and the

Cauchy–Schwarz inequality; the third inequality is by repeated conditioning and Hölder’s inequal-
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ity; the fourth inequality is derived by applying Lemma A1 (with w = 2). Further notice that ζ ′′i

and ζ ′′l are uncorrelated whenever |i − l| ≥ kt. By the Cauchy–Schwarz inequality and the above

estimate, as well as condition (ii),

E

∣∣∣∣∣
nt−kt∑
i=0

ζ ′′i dt,i

∣∣∣∣∣
2

≤ Kkt
nt−kt∑
i=0

E|ζ ′′i |2d2
t,i ≤ Kdt. (A.26)

Therefore, ‖
∑nt−kt

i=0 ζ ′′i dt,i‖2 ≤ Kd
1/2
t . This estimate, together with (A.21), implies (A.19).

Step 3. Consider R3 in this step. Let v = 2/p and v′ = 2/(2 − p). Notice that for s ∈
[τ(t, i− 1), τ(t, i)],

E|g(cs)− g(cτ(t,i−1))|p ≤ KE
[
(1 +

∥∥cτ(t,i)

∥∥p(q−1)
+ ‖cs‖p(q−1))

∥∥cs − cτ(t,i−1)

∥∥p] (A.27)

≤ K
∥∥∥1 +

∥∥cτ(t,i)

∥∥p(q−1)
+ ‖cs‖p(q−1)

∥∥∥
v′

∥∥∥∥cs − cτ(t,i−1)

∥∥p∥∥
v

(A.28)

≤ Kd
p/2
t,i . (A.29)

Hence,
∥∥g(cs)− g(cτ(t,i−1))

∥∥
p
≤ Kd1/2

t,i . This estimate further implies

‖R3‖p ≤ Kd1/2
t . (A.30)

Step 4. By a mean-value expansion and condition (i),

|g(ĉτ(t,i))− g(ĉ′τ(t,i))| ≤ K(1 + ‖ĉ′τ(t,i)‖
q−1)‖ĉτ(t,i) − ĉ′τ(t,i)‖+K‖ĉτ(t,i) − ĉ′τ(t,i)‖

q. (A.31)

By Lemma A3,

E‖ĉτ(t,i) − ĉ′τ(t,i)‖
q ≤ Kdθ̄(k,q,$,r)t . (A.32)

Let m′ = k/2(q − 1) and m = k/(k − 2(q − 1)). By Hölder’s inequality and Lemma A3,

E
[
(1 + ‖ĉ′τ(t,i)‖

q−1)‖ĉτ(t,i) − ĉ′τ(t,i)‖
]

≤
∥∥∥(1 + ‖ĉ′τ(t,i)‖

q−1)
∥∥∥
m′

∥∥∥ĉτ(t,i) − ĉ′τ(t,i)

∥∥∥
m

≤ Kdθ̄(k,m,$,r)/mt .

(A.33)

Therefore, we have

E|R4| ≤ Kdmin{θ̄(k,q,$,r),θ̄(k,m,$,r)/m}
t . (A.34)

We now simplify the bound in (A.34). Note that the condition k ≥ (1−$r)/(1/2−$) implies,
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for any w ≥ 1, {
k/2−$ (k − 2w)− w ≥ 1−$r + w(2$ − 1),

w($ − 1/2) + (1−$r) (k − w)/k ≥ 1−$r + w(2$ − 1),
(A.35)

and, recalling m = k/(k − 2(q − 1)),

(1−$r +m(2$ − 1)) /m ≥ 1−$r + q(2$ − 1). (A.36)

Using (A.35) and q ≥ 2 ≥ r, we simplify θ̄ (k, q,$, r) = 1 − $r + q(2$ − 1); similarly,

θ̄ (k,m,$, r) = min{1−$r +m(2$ − 1),m (1/r − 1/2)}. We then use (A.36) to simplify (A.34)

as

E|R4| ≤ Kdmin{1−$r+q(2$−1),1/r−1/2}
t . (A.37)

Combining (A.16), (A.19), (A.30) and (A.37), we readily derive the assertion of the theorem.

Q.E.D.

Proof of Theorem 4.3. Step 1. For x, y ∈ Rd, we set{
k (y, x) = g (y + x)− g (x)− g (y)

h (y, x) = g (y + x)− g (x)− g (y)− ∂g (y)ᵀ x1{‖x‖≤1}.
(A.38)

By Taylor’s theorem and condition (ii),
|k (y, x)| ≤ K

2∑
j=1

(
‖y‖qj−1 ‖x‖+ ‖x‖qj−1 ‖y‖

)
,

|h (y, x)| ≤ K
2∑
j=1

(
‖y‖qj−2 ‖x‖2 + ‖x‖qj−1 ‖y‖+ ‖y‖qj−1 ‖x‖ 1{‖x‖>1}

)
.

(A.39)

We consider a process (Zs)s∈[t−1,t] that is given by Zs = Xs−Xτ(t,i−1) when s ∈ [τ(t, i−1), τ(t, i)).

We define Z ′s similarly but with X ′ replacing X; recall that X ′ is defined in (A.1). We then set

Z ′′s = Zs − Z ′s. Under Assumption HF, we have{
v ∈ [0, k]⇒ E[sups∈[τ(t,i−1),τ(t,i)] ‖Z ′s‖v] ≤ Kd

v/2
t,i ,

v ∈ [2, k]⇒ E[sups∈[τ(t,i−1),τ(t,i)] ‖Z ′′s ‖v|Fτ(t,i−1)] ≤ Kdt,i,
(A.40)

where the first line follows from a classical estimate for continuous Itô semimartingales, and the

second line is derived by using Lemmas 2.1.5 and 2.1.7 in Jacod and Protter (2012).

8



By Itô’s formula, we decompose

Ĵt (g)− Jt (g)

=

∫ t

t−1
∂g (Zs−)ᵀ bsds+

1

2

d∑
j,l=1

∫ t

t−1
∂2
j,lg (Zs−) cjl,sds

+

∫ t

t−1
ds

∫
R
h (Zs−, δ (s, z))λ (dz) +

∫ t

t−1
∂g (Zs−)ᵀ σsdWs

+

∫ t

t−1

∫
R
k (Zs−, δ (s, z)) µ̃ (ds, dz) .

(A.41)

Below, we study each component in the above decomposition separately.

Step 2. In this step, we show∥∥∥∥∫ t

t−1
∂g (Zs−)ᵀ bsds

∥∥∥∥
p

≤ Kd1/2
t . (A.42)

Let m = 2/p and m′ = 2/ (2− p). Observe that, for all s ∈ [τ(t, i− 1), τ(t, i)],

‖∂g (Zs−)ᵀ bs‖p ≤ K

E

∣∣∣∣∣∣
2∑
j=1

‖Zs−‖qj−1 ‖bs‖

∣∣∣∣∣∣
p1/p

(A.43)

≤ K
2∑
j=1

(
E ‖Zs−‖(qj−1)pm

)1/pm (
E ‖bs‖pm

′
)1/pm′

(A.44)

≤ K

2∑
j=1

(
E ‖Zs−‖2(qj−1)

)1/2 (
E ‖bs‖pm

′
)1/pm′

(A.45)

≤ Kd
1/2
t,i , (A.46)

where the first inequality is due to condition (ii) and the Cauchy-Schwarz inequality; the second

inequality is due to Hölder’s inequality; the third inequality follows from our choice of m; the last

inequality follows from (A.40). The claim (A.42) then readily follows.

Step 3. In this step, we show∥∥∥∥∥∥1

2

d∑
j,l=1

∫ t

t−1
∂2
j,lg (Zs−) cjl,sds

∥∥∥∥∥∥
p

≤ Kd1/2
t . (A.47)

By a component-wise argument, we can assume that d = 1 without loss of generality and suppress
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the component subscripts in our notation below. Let m′ = 2/(2− p). We observe

‖∂2g (Zs−) cs‖p ≤ K
2∑
j=1

(
E
[
|Zs−|p(qj−2)|cs|p

])1/p
(A.48)

≤ K

2∑
j=1

(E |Zs−|2(qj−2))1/2
(
E |cs|pm

′
)1/pm′

(A.49)

≤ Kd
1/2
t,i , (A.50)

where the first inequality follows from condition (ii); the second inequality is due to Hölder’s

inequality and our choice of m′; the last inequality follows from (A.40). The claim (A.47) is then

obvious.

Step 4. In this step, we show∥∥∥∥∫ t

t−1
ds

∫
R
h (Zs−, δ (s, z))λ (dz)

∥∥∥∥
p

≤ Kd1/2
t . (A.51)

By (A.39) and ‖δ (s, z) ‖ ≤ Γ (z),

|h (Zs−, δ (s, z))| ≤ K
2∑
j=1

(
‖Zs−‖qj−2 Γ (z)2 + Γ (z)qj−1 ‖Zs−‖+ ‖Zs−‖qj−1 Γ (z) 1{Γ(z)>1}

)
.

(A.52)

Hence, by condition (iii),

∣∣∣∣∫
R
h (Zs−, δ (s, z))λ (dz)

∣∣∣∣ ≤ K 2∑
j=1

(
‖Zs−‖qj−2 + ‖Zs−‖+ ‖Zs−‖qj−1

)
. (A.53)

By (A.40), for any s ∈ [τ(t, i− 1), τ(t, i)],∥∥∥∥∫
R
h (Zs−, δ (s, z))λ (dz)

∥∥∥∥
2

≤ K
2∑
j=1

((
E ‖Zs−‖2(qj−2)

)1/2
+
(
E ‖Zs−‖2

)1/2
+
(
E ‖Zs−‖2(qj−1)

)1/2
)

≤ Kd1/2
t,i .

(A.54)

The claim (A.51) then readily follows.

Step 5. In this step, we show∥∥∥∥∫ t

t−1
∂g (Zs−)ᵀ σsdWs

∥∥∥∥
2

≤ Kd1/2
t . (A.55)
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By the Burkholder–Davis–Gundy inequality,

E
∣∣∣∣∫ t

t−1
∂g (Zs−)ᵀ σsdWs

∣∣∣∣2
≤ KE

[∫ t

t−1
‖∂g (Zs)‖2 ‖σs‖2 ds

]
≤ KE

[∫ t

t−1

∥∥∂g (Z ′s)∥∥2 ‖σs‖2 ds
]

+KE

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥∂g (Zs)− ∂g
(
Z ′s
)∥∥2 ∥∥στ(t,i−1)

∥∥2
ds

]

+KE

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥∂g (Zs)− ∂g
(
Z ′s
)∥∥2 ∥∥σs − στ(t,i−1)

∥∥2
ds

]
.

(A.56)

We first consider the first term on the majorant side of (A.56). By Hölder’s inequality, we have,

for s ∈ [τ(t, i− 1), τ(t, i)],

E
[∥∥∂g (Z ′s)∥∥2 ‖σs‖2

]
≤ K

2∑
j=1

(
E
∥∥Z ′s∥∥2qj

)(qj−1)/qj (
E ‖σs‖2qj

)1/qj
≤ Kdq1−1

t , (A.57)

where the second inequality is due to (A.40). This estimate implies

E
[∫ t

t−1

∥∥∂g (Z ′s)∥∥2 ‖σs‖2 ds
]
≤ Kdt. (A.58)

Now turn to the second term on the majorant side of (A.56). Observe that

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥∂g (Zs)− ∂g
(
Z ′s
)∥∥2 ∥∥στ(t,i−1)

∥∥2
ds

]

≤ K
2∑
j=1

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

(∥∥Z ′s∥∥2(qj−2)
+
∥∥Z ′′s ∥∥2(qj−2)

)∥∥Z ′′s ∥∥2 ∥∥στ(t,i−1)

∥∥2
ds

]

≤ K
2∑
j=1

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥Z ′s∥∥2(qj−2) ∥∥Z ′′s ∥∥2 ∥∥στ(t,i−1)

∥∥2
ds

]

+K

2∑
j=1

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥Z ′′s ∥∥2(qj−1) ∥∥στ(t,i−1)

∥∥2
ds

]
.

(A.59)

By repeated conditioning and (A.40), we have

2∑
j=1

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥Z ′′s ∥∥2(qj−1) ∥∥στ(t,i−1)

∥∥2
ds

]
≤ Kdt. (A.60)
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Moreover, by Hölder’s inequality and (A.40), for s ∈ [τ(t, i− 1), τ(t, i)],

E
[∥∥Z ′s∥∥2(qj−2) ∥∥Z ′′s ∥∥2 ∥∥στ(t,i−1)

∥∥2
]

≤
(
E
∥∥Z ′s∥∥2qj

)(qj−2)/qj (
E
∥∥Z ′′s ∥∥2qj

)1/qj (
E
∥∥στ(t,i−1)

∥∥2qj
)1/qj

≤ Kdqj−2
t,i d

1/qj
t,i .

(A.61)

Therefore,
2∑
j=1

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥Z ′s∥∥2(qj−2) ∥∥Z ′′s ∥∥2 ∥∥στ(t,i−1)

∥∥2
ds

]
≤ Kdt. (A.62)

Combining (A.59)–(A.62), we have

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥∂g (Zs)− ∂g
(
Z ′s
)∥∥2 ∥∥στ(t,i−1)

∥∥2
ds

]
≤ Kdt. (A.63)

We now consider the third term on the majorant side of (A.56). By the mean-value theorem

and condition (ii),

E
[∥∥∂g (Zs)− ∂g

(
Z ′s
)∥∥2 ∥∥σs − στ(t,i−1)

∥∥2
]

≤ K
2∑
j=1

E
[∥∥Z ′s∥∥2(qj−2) ∥∥Z ′′s ∥∥2 ∥∥σs − στ(t,i−1)

∥∥2
]

+K

2∑
j=1

E
[∥∥Z ′′s ∥∥2(qj−1) ∥∥σs − στ(t,i−1)

∥∥2
]
.

(A.64)

By Hölder’s inequality and (A.40),

E
[∥∥Z ′′s ∥∥2(qj−1) ∥∥σs − στ(t,i−1)

∥∥2
]

≤
(
E
∥∥Z ′′s ∥∥2qj

)(qj−1)/qj (
E
∥∥σs − στ(t,i−1)

∥∥2qj
)1/qj

≤ Kd(qj−1)/qj
t,i d

1/qj
t,i ≤ Kdt,i.

(A.65)

Similarly,

E
[∥∥Z ′s∥∥2(qj−2) ∥∥Z ′′s ∥∥2 ∥∥σs − στ(t,i−1)

∥∥2
]

≤
(
E
∥∥Z ′s∥∥2qj

)(qj−2)/qj (
E
∥∥Z ′′s ∥∥2qj

)1/qj (
E
∥∥σs − στ(t,i−1)

∥∥2qj
)1/qj

≤ Kdqj−2
t,i d

1/qj
t,i d

1/qj
t,i ≤ Kdt.

(A.66)
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Combining (A.64)–(A.66), we have

E
[∥∥∂g (Zs)− ∂g

(
Z ′s
)∥∥2 ∥∥σs − στ(t,i−1)

∥∥2
]
≤ Kdt. (A.67)

Hence,

E

[
nt∑
i=1

∫ τ(t,i)

τ(t,i−1)

∥∥∂g (Zs−)− ∂g
(
Z ′s
)∥∥2 ∥∥σs − στ(t,i−1)

∥∥2
ds

]
≤ Kdt. (A.68)

We have shown that each term on the majorant side of (A.56) is bounded by Kdt; see (A.58),

(A.63) and (A.68). The estimate (A.55) is now obvious.

Step 6. We now show ∥∥∥∥∫ t

t−1

∫
R
k (Zs−, δ (s, z)) µ̃ (ds, dz)

∥∥∥∥
2

≤ Kd1/2
t . (A.69)

By Lemma 2.1.5 in Jacod and Protter (2012), (A.39) and Assumption HF,

E
∣∣∣∣∫ t

t−1

∫
R
k (Zs−, δ (s, z)) µ̃ (ds, dz)

∣∣∣∣2
≤ K

2∑
j=1

E
[∫ t

t−1
ds

∫
R

(
‖Zs−‖qj−1 ‖δ (s, z)‖+ ‖Zs−‖ ‖δ (s, z)‖qj−1

)2
λ (dz)

]

≤ K
2∑
j=1

E
[∫ t

t−1
ds

∫
R

(
‖Zs‖2(qj−1) Γ (z)2 + ‖Zs‖2 Γ (z)2(qj−1)

)
λ (dz)

]
≤ Kdt,

(A.70)

which implies (A.69).

Step 7. Combining the estimates in Steps 2–6 with the decomposition (A.41), we derive ‖Ĵt(g)−
Jt (g) ‖p ≤ Kd1/2

t as wanted. Q.E.D.

Proof of Theorem 4.4. Define Zs as in the proof of Theorem 4.3. By applying Itô’s formula to

(∆t,iX)(∆t,iX)ᵀ for each i, we have the following decomposition:

RVt −QVt = 2

∫ t

t−1
Zs−b

ᵀ
sds

+2

∫ t

t−1
ds

∫
R
Zs−δ (s, z)ᵀ 1{‖δ(s,z)‖>1}λ (dz)

+2

∫ t

t−1
Zs− (σsdWs)

ᵀ + 2

∫ t

t−1

∫
R
Zs−δ (s, z)ᵀ µ̃ (ds, dz) .

(A.71)

Recognizing the similarity between (A.71) and (A.41), we can use a similar (but simpler) argument

as in the proof of Theorem 4.3 to show that the Lp norm of each component on the right-hand

13



side of (A.71) is bounded by Kd
1/2
t . The assertion of the theorem readily follows. Q.E.D.

Proof of Theorem 4.5. Step 1. Recall (A.1). We introduce some notation
BV ′t = nt

nt−1
π
2

∑nt−1
i=1 |d

−1/2
t,i ∆t,iX

′||d−1/2
t,i+1∆t,i+1X

′|dt,i,
ζ1,i = |d−1/2

t,i ∆t,iX| |d−1/2
t,i+1∆t,i+1X

′′|, ζ2,i = |d−1/2
t,i ∆t,iX

′′| |d−1/2
t,i+1∆t,i+1X

′|,
R1 =

∑nt−1
i=1 ζ1,idt,i, R2 =

∑nt−1
i=1 ζ2,idt,i.

(A.72)

It is easy to see that |BVt−BV ′t | ≤ K(R1 +R2). By Lemmas 2.1.5 and 2.1.7 in Jacod and Protter

(2012), E[|d−1/2
t,i+1∆t,i+1X

′′|p|Fτ(t,i)] ≤ Kd
(p/r)∧1−p/2
t . Moreover, note that

E|d−1/2
t,i ∆t,iX|p ≤ KE|d−1/2

t,i ∆t,iX
′|p +KE|d−1/2

t,i ∆t,iX
′′|p ≤ K. (A.73)

By repeated conditioning, we deduce ‖ζi,1‖p ≤ Kd
(1/r)∧(1/p)−1/2
t , which further yields ‖R1‖p ≤

Kd
(1/r)∧(1/p)−1/2
t .

Now turn to R2. Let m = p′/p and m′ = p′/ (p′ − p). Since pm′ ≤ k by assumption, we use

Hölder’s inequality and an argument similar to that above to derive

∥∥ζ2,i

∥∥
p
≤
(
E|d−1/2

t,i ∆t,iX
′′|pm

)1/pm (
E|d−1/2

t,i+1∆t,i+1X
′|pm′

)1/pm′

≤ Kd(1/r)∧(1/p′)−1/2
t . (A.74)

Hence, ‖R2‖p ≤ Kd(1/r)∧(1/p′)−1/2
t . Combining these estimates, we deduce

∥∥BVt −BV ′t ∥∥p ≤ K ‖R1‖p +K ‖R2‖p ≤ Kd
(1/r)∧(1/p′)−1/2
t . (A.75)

Step 2. In this step, we show ∥∥∥∥BV ′t − ∫ t

t−1
csds

∥∥∥∥
p

≤ Kd1/2
t . (A.76)

For j = 0 or 1, we denote βt,i,j = στ(t,i−1)d
−1/2
t,i+j∆t,i+jW and λt,i,j = d

−1/2
t,i+j∆t,i+jX

′−βt,i,j . Observe

that ∣∣∣∣∣BV ′t − nt
nt − 1

π

2

nt−1∑
i=1

|βt,i,0||βt,i,1|dt,i

∣∣∣∣∣
≤ K

nt−1∑
i=1

(
|d−1/2
t,i ∆t,iX

′| |λt,i,1|+ |λt,i,0| |βt,i,1|
)
dt,i.

(A.77)
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Let m = 2/p and m′ = 2/ (2− p). By Hölder’s inequality and Assumption HF,

∥∥∥|d−1/2
t,i ∆t,iX

′| |λt,i,1|
∥∥∥
p
≤

(
E|d−1/2

t,i ∆t,iX
′|pm′

)1/pm′

(E|λt,i,1|pm)1/pm (A.78)

≤ Kd
1/2
t , (A.79)

where the second inequality follows from E|d−1/2
t,i ∆t,iX

′|q ≤ K for each q ∈ [0, k] and E|λt,i,j |2 ≤
Kdt,i+j . Similarly, ‖|λt,i,0| |βt,i,1|‖p ≤ Kd

1/2
t . Combining these estimates, we have∥∥∥∥∥BV ′t − nt

nt − 1

π

2

nt−1∑
i=1

|βt,i,0||βt,i,1|dt,i

∥∥∥∥∥
p

≤ Kd1/2
t . (A.80)

Let ξi = (π/2)|βt,i,0||βt,i,1|, ξ′i = E
[
ξi|Fτ(t,i−1)

]
and ξ′′i = ξi − ξ′i. Under Assumption HF with

k ≥ 4, E|ξ′′i |2 ≤ E|ξi|2 ≤ K. Moreover, notice that ξ′′i is Fτ(t,i+1)-measurable and E[ξ′′i |Fτ(t,i−1)] = 0.

Therefore, ξ′′i is uncorrelated with ξ′′l whenever |i− l| ≥ 2. By the Cauchy-Schwarz inequality,

E

∣∣∣∣∣
nt−1∑
i=1

ξ′′i dt,i

∣∣∣∣∣
2

≤ Kdt
nt−1∑
i=1

E|ξ′′i |2dt,i ≤ Kdt. (A.81)

By direct calculation, ξ′i = cτ(t,i−1). By a standard estimate, for any s ∈ [τ(t, i − 1), τ(t, i)], we

have ‖cs − cτ(t,i−1)‖p ≤ Kd
1/2
t and, hence,∥∥∥∥∥

nt−1∑
i=1

ξ′idt,i −
∫ t

t−1
csds

∥∥∥∥∥
p

≤ Kd1/2
t . (A.82)

Combining (A.80)–(A.82), we derive (A.76).

Step 3. We now prove the assertions of the theorem. We prove part (a) by combining (A.75)

and (A.76). In part (b), BV ′t coincides with BVt because X is continuous. The assertion is simply

(A.76). Q.E.D.

Proof of Theorem 4.6. We only consider ŜV
+

t for brevity. To simplify notation, let g (x) = {x}2+,

x ∈ R. We also set k(y, x) = g(y+x)− g(y)− g(x). It is elementary to see that |k(y, x)| ≤ K|x||y|
for x, y ∈ R. We consider the decomposition

nt∑
i=1

g (∆t,iX) =

nt∑
i=1

g
(
∆t,iX

′)+

nt∑
i=1

g
(
∆t,iX

′′)+

nt∑
i=1

k(∆t,iX
′,∆t,iX

′′). (A.83)
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By Theorem 4.1 with It(g) ≡
∫ t
t−1 ρ(cs; g)ds = (1/2)

∫ t
t−1 csds, we deduce∥∥∥∥∥

nt∑
i=1

g
(
∆t,iX

′)− It(g)

∥∥∥∥∥
p

≤ Kd1/2
t . (A.84)

Hence, when X is continuous (so X = X ′), the assertion of part (b) readily follows.

Now consider the second term on the right-hand side of (A.83). We define a process (Zs)s∈[t−1,t]

as follows: Zs = X ′′s − X ′′τ(t,i−1) when s ∈ [τ(t, i − 1), τ(t, i)). Since r ≤ 1 by assumption, Z is a

finite-variational process. Observe that

E

∣∣∣∣∣
nt∑
i=1

g(∆t,iX
′′)−

∫ t

t−1

∫
R
g (δ (s, z))µ (ds, dz)

∣∣∣∣∣
p

= E
∣∣∣∣∫ t

t−1

∫
R
k (Zs−, δ (s, z))µ (ds, dz)

∣∣∣∣p
≤ KE

∣∣∣∣∫ t

t−1

∫
R
|Zs−|Γ(z)µ (ds, dz)

∣∣∣∣p
≤ KE

[∫ t

t−1
ds

∫
R
|Zs−|p Γ (z)p λ (dz)

]
+KE

[(∫ t

t−1
ds

∫
R
|Zs−|Γ (z)λ (dz)

)p]
≤ Kdt,

(A.85)

where the equality is by Itô’s formula (Theorem II.31, Protter (2004)); the first inequality is due to

|k(y, z)| ≤ K|x||y|; the second and the third inequalities are derived by repeatedly using Lemma

2.1.7 of Jacod and Protter (2012). It then readily follows that∥∥∥∥∥
nt∑
i=1

g
(
∆t,iX

′′)− ∫ t

t−1

∫
R
g (δ (s, z))µ (ds, dz)

∥∥∥∥∥
p

≤ Kd1/p
t ≤ Kd1/2

t . (A.86)

Next, we consider the third term on the right-hand side of (A.83). Let m′ = p′/p and m =

p′/(p′ − p). We have

∥∥k(∆t,iX
′,∆t,iX

′′)
∥∥
p
≤ K

(
E
∣∣∆t,iX

′∣∣pm)1/pm (E ∣∣∆t,iX
′′∣∣pm′)1/pm′

≤ Kd1/2+1/p′

t , (A.87)

where the first inequality is due to |k(y, x)| ≤ K|x||y| and Hölder’s inequality; the second inequality

holds because Assumption HF holds for k ≥ pp′/(p′ − p) and E |∆t,iX
′′|p
′
≤ Kdt. Hence,∥∥∥∥∥

nt∑
i=1

k(∆t,iX
′,∆t,iX

′′)

∥∥∥∥∥
p

≤ Kd1/p′−1/2
t . (A.88)

The assertion of part (a) readily follows from (A.83), (A.84), (A.86) and (A.88). Q.E.D.
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A.3 Proofs of technical lemmas

Proof of Lemma A1. Step 1. We outline the proof in this step. For notational simplicity, we

denote Eiξ = E[ξ|Fτ(t,i)] for some generic random variable ξ; in particular, Ei|ξ|w is understood as

Ei[|ξ|w]. Let αi = (∆t,iX
′)(∆t,iX

′)ᵀ− cτ(t,i−1)dt,i. We decompose ĉ′τ(t,i)− cτ(t,i) = ζ1,i+ ζ2,i, where

ζ1,i = k−1
t

kt∑
j=1

(cτ(t,i+j−1) − cτ(t,i)), ζ2,i = k−1
t

kt∑
j=1

d−1
t,i+jαi+j . (A.89)

In Steps 2 and 3 below, we show

∥∥Ei ∥∥ζ1,i

∥∥w∥∥
v
≤

{
Kd

1/2
t in general,

Kd
w/4
t if σt is continuous,

(A.90)

∥∥Ei ∥∥ζ2,i

∥∥w∥∥
v
≤

{
Kdt +Kk

−w/2
t in general,

Kd
w/2
t +Kk

−w/2
t if σt is continuous.

(A.91)

The assertion of the lemma then readily follows from condition (ii) and w ≥ 2.

Step 2. We show (A.90) in this step. Let ū = τ(t, i + kt − 1) − τ(t, i). Since ū = O(d
1/2
t ), we

can assume ū ≤ 1 without loss. By Itô’s formula, ct can be represented as

ct = c0 +

∫ t

0
b̄sds+

∫ t

0
σ̄sdWs (A.92)

+

∫ t

0

∫
R

2σs−δ̃ (s, z)ᵀ µ̃ (ds, dz) +

∫ t

0

∫
R
δ̃ (s, z) δ̃ (s, z)ᵀ µ (ds, dz) ,

for some processes b̄s and σ̄s that, under condition (i), satisfy

E‖b̄s‖wv + E‖σ̄s‖wv ≤ K. (A.93)

By (A.92),

‖ζ1,i‖w ≤ sup
u∈[0,ū]

‖cτ(t,i)+u − cτ(t,i)‖w ≤ K
4∑
l=1

ξl,i, (A.94)

where 
ξ1,i = supu∈[0,ū]

∥∥ ∫ τ(t,i)+u
τ(t,i) b̄sds

∥∥w,
ξ2,i = supu∈[0,ū]

∥∥ ∫ τ(t,i)+u
τ(t,i) σ̄sdWs

∥∥w,
ξ3,i = supu∈[0,ū]

∥∥ ∫ τ(t,i)+u
τ(t,i)

∫
R 2σs−δ̃ (s, z)ᵀ µ̃ (ds, dz)

∥∥w,
ξ4,i = supu∈[0,ū]

∥∥ ∫ τ(t,i)+u
τ(t,i)

∫
R δ̃ (s, z) δ̃ (s, z)ᵀ µ (ds, dz)

∥∥w.
(A.95)

By (A.93), it is easy to see that ‖Ei[ξ1,i]‖v ≤ ‖ξ1,i‖v ≤ Kūw. Moreover, ‖Ei[ξ2,i]‖v ≤ ‖ξ2,i‖v ≤
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Kūw/2, where the second inequality is due to the Burkholder–Davis–Gundy inequality. By Lemma

2.1.5 in Jacod and Protter (2012) and condition (i),

Ei[ξ3,i] ≤ KEi

[∫ τ(t,i)+ū

τ(t,i)

∫
R
‖σs−‖w‖δ̃ (s, z) ‖wλ (dz) ds

]
(A.96)

+KEi

(∫ τ(t,i)+ū

τ(t,i)

∫
R
‖σs−‖2‖δ̃ (s, z) ‖2λ (dz) ds

)w/2 (A.97)

≤ KEi

[∫ τ(t,i)+ū

τ(t,i)
‖σs−‖wds

]
+KEi

(∫ τ(t,i)+ū

τ(t,i)
‖σs−‖2ds

)w/2 . (A.98)

Hence, ‖Ei[ξ3,i]‖v ≤ Kū. By Lemma 2.1.7 in Jacod and Protter (2012) and condition (i),

Ei[ξ4,i] ≤ KEi

[∫ τ(t,i)+ū

τ(t,i)

∫
R
‖δ̃ (s, z) ‖2wλ (dz) ds

]
(A.99)

+KEi

[(∫ τ(t,i)+ū

τ(t,i)

∫
R
‖δ̃ (s, z) ‖2λ (dz) ds

)w]
(A.100)

≤ Kū. (A.101)

Hence, ‖Ei[ξ4,i]‖v ≤ Kū. Combining these estimates with (A.94), we derive (A.90) in the general

case as desired. Furthermore, when σt is continuous, we have ξ3,i = ξ4,i = 0 in (A.94). The

assertion of (A.90) in the continuous case readily follows.

Step 3. In this step, we show (A.91). Let α′i = Ei−1[αi] and α′′i = αi − α′i. We can then

decompose ζ2,i = ζ ′2,i + ζ ′′2,i, where ζ ′2,i = k−1
t

∑kt
j=1 d

−1
t,i+jα

′
i+j and ζ ′′2,i = k−1

t

∑kt
j=1 d

−1
t,i+jα

′′
i+j . By

Itô’s formula, it is easy to see that

‖α′i+j‖ ≤ K

∥∥∥∥∥Ei+j−1

[∫ τ(t,i+j)

τ(t,i+j−1)
(X ′s −X ′τ(t,i+j−1))(b

′
s)

ᵀds

]∥∥∥∥∥
+

∥∥∥∥∥Ei+j−1

[∫ τ(t,i+j)

τ(t,i+j−1)
(cs − cτ(t,i+j−1))ds

]∥∥∥∥∥ . (A.102)

By Jensen’s inequality and repeated conditioning,

Ei‖α′i+j‖w ≤ KEi

∥∥∥∥∥
∫ τ(t,i+j)

τ(t,i+j−1)
(X ′s −X ′τ(t,i+j−1))(b

′
s)

ᵀds

∥∥∥∥∥
w

+KEi

∥∥∥∥∥
∫ τ(t,i+j)

τ(t,i+j−1)
(cs − cτ(t,i+j−1))ds

∥∥∥∥∥
w

. (A.103)
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Since conditional expectations are contraction maps, we further have

∥∥Ei‖α′i+j‖w∥∥v ≤ K

∥∥∥∥∥
∥∥∥∥∥
∫ τ(t,i+j)

τ(t,i+j−1)
(X ′s −X ′τ(t,i+j−1))(b

′
s)

ᵀds

∥∥∥∥∥
w∥∥∥∥∥

v

+K

∥∥∥∥∥Ei
∥∥∥∥∥
∫ τ(t,i+j)

τ(t,i+j−1)
(cs − cτ(t,i+j−1))ds

∥∥∥∥∥
w∥∥∥∥∥

v

. (A.104)

By standard estimates, the first term on the majorant side of (A.104) is bounded by Kd
3w/2
t,i+j .

Following a similar argument as in Step 2, we can bound the second term on the majorant side of

(A.104) by Kdw+1
t,i+j in general and by Kd

3w/2
t,i+j if σt is continuous. Hence, ‖Ei‖α′i+j‖w‖v ≤ Kd

w+1
t,i+j ,

and the bound can be improved to be Kd
3w/2
t,i+j when σt is continuous. By Hölder’s inequality and

the triangle inequality,

∥∥Ei ∥∥ζ ′2,i∥∥w∥∥v ≤
{
Kdt in general,

Kd
w/2
t when σt is continuous.

(A.105)

Now consider ζ ′′2,i. Notice that (α′′i+j)1≤j≤kt forms a martingale difference sequence. Using the

Burkholder–Davis–Gundy inequality and then Hölder’s inequality, we derive

Ei
∥∥ζ ′′2,i∥∥w ≤ Kk−w/2−1

t

kt∑
j=1

d−wt,i+jEi‖α
′′
i+j‖w. (A.106)

Moreover, notice that ‖Ei‖α′′i+j‖w‖v ≤ ‖‖α′′i+j‖w‖v ≤ Kdwt,i+j . Hence, ‖Ei‖ζ ′′2,i‖w‖v ≤ Kk
−w/2
t .

Combining this estimate with (A.105), we have (A.91). This finishes the proof. Q.E.D.

Proof of Lemma A2. Step 1. Recall the notation in Step 1 of the proof of Lemma A1. In this

step, we show that ∥∥∥∥Eiζ1,i

∥∥w∥∥
v
≤ Kdw/2t . (A.107)

By (A.92), for each j ≥ 1,

Ei
[
cτ(t,i+j−1) − cτ(t,i)

]
= Ei

[∫ τ(t,i+j−1)

τ(t,i)
b̄sds+

∫ τ(t,i+j−1)

τ(t,i)

∫
R
δ̃ (s, z) δ̃ (s, z)ᵀ λ (dz) ds

]
. (A.108)

By conditions (i,ii) and Hölder’s inequality, we have

∥∥∥∥Ei [cτ(t,i+j−1) − cτ(t,i)

]∥∥w∥∥
v
≤ K (ktdt)

w ≤ Kdw/2t . (A.109)

We then use Hölder’s inequality and Minkowski’s inequality to derive (A.107).
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Step 2. Similar to (A.102), we have

‖Ei [αi+j ]‖ ≤ K

∥∥∥∥∥Ei
[∫ τ(t,i+j)

τ(t,i+j−1)
(X ′s −X ′τ(t,i+j−1))(b

′
s)

ᵀds

]∥∥∥∥∥ (A.110)

+

∥∥∥∥∥Ei
[∫ τ(t,i+j)

τ(t,i+j−1)
(cs − cτ(t,i+j−1))ds

]∥∥∥∥∥ . (A.111)

Notice that ∥∥∥∥∥
∥∥∥∥∥Ei

[∫ τ(t,i+j)

τ(t,i+j−1)
(X ′s −X ′τ(t,i+j−1))(b

′
s)

ᵀds

]∥∥∥∥∥
w∥∥∥∥∥

v

≤ K

∥∥∥∥∥
∥∥∥∥∥
∫ τ(t,i+j)

τ(t,i+j−1)
(X ′s −X ′τ(t,i+j−1))(b

′
s)

ᵀds

∥∥∥∥∥
w∥∥∥∥∥

v

≤ Kd3w/2
t,i+j ,

(A.112)

where the first inequality is due to Jensen’s inequality; the second inequality follows from standard

estimates for continuous Itô semimartingales (use Hölder’s inequality and the Burkholder–Davis–

Gundy inequality). Similar to (A.109), we have
∥∥∥∥Ei [cs − cτ(t,i+j−1)

]∥∥w∥∥
v
≤ Kdwt,i+j for s ∈

[τ(t, i+ j − 1), τ(t, i+ j)]. We then use Hölder’s inequality to derive∥∥∥∥∥
∥∥∥∥∥Ei

[∫ τ(t,i+j)

τ(t,i+j−1)
(cs − cτ(t,i+j−1))ds

]∥∥∥∥∥
w∥∥∥∥∥

v

≤ Kd2w
t,i+j . (A.113)

Combining (A.112) and (A.113), we deduce ‖‖Ei [αi+j ] ‖w‖v ≤ Kd
3w/2
t,i+j . Hence, by Hölder’s

inequality,
∥∥∥∥Ei[ζ2,i]

∥∥w∥∥
v
≤ Kdw/2t . This estimate, together with (A.107), implies the assertion of

the lemma. Q.E.D.

Proof of Lemma A3. We denote ut,i+j = ᾱd$t,i+j . We shall use the following elementary

inequality: for all x, y ∈ Rd and 0 < u < 1:

‖ (x+ y) (x+ y)ᵀ 1{‖x+y‖≤u} − xxᵀ‖
≤ K(‖x‖21{‖x‖>u/2} + ‖y‖2 ∧ u2 + ‖x‖(‖y‖ ∧ u)).

(A.114)

Applying (A.114) with x = ∆t,i+jX
′, y = ∆t,i+jX

′′ and u = ut,i+j , we have ‖ĉτ(t,i) − ĉ′τ(t,i)‖ ≤
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K(ζ1 + ζ2 + ζ3), where

ζ1 = k−1
t

kt∑
j=1

d−1
t,i+j‖∆t,i+jX

′‖21{‖∆t,i+jX′‖>ut,i+j/2} (A.115)

ζ2 = k−1
t

kt∑
j=1

d−1
t,i+j(‖∆t,i+jX

′′‖ ∧ ut,i+j)2 (A.116)

ζ3 = k−1
t

kt∑
j=1

d−1
t,i+j‖∆t,i+jX

′‖(‖∆t,i+jX
′′‖ ∧ ut,i+j). (A.117)

Since k ≥ 2w, by Markov’s inequality and E‖∆t,i+jX
′‖k ≤ Kdk/2t,i+j , we have

E
∣∣∣‖∆t,i+jX

′‖21{‖∆t,i+jX′‖>ut,i+j/2}

∣∣∣w
≤ KE‖∆t,i+jX

′‖k

uk−2w
t,i+j

≤ Kdk/2−$(k−2w)
t,i+j .

(A.118)

Hence, E‖ζ1‖w ≤ Kd
k/2−$(k−2w)−w
t .

By Corollary 2.1.9(a,c) in Jacod and Protter (2012), we have for any v > 0,

E

[(
‖∆t,i+jX

′′‖
d$t,i+j

∧ 1

)v]
≤ Kd(1−$r) min{v/r,1}

t,i+j . (A.119)

Applying (A.119) with v = 2w, we have E[(‖d−$t,i+j∆t,i+jX
′′‖ ∧ 1)2w] ≤ Kd1−$r

t,i+j . Therefore,

E‖ζ2‖w ≤ Kd
1−$r+w(2$−1)
t .

We now turn to ζ3. Let m′ = k/w and m = k/ (k − w). Observe that

E
∣∣∣‖∆t,i+jX

′‖(‖u−1
t,i+j∆t,i+jX

′′‖ ∧ 1)
∣∣∣w

≤ K
{
E‖∆t,i+jX

′‖wm′
}1/m′ {

E
[
(‖u−1

t,i+j∆t,i+jX
′′‖ ∧ 1)wm

]}1/m

≤ Kdw/2+(1−$r) min{w/r,(k−w)/k}
t,i+j ,

(A.120)

where the first inequality is by Hölder’s inequality; the second inequality is obtained by applying

(A.119) with v = wm. Therefore, E ‖ζ3‖
w ≤ Kdw($−1/2)+(1−$r) min{w/r,(k−w)/k}

t .

Combining the above bounds for E‖ζj‖w, j = 1, 2 or 3, we readily derive the assertion of the

lemma. Q.E.D.
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Supplemental Appendix B: Extensions: details on stepwise pro-

cedures

B.1 The StepM procedure

In this subsection, we provide details for implementing the StepM procedure of Romano and Wolf

(2005) using proxies, so as to complete the discussion in Section 5.2 of the main text. Recall that

we are interested in testing k̄ pairs of hypotheses

Multiple SPA

{
H†j,0 : E[f †∗j,t+τ ] ≤ 0 for all t ≥ 1,

H†j,a : lim infT→∞ E[f̄ †∗j,T ] > 0,
1 ≤ j ≤ k̄. (B.1)

We denote the test statistic for the jth testing problem as ϕj,T ≡ ϕj(aT f̄T , a′TST ), where ϕj(·, ·)
is a measurable function. The StepM procedure involves critical values ĉ1,T ≥ ĉ2,T ≥ · · · , where

ĉl,T is the critical value in step l. Given these notations, we can describe Romano and Wolf’s

StepM algorithm as follows.1

Algorithm 1 (StepM). Step 1. Set l = 1 and A0,T = {1, . . . , k̄}.
Step 2. Compute the step-l critical value ĉl,T . Reject the null hypothesis H†j,0 if ϕj,T > ĉl,T .

Step 3. If no (further) null hypotheses are rejected or all hypotheses have been rejected, stop;

otherwise, let Al,T be the index set for hypotheses that have not yet been rejected, that is, Al,T =

{j : 1 ≤ j ≤ k̄, ϕj,T ≤ ĉl,T }, set l = l + 1 and then return to Step 2.

To specify the critical value ĉl,T , we make the following assumption. Below, α ∈ (0, 1) denotes

the significance level and (ξ, S) is defined in Assumption A1 in the main text.

Assumption StepM: For any nonempty nonrandomA ⊆ {1, . . . , k̄}, the distribution function of

maxj∈A ϕj(ξ, S) is continuous at its 1−α quantile c(A, 1−α). Moreover, there exists a sequence of

estimators ĉT (A, 1− α) such that ĉT (A, 1− α)
P−→ c(A, 1−α) and ĉT (A, 1− α) ≤ ĉT (A′, 1− α)

whenever A ⊆ A′.

The step-l critical value is then given by ĉl,T = ĉT (Al−1,T , 1−α). Notice that ĉ1,T ≥ ĉ2,T ≥ · · ·
in finite samples by construction. The bootstrap critical values proposed by Romano and Wolf

(2005) verify Assumption StepM.

The following proposition describes the asymptotic properties of the StepM procedure. We

remind the reader that Assumptions A1, A2, B1 and C are given in the main text.

1The presentation here unifies Algorithms 3.1 (non-studentized StepM) and Algorithm 4.1 (studentized StepM)
in Romano and Wolf (2005).
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Proposition B1. Suppose that Assumptions C and StepM hold and that Assumptions A1, A2 and

B1 hold for each ϕj(·), 1 ≤ j ≤ k̄. Then (a) the null hypothesis H†j,0 is rejected with probability

tending to one under the alternative hypothesis H†j,a; (b) Algorithm 1 asymptotically controls the

familywise error rate (FWE) at level α.

Proof. By Assumptions A1 and C,

(aT (f̄T − E[f̄ †∗T ]), a′TST )
d−→ (ξ, S). (B.2)

The proof can then be adapted from that in Romano and Wolf (2005). The details are given below.

First consider part (a), so H†j,a is true for some j. By (B.2) and Assumption B1(ii), ϕj,T

diverges to +∞ in probability. By Assumption StepM, it is easy to see that ĉl,T forms a tight

sequence for fixed l. Hence, ϕj,T > ĉl,T with probability tending to one. From here the assertion

in part (a) follows.

Now turn to part (b). Let I0 = {j : 1 ≤ j ≤ k̄, H†0,j is true} and FWET = P(H†j,0 is rejected

for some j ∈ I0). If I0 is empty, FWET = 0 and there is nothing to prove. We can thus suppose

that I0 is nonempty without loss of generality. By part (a), all false hypotheses are rejected in the

first step with probability approaching one. Since ĉT (I0, 1− α) ≤ ĉ1,T ,

lim sup
T→∞

FWET = lim sup
T→∞

P
(
ϕj(aT f̄T , a

′
TST ) > ĉT (I0, 1− α) for some j ∈ I0

)
≤ lim sup

T→∞
P
(
ϕj(aT (f̄T − E[f̄ †∗T ]), a′TST ) > ĉT (I0, 1− α) for some j ∈ I0

)
= lim sup

T→∞
P
(

max
j∈I0

ϕj(aT (f̄T − E[f̄ †∗T ]), a′TST ) > ĉT (I0, 1− α)

)
= P

(
max
j∈I0

ϕj(ξ, S) > c(I0, 1− α)

)
= α.

This is the assertion of part (b). Q.E.D.

B.2 Model confidence sets

In this subsection, we provide details for constructing the model confidence set (MCS) using

proxies. In so doing, we complete the discussion in Section 5.3 of the main text. Below, we denote

the paper of Hansen, Lunde, and Nason (2011) by HLN.

Recall that the set of superior forecasts is defined as

M† ≡
{
j ∈

{
1, . . . , k̄

}
: E[f †∗j,t+τ ] ≥ E[f †∗l,t+τ ] for all 1 ≤ l ≤ k̄ and t ≥ 1

}
,
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and the set of asymptotically inferior forecasts is given by

M† ≡
{
j ∈

{
1, . . . , k̄

}
: lim inf

T→∞

(
E[f̄ †∗l,T ]− E[f̄ †∗j,T ]

)
> 0

for some (and hence any) l ∈M†
}
.

The formulation above slightly generalizes HLN’s setting by allowing for data heterogeneity. Under

(mean) stationarity,M† coincides with HLN’s definition of MCS; in particular, it is nonempty and

complemental to M†. In the heterogeneous setting, M† may be empty and the union of M† and

M† may be inexhaustive. We avoid these scenarios by imposing

Assumption MCS1: M† is nonempty and M† ∪M† = {1, . . . , k̄}.

We now describe the MCS algorithm. We first need to specify some test statistics. Below, for

any subset M⊆ {1, . . . , k̄}, we denote its cardinality by |M|. We consider the test statistic

ϕM,T = ϕM(aT f̄T , a
′
TST ), where ϕM (·, ·) = max

j∈M
ϕj,M (·, ·) ,

and, as in HLN (see Section 3.1.2 there), ϕj,M(·, ·) may take either of the following two forms: for

u ∈ Rk̄ and 1 ≤ j ≤ k̄,

ϕj,M(u, s) =


max
i∈M

ui − uj√
sij

, where sij = sji ∈ (0,∞) for all 1 ≤ i ≤ k̄,

|M|−1∑
i∈M ui − uj
√
sj

, where sj ∈ (0,∞) .

We also need to specify critical values, for which we need Assumption MCS2 below. We remind

the reader that the variables (ξ, S) are defined in Assumption A1 in the main text.

Assumption MCS2: For any nonempty nonrandomM⊆ {1, . . . , k̄}, the distribution of ϕM(ξ, S)

is continuous at its 1 − α quantile c(M, 1 − α). Moreover, there exists a sequence of estimators

ĉT (M, 1− α) such that ĉT (M, 1− α)
P−→ c(M, 1− α).

With ĉT (M, 1−α) given in Assumption MCS2, we define a test φM,T = 1{ϕM,T > ĉT (M, 1−
α)} and an elimination rule eM = arg maxj∈M ϕj,M,T , where ϕj,M,T ≡ ϕj,M(aT f̄T , a

′
TST ). The

MCS algorithm, when applied with the proxy as the evaluation benchmark, is given as follows.

Algorithm 2 (MCS). Step 1: Set M = {1, . . . , k̄}.
Step 2: if |M| = 1 or φM,T = 0, then stop and set M̂T,1−α =M; otherwise continue.

Step 3. Set M =M\ eM and return to Step 2.
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The following proposition summarizes the asymptotic property of M̂T,1−α. In particular, it

shows that the MCS algorithm is asymptotically valid even though it is applied to the proxy instead

of the true target.

Proposition B2. Suppose Assumptions A1, C, MCS1 and MCS2. Then (5.5) in the main text

holds, that is,

lim inf
T→∞

(
M† ⊆ M̂T,1−α

)
≥ 1− α, P

(
M̂T,1−α ∩M† = ∅

)
→ 1.

Proof. Under Assumptions A1 and C, we have (aT (f̄T − E[f̄ †∗T ]), a′TST )
d−→ (ξ, S). For each

M ⊆ {1, . . . , k̄}, we consider the null hypothesis H†0,M :M ⊆M† and the alternative hypothesis

H†a,M :M∩M† 6= ∅. Under H†0,M, ϕM,T = ϕM(aT f̄T , a
′
TST ) = ϕM(aT (f̄T −E[f̄ †∗T ]), a′TST ), and,

thus, by the continuous mapping theorem, ϕM,T
d−→ ϕM(ξ, S). Therefore, by Assumption MCS2,

EφM,T → α under H†0,M. On the other hand, under H†a,M, ϕM,T diverges in probability to +∞ and

thus EφM,T → 1. Moreover, under H†a,M, P(eM ∈ M
†
) → 0; this is because sup

j∈M†∩M ϕj,M,T

is either tight or diverges in probability to −∞, but ϕM,T diverges to +∞ in probability. The

assertions then follow the same argument as in the proof of Theorem 1 in HLN. Q.E.D.
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Supplemental Appendix C: Additional simulation results

C.1 Sensitivity to the choice of truncation lag in long-run variance estimation

In Tables 1–6, we present results on the finite-sample rejection frequencies of the Giacomini and

White (2006) tests (GW) using the approaches of Newey and West (1987) and Kiefer and Vogelsang

(2005) to conduct inference; we denote these two approaches by NW and KV. In the main text,

we use a truncation lag of 3P 1/3 for NW and 0.5P for KV when computing the long-run variance.

Below we further consider using P 1/3 and 5 (for all P ) for NW, and 0.25P and P for KV.

Overall, we confirm that feasible tests using proxies have finite-sample rejection rates similar

to those of the infeasible test using the true target. That is, the negligibility result is likely in

force. More specifically, we find that the GW–KV approach has conservative to good size control

across various settings provided that the sample size is sufficiently large (P = 1000 or 2000). In

contrast, the performance of the GW–NW test is less robust: with these choices of truncation lags

this test rejects too often in Simulations A and B, and continues to over-reject in Simulation C.

These results confirm insights from the literature on inconsistent long-run variance estimation; see

Kiefer and Vogelsang (2005), Müller (2012) and references therein.

C.2 Disagreement between feasible and infeasible test indicators

In Tables 7–9, we report the disagreement on test decisions (i.e., rejection or non-rejection) between

infeasible tests based on the true target variable and feasible tests based on proxies. In view of the

size distortion of the GW–NW test, we only consider the GW–KV test, with m = 0.5P, for brevity.

The setting is the same as that in Section 6 of the main text. In the columns headed “Weak”

we report the finite-sample rejection frequency of the feasible test minus that for the infeasible

test. Under the theory developed in Section 3, which ensures “weak negligibility,” the differences

should be zero asymptotically.2 In the columns headed “Strong” we report the proportion of times

in which the feasible and infeasible rejection indicators disagreed. If “strong negligibility,” in the

sense of comment (ii) to Proposition 3.2, holds, then this proportion should be zero asymptotically.

As noted in the main text, the weak negligibility result holds well across all three simulation

designs, with the differences reported in these columns are almost all zero to two decimal places,

except for the lowest frequency proxy. The results for strong negligibility are more mixed: in

Simulations A and B we see evidence in support of strong negligibility, while for Simulation C we

observe some disagreement.

2Positive (negative) values indicate that the feasible test based on a proxy rejects more (less) often than the
corresponding infeasible test based on the true target variable.
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GW–NW (m = 5) GW–NW (m = P 1/3)
Proxy RV ∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.14 0.17 0.20 0.12 0.12 0.13
∆ = 5 sec 0.14 0.17 0.20 0.12 0.12 0.13
∆ = 1 min 0.14 0.17 0.19 0.13 0.12 0.14
∆ = 5 min 0.15 0.16 0.19 0.12 0.12 0.14
∆ = 30 min 0.12 0.14 0.17 0.10 0.11 0.11

R = 500

True Y †t+1 0.15 0.17 0.18 0.13 0.13 0.12
∆ = 5 sec 0.15 0.17 0.18 0.13 0.13 0.12
∆ = 1 min 0.16 0.17 0.19 0.13 0.13 0.12
∆ = 5 min 0.16 0.17 0.18 0.12 0.13 0.12
∆ = 30 min 0.13 0.14 0.15 0.11 0.11 0.11

R = 1000

True Y †t+1 0.16 0.19 0.19 0.14 0.14 0.13
∆ = 5 sec 0.16 0.19 0.19 0.14 0.14 0.13
∆ = 1 min 0.16 0.19 0.19 0.14 0.15 0.13
∆ = 5 min 0.16 0.17 0.18 0.13 0.14 0.12
∆ = 30 min 0.12 0.15 0.15 0.11 0.12 0.10

Table 1: Giacomini–White test rejection frequencies for Simulation A. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW–KV (m = 0.25P ) GW–KV (m = P )
Proxy RV ∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.01 0.01 0.00 0.01 0.01 0.01
∆ = 5 sec 0.01 0.01 0.00 0.01 0.01 0.01
∆ = 1 min 0.01 0.01 0.00 0.01 0.01 0.01
∆ = 5 min 0.01 0.01 0.00 0.01 0.01 0.01
∆ = 30 min 0.01 0.01 0.01 0.01 0.01 0.01

R = 500

True Y †t+1 0.02 0.01 0.01 0.01 0.02 0.01
∆ = 5 sec 0.02 0.01 0.01 0.01 0.02 0.01
∆ = 1 min 0.02 0.02 0.01 0.01 0.02 0.01
∆ = 5 min 0.02 0.02 0.01 0.01 0.02 0.01
∆ = 30 min 0.01 0.02 0.01 0.01 0.01 0.01

R = 1000

True Y †t+1 0.02 0.01 0.01 0.02 0.01 0.01
∆ = 5 sec 0.02 0.01 0.01 0.02 0.01 0.01
∆ = 1 min 0.02 0.01 0.01 0.03 0.01 0.01
∆ = 5 min 0.02 0.01 0.01 0.03 0.01 0.01
∆ = 30 min 0.02 0.01 0.00 0.02 0.01 0.01

Table 2: Giacomini–White test rejection frequencies for Simulation A. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW–NW (m = 5) GW–NW (m = P 1/3)
Proxy BV ∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.13 0.15 0.15 0.12 0.13 0.12
∆ = 5 sec 0.13 0.14 0.14 0.12 0.13 0.12
∆ = 1 min 0.12 0.14 0.14 0.12 0.13 0.12
∆ = 5 min 0.10 0.12 0.11 0.09 0.10 0.10
∆ = 30 min 0.05 0.06 0.07 0.05 0.05 0.06

R = 500

True Y †t+1 0.14 0.14 0.14 0.13 0.12 0.12
∆ = 5 sec 0.14 0.14 0.14 0.12 0.13 0.12
∆ = 1 min 0.14 0.13 0.14 0.13 0.12 0.11
∆ = 5 min 0.11 0.12 0.11 0.11 0.11 0.09
∆ = 30 min 0.05 0.05 0.06 0.04 0.05 0.05

R = 1000

True Y †t+1 0.12 0.14 0.14 0.12 0.12 0.11
∆ = 5 sec 0.13 0.14 0.14 0.12 0.12 0.11
∆ = 1 min 0.12 0.13 0.13 0.11 0.12 0.11
∆ = 5 min 0.10 0.11 0.11 0.09 0.10 0.09
∆ = 30 min 0.04 0.05 0.06 0.04 0.04 0.05

Table 3: Giacomini–White test rejection frequencies for Simulation B. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW–KV (m = 0.25P ) GW–KV (m = P )
Proxy BV ∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.02 0.01 0.01 0.01 0.01 0.01
∆ = 5 sec 0.02 0.01 0.01 0.02 0.01 0.01
∆ = 1 min 0.02 0.01 0.01 0.02 0.01 0.01
∆ = 5 min 0.01 0.01 0.01 0.01 0.01 0.01
∆ = 30 min 0.01 0.01 0.01 0.01 0.01 0.01

R = 500

True Y †t+1 0.01 0.01 0.01 0.01 0.02 0.01
∆ = 5 sec 0.01 0.01 0.01 0.01 0.01 0.01
∆ = 1 min 0.01 0.01 0.01 0.01 0.01 0.01
∆ = 5 min 0.01 0.01 0.01 0.01 0.01 0.01
∆ = 30 min 0.01 0.01 0.01 0.01 0.01 0.01

R = 1000

True Y †t+1 0.01 0.01 0.02 0.02 0.01 0.01
∆ = 5 sec 0.02 0.01 0.02 0.02 0.01 0.01
∆ = 1 min 0.02 0.01 0.01 0.01 0.01 0.02
∆ = 5 min 0.01 0.01 0.02 0.01 0.01 0.02
∆ = 30 min 0.01 0.01 0.01 0.01 0.00 0.01

Table 4: Giacomini–White test rejection frequencies for Simulation B. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW–NW (m = 5) GW–NW (m = P 1/3)
Proxy RC∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.32 0.32 0.31 0.30 0.28 0.27
∆ = 5 sec 0.32 0.32 0.31 0.30 0.28 0.27
∆ = 1 min 0.32 0.32 0.31 0.30 0.28 0.27
∆ = 5 min 0.32 0.32 0.31 0.30 0.29 0.26
∆ = 30 min 0.31 0.30 0.28 0.29 0.27 0.25

R = 500

True Y †t+1 0.38 0.36 0.36 0.35 0.33 0.32
∆ = 5 sec 0.37 0.36 0.36 0.35 0.33 0.32
∆ = 1 min 0.37 0.37 0.36 0.35 0.33 0.32
∆ = 5 min 0.37 0.36 0.36 0.34 0.33 0.31
∆ = 30 min 0.35 0.34 0.34 0.33 0.32 0.30

R = 1000

True Y †t+1 0.33 0.30 0.27 0.31 0.28 0.24
∆ = 5 sec 0.33 0.30 0.27 0.31 0.27 0.24
∆ = 1 min 0.33 0.30 0.27 0.31 0.28 0.24
∆ = 5 min 0.32 0.29 0.27 0.31 0.27 0.24
∆ = 30 min 0.31 0.29 0.25 0.30 0.27 0.22

Table 5: Giacomini–White test rejection frequencies for Simulation C. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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GW–KV (m = 0.25P ) GW–KV (m = P )
Proxy RC∆

t+1 P = 500 P = 1000 P = 2000 P = 500 P = 1000 P = 2000

R = 250

True Y †t+1 0.08 0.05 0.04 0.07 0.05 0.03
∆ = 5 sec 0.08 0.05 0.04 0.07 0.05 0.03
∆ = 1 min 0.08 0.05 0.03 0.07 0.05 0.04
∆ = 5 min 0.08 0.05 0.03 0.07 0.05 0.04
∆ = 30 min 0.09 0.05 0.04 0.07 0.04 0.04

R = 500

True Y †t+1 0.15 0.07 0.06 0.12 0.06 0.05
∆ = 5 sec 0.15 0.06 0.06 0.12 0.06 0.05
∆ = 1 min 0.15 0.06 0.06 0.12 0.06 0.05
∆ = 5 min 0.15 0.06 0.06 0.11 0.06 0.05
∆ = 30 min 0.14 0.07 0.06 0.11 0.06 0.05

R = 1000

True Y †t+1 0.16 0.09 0.06 0.14 0.07 0.05
∆ = 5 sec 0.16 0.09 0.06 0.14 0.07 0.05
∆ = 1 min 0.16 0.09 0.06 0.14 0.07 0.05
∆ = 5 min 0.16 0.09 0.06 0.14 0.07 0.05
∆ = 30 min 0.17 0.09 0.06 0.14 0.07 0.05

Table 6: Giacomini–White test rejection frequencies for Simulation C. The nominal level is 0.05, R
is the length of the estimation sample, P is the length of the prediction sample, ∆ is the sampling
frequency for the proxy, and m is the truncation lag in the long-run variance estimation.
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P = 500 P = 1000 P = 2000
Proxy RV ∆

t+1 Weak Strong Weak Strong Weak Strong

R = 250
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 30 min 0.00 0.01 0.00 0.00 0.00 0.01

R = 500
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 30 min 0.00 0.01 0.00 0.01 0.00 0.01

R = 1000
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.01 0.00 0.01 0.00 0.01
∆ = 30 min 0.00 0.01 0.00 0.00 0.00 0.01

Table 7: Giacomini–White test rejection indicator disagreement frequencies for Simulation A. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, ∆ is the sampling frequency for the proxy. Columns headed “Weak” report the difference
between the feasible and infeasible tests’ rejection frequencies. Columns headed “Strong” report
the proportion of simulations in which the feasible and infeasible tests disagree.
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P = 500 P = 1000 P = 2000
Proxy BV ∆

t+1 Weak Strong Weak Strong Weak Strong

R = 250
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.01 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.00 0.00 0.01 0.00 0.01
∆ = 30 min -0.01 0.02 0.00 0.01 0.00 0.01

R = 500
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.01 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.01 0.00 0.01 0.01 0.01
∆ = 30 min 0.01 0.01 0.00 0.01 0.00 0.01

R = 1000
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.01 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.01 0.00 0.01 0.00 0.01
∆ = 30 min -0.01 0.01 -0.01 0.01 0.00 0.01

Table 8: Giacomini–White test rejection indicator disagreement frequencies for Simulation B. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, ∆ is the sampling frequency for the proxy. Columns headed “Weak” report the difference
between the feasible and infeasible tests’ rejection frequencies. Columns headed “Strong” report
the proportion of simulations in which the feasible and infeasible tests disagree.
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P = 500 P = 1000 P = 2000
Proxy RC∆

t+1 Weak Strong Weak Strong Weak Strong

R = 250
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.01 0.00 0.00 0.00 0.01
∆ = 30 min 0.00 0.02 0.00 0.01 0.00 0.01

R = 500
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.01 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.01 0.00 0.01 0.00 0.00
∆ = 30 min 0.00 0.03 0.00 0.02 0.00 0.01

R = 1000
∆ = 5 sec 0.00 0.00 0.00 0.00 0.00 0.00
∆ = 1 min 0.00 0.01 0.00 0.00 0.00 0.00
∆ = 5 min 0.00 0.02 0.00 0.01 0.00 0.00
∆ = 30 min 0.00 0.03 0.00 0.01 0.00 0.02

Table 9: Giacomini–White test rejection indicator disagreement frequencies for Simulation C. The
nominal level is 0.05, R is the length of the estimation sample, P is the length of the prediction
sample, ∆ is the sampling frequency for the proxy. Columns headed “Weak” report the difference
between the feasible and infeasible tests’ rejection frequencies. Columns headed “Strong” report
the proportion of simulations in which the feasible and infeasible tests disagree.
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