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Simulated Method of Moments Estimation
for Copula-Based Multivariate Models

Dong Hwan OH and Andrew J. PATTON

This article considers the estimation of the parameters of a copula via a simulated method of moments (MM) type approach. This approach
is attractive when the likelihood of the copula model is not known in closed form, or when the researcher has a set of dependence measures
or other functionals of the copula that are of particular interest. The proposed approach naturally also nests MM and generalized method of
moments estimators. Drawing on results for simulation-based estimation and on recent work in empirical copula process theory, we show
the consistency and asymptotic normality of the proposed estimator, and obtain a simple test of overidentifying restrictions as a specification
test. The results apply to both iid and time series data. We analyze the finite-sample behavior of these estimators in an extensive simulation
study. We apply the model to a group of seven financial stock returns and find evidence of statistically significant tail dependence, and mild
evidence that the dependence between these assets is stronger in crashes than booms. Supplementary materials for this article are available
online.
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1. INTRODUCTION

Copula-based models for multivariate distributions are widely
used in a variety of applications, including actuarial sci-
ence and insurance (Embrechts, McNeil, and Straumann 2002;
Rosenberg and Schuermann 2006), economics (Brendstrup
and Paarsch 2007; Bonhomme and Robin 2009), epidemiol-
ogy (Clayton 1978; Fine and Jiang 2000), finance (Cherubini,
Luciano, and Vecchiato 2004; Patton 2006a), geology and hy-
drology (Cook and Johnson 1981; Genest and Favre 2007)
among many others. An important benefit they provide is the
flexibility to specify the marginal distributions separately from
the dependence structure, without imposing that they come from
the same family of joint distributions.

While copulas provide a great deal of flexibility in theory,
the search for copula models that work well in practice is an
ongoing one. This search has spawned a number of new and
flexible models (see Demarta and McNeil 2005; McNeil, Frey,
and Embrechts 2005; Smith et al. 2010; Smith, Gan, and Kohn
forthcoming; Oh and Patton 2011) among others. Some of these
models are such that the likelihood of the copula is either not
known in closed form, or is complicated to obtain and maximize,
motivating the consideration of estimation methods other than
maximum-likelihood estimation (MLE). Moreover, in many
financial applications, the estimated copula model is used in
pricing a derivative security, such as a collateralized debt obli-
gation or a credit default swap (CDO or CDS), and it may be of
interest to minimize the pricing error (the observed market
price less the model-implied price of the security) in calibrating
the parameters of the model. In some cases, the mapping from
the parameter(s) of the copula to dependence measures (such
as Spearman’s or Kendall’s rank correlation, for example) or
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to the price of the derivative contract is known in closed form,
thus allowing for method of moments (MM) or generalized
method of moments (GMM) estimation. In general, however,
this mapping is unknown, and an alternative estimation method
is required. We consider a simple yet widely applicable
simulation-based approach to address this problem.

This article presents the asymptotic properties of a
simulation-based estimator of the parameters of a copula
model. We consider both iid and time series data, and the case
that the marginal distributions are estimated using the empirical
distribution function (EDF). The estimation method we
consider shares features with the simulated method of moments
(SMM) (see, e.g., McFadden 1989; Pakes and Pollard 1989);
however, the presence of the EDF in the sample “moments”
means that existing results on SMM are not directly applicable.
We draw on well-known results on SMM estimators (see, e.g.,
Newey and McFadden 1994) and recent results from empirical
process theory for copulas (see Fermanian, Radulović, and
Wegkamp 2004; Chen and Fan 2006; Rémillard 2010) to show
the consistency and asymptotic normality of simulation-based
estimators of copula models. To the best of our knowledge,
simulation-based estimation of copula models has not previ-
ously been considered in the literature. An extensive simulation
study verifies that the asymptotic results provide a good
approximation in finite samples. We illustrate the results with
an application to a model of the dependence between the equity
returns on seven financial firms during the recent crisis period.

In addition to maximum likelihood, several other estimation
methods have been considered for copula-based multivariate
models. First, multistage maximum likelihood, also known as
“inference functions for margins,” [see Joe and Xu (1996) and
Joe (2005) for iid data, Patton (2006b) for time series data, and
Song, Fan, and Kalbfleisch (2005) for an iterative multistage ML
method with improved efficiency] is one of the most widely used
estimation methods. Like MLE, this method only applies when
the marginal distributions are parametric. When the marginal
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distribution models are correctly specified, this improves the ef-
ficiency of the estimator relative to the proposed SMM approach;
however, it introduces the possibility of misspecified marginal
distributions, which can have deleterious effects on the copula
parameter estimates (see Kim, Silvapulle, and Silvapulle 2007).
A second popular method is semi-parametric MLE [see Genest,
Ghoudi, and Rivest (1995) for iid data and Chen and Fan (2006),
Chan et al. (2009), and Chen, Fan, and Tsyrennikov (2006) for
time series data]. This method yields efficient estimates of the
copula parameters, however it requires, of course, the copula
likelihood and for some more complicated models, the likeli-
hood can be cumbersome to derive or to compute, for example,
the “stochastic copula” model of Hafner and Manner (2012)
or the high-dimension factor copula model of Oh and Patton
(2011). An alternative, long-standing, estimator is the MM esti-
mator [see Genest (1987) and Genest and Rivest (1993) for iid
data and Rémillard (2010) for time series data]. This estimator
exploits the known one-to-one mapping between the parame-
ters of certain copulas and certain measures of dependence, and
usually has the benefit of being very fast to compute. The SMM
estimator proposed in this article generalizes MM to allow for
the consideration of overidentified models (i.e., when we have
more implied dependence measures than unknown parameters)
and for dependence measures that are not known closed-form
functions of the copula parameters, using simulations to obtain
the mapping instead.

2. SIMULATION-BASED ESTIMATION
OF COPULA MODELS

We consider the same class of data-generating processes
(DGPs) as Chen and Fan (2006), Chan et al. (2009), and
Rémillard (2010). This class allows each variable to have time-
varying conditional mean and conditional variance, each gov-
erned by parametric models, with some unknown marginal dis-
tribution. As in those papers, and also earlier papers such as Gen-
est and Rivest (1993) and Genest, Ghoudi, and Rivest (1995),
we estimate the marginal distributions using the EDF. The con-
ditional copula of the data is assumed to belong to a parametric
family with unknown parameter θ0. The DGP we consider is

[Y1t , . . . , YNt ]
′ ≡ Yt = μt

(
φ0

)+ σ t

(
φ0

)
ηt ,

where

μt (φ) ≡ [μ1t (φ) , . . . , μNt (φ)]′ ,
σ t (φ) ≡ diag {σ1t (φ) , . . . , σNt (φ)} ,

[η1t , . . . , ηNt ]
′ ≡ ηt ∼ iid Fη = C (F1, . . . , FN ; θ0) , (1)

where μt and σ t are Ft−1-measurable and independent of ηt .
Ft−1 is the sigma field containing information generated by
{Yt−1, Yt−2, . . .}. The r × 1 vector of parameters governing the
dynamics of the variables, φ0, is assumed to be

√
T consistently

estimable, which holds under mild conditions for many com-
monly used models for multivariate time series, such as ARMA
models, GARCH models, stochastic volatility models, etc. If φ0
is known, or if μt and σ t are known constant, then the model
becomes one for iid data. Our task is to estimate the p × 1
vector of copula parameters, θ0 ∈ �, based on the (estimated)
standardized residual {η̂t ≡ σ−1

t (φ̂)[Yt − μt (φ̂)]}Tt=1 and simu-
lations from the copula model, C(·; θ).

2.1 Definition of the SMM Estimator

We consider simulation from some parametric multivariate
distribution, Fx(θ ), with marginal distributions Gi(θ), and cop-
ula C(θ). This allows us to consider cases where it is possible
to simulate directly from the copula model [in which case the
Gi are all Unif(0, 1)] and also cases where the copula model
is embedded in some joint distribution with unknown marginal
distributions, such as the factor copula models of Oh and Patton
(2011).

We use only “pure” dependence measures as those are unaf-
fected by changes in the marginal distributions of simulated data.
This rules out linear correlation, which contains information on
the copula but is also affected by the marginal distributions. De-
pendence measures like Spearman’s rank correlation, quantile
dependence, and Kendall’s tau are functions only of the copula
(see, e.g., Joe 1997; Nelsen 2006). These measures for the pair
(ηi, ηj ) are defined as:

ρij ≡ 12E[Fi(ηi)Fj (ηj )] − 3 = 12
∫∫

uvdCij (u, v) − 3,

(2)

λij
q ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

P [Fi(ηi) ≤ q|Fj (ηj ) ≤ q] = Cij (q, q)

q
,

q ∈ (0, 0.5]

P [Fi(ηi) > q|Fj (ηj ) > q] = 1 − 2q + Cij (q, q)

1 − q
,

q ∈ (0.5, 1),

(3)

τ ij ≡ 4E[Cij (Fi(ηi), Fj (ηj ))] − 1, (4)

where Cij is the copula of (ηi, ηj ). The sample counterparts are
defined as

ρ̂ij ≡ 12

T

T∑
t=1

F̂i(η̂it )F̂j (η̂j t ) − 3, (5)

λ̂ij
q ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

T q

T∑
t=1

1{F̂i(η̂it ) ≤ q, F̂j (η̂j t ) ≤ q},

q ∈ (0, 0.5]

1

T (1 − q)

T∑
t=1

1{F̂i(η̂it ) > q, F̂j (η̂j t ) > q},

q ∈ (0.5, 1),

(6)

τ̂ ij ≡ 4

T

T∑
t=1

Ĉij (F̂i(η̂it ), F̂j (η̂j t )) − 1, (7)

where F̂i(y) ≡ (T + 1)−1 ∑T
t=1 1{η̂it ≤ y}, and Ĉij (u, v) ≡

(T + 1)−1∑T
t=1 1{F̂i(η̂it ) ≤ u, F̂j (η̂j t ) ≤ v}. Counterparts

based on simulations are denoted by ρ̃ij (θ ), λ̃
ij
q (θ ), and

τ̃ ij (θ).
Let m̃S(θ ) be a (m × 1) vector of dependence measures com-

puted using S simulations from Fx(θ), {Xs}Ss=1, and let m̂T be
the corresponding vector of dependence measures computed us-
ing the standardized residuals {η̂t }Tt=1. These vectors can also
contain linear combinations of dependence measures, a feature
that is useful when considering estimation of high-dimension
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models. Define the difference between these as

gT ,S (θ) ≡ m̂T − m̃S (θ ) . (8)

Our SMM estimator is based on searching across θ ∈ � to make
this difference as small as possible. The estimator is defined as

θ̂T ,S ≡ arg min
θ∈�

QT,S (θ ) ,

where

QT,S (θ ) ≡ g′
T ,S (θ) ŴT gT ,S (θ) , (9)

and ŴT is some positive definite weight matrix, which may
depend on the data. In the subsections below, we establish the
consistency and asymptotic normality of this estimator, pro-
vide a consistent estimator of its asymptotic covariance matrix,
and obtain a test based on overidentifying restrictions. The sup-
plemental appendix (available online) presents details on the
computation of the objective function.

2.2 Consistency of the SMM Estimator

The estimation problem here differs in two important ways
from standard GMM or M-estimation: First, the objective func-
tion, QT,S(θ ), is not continuous in θ , since m̃S(θ ) will be a
number in a set of discrete values as θ varies on �, for example,
{0, 1

Sq
, 2

Sq
, . . . , S

Sq
} for a lower quantile dependence.This prob-

lem would vanish if, for the copula model being considered,
we knew the mapping θ �−→ m0(θ) ≡ limS→∞ m̃S(θ) in closed
form. The second difference is that a law of large numbers is
not available to show the pointwise convergence of gT ,S(θ), as
the functions m̂T and m̃S(θ ) both involve EDFs. We use re-
cent developments in empirical process theory to overcome this
difficulty.

We now list some assumptions that are required for our results
to hold.

Assumption 1.

(i) The distributions Fη and Fx are continuous.
(ii) Every bivariate marginal copula Cij of C has continuous

partial derivatives with respect to ui and uj .

If the data Yt are iid, for example, if μt and σ t are known
constant in Equation (1), or if φ0 is known, then Assump-
tion 1 is sufficient to prove Proposition 1 using the results of
Fermanian, Radulović, and Wegkamp (2004). If, however, esti-
mated standardized residuals are used in the estimation of the
copula, then more assumptions are necessary to control the esti-
mation error coming from the models for the conditional means
and conditional variances. We combine assumptions A1–A6
in Rémillard (2010) in the following assumption. First, define
γ 0t = σ−1

t (φ̂)μ̇t (φ̂) and γ 1kt = σ−1
t (φ̂)σ̇ kt (φ̂), where μ̇t (φ) =

∂μt (φ)
∂φ′ , σ̇ kt (φ) = ∂[σ t (φ)]kth column

∂φ′ , k = 1, . . . , N. Define dt as

dt = ηt − η̂t −
(

γ 0t +
N∑

k=1

ηktγ 1kt

)
(φ̂ − φ0),

where ηkt is kth row of ηt and both γ 0t and γ 1kt are Ft−1-
measurable.

Assumption 2.

(i) 1
T

∑T
t=1 γ 0t

p→ �0 and 1
T

∑T
t=1 γ 1kt

p→ �1k , where �0

and �1k are deterministic for k = 1, . . . , N.

(ii) 1
T

∑T
t=1 E(‖γ 0t‖), 1

T

∑T
t=1 E(‖γ 0t‖2), 1

T

∑T
t=1

E(‖γ 1kt‖), and 1
T

∑T
t=1 E(‖γ 1kt‖2) are bounded for

k = 1, . . . , N.

(iii) There exists a sequence of positive terms rt > 0,
so that

∑
t≥1 rt < ∞ and such that the sequence

max1≤t≤T ‖dt‖/rt is tight.
(iv) max1≤t≤T ‖γ 0t‖/

√
T = op(1) and max1≤t≤T ηkt‖γ 1kt‖

/
√

T = op(1) for k = 1, . . . , N.

(v) (αT ,
√

T (φ̂ − φ0)) weakly converges to a continuous
Gaussian process in [0, 1]N × Rr , where αT is the em-
pirical copula process of uniform random variables:

αT = 1√
T

T∑
t=1

{
N∏

k=1

1 (Ukt ≤ uk) − C (u)

}
.

(vi) ∂Fη

∂ηk
and ηk

∂Fη

∂ηk
are bounded and continuous on R̄N =

[−∞,+∞]N for k = 1, . . . , N.

With these two assumptions, sample rank correlation and
quantile dependence converge in probability to their population
counterparts [see Theorems 3 and 6 of Fermanian, Radulović,
and Wegkamp (2004) for the iid case and combine with Corol-
lary 1 of Rémillard (2010) for the time series case]. (See Lemma
1 of the supplemental appendix, available online, for details.)
When applied to simulated data, this convergence holds point-
wise for any θ . Thus, gT ,S(θ) converges in probability to the
population moment functions defined as follows:

gT ,S (θ ) ≡ m̂T − m̃S (θ )
p−→ g0 (θ ) ≡ m0 (θ0) − m0 (θ) ,

for ∀θ ∈ � as T , S → ∞. (10)

We define the population objective function as

Q0(θ) = g0(θ )′W0g0(θ), (11)

where W0 is the probability limit of ŴT . The convergence of
gT ,S(θ) and ŴT implies that

QT,S (θ )
p−→ Q0 (θ) for ∀θ ∈ � as T , S → ∞.

For consistency of our estimator, we need, as usual, uniform
convergence of QT,S(θ), but as this function is not continuous
in θ and a law of large numbers is not available, the standard
approach based on a uniform law of large numbers is not avail-
able. We instead use results on the stochastic equicontinuity of
gT ,S(θ) based on Andrews (1994) and Newey and McFadden
(1994).

Assumption 3.

(i) g0(θ) �= 0 for θ �= θ0.
(ii) � is compact.

(iii) Every bivariate marginal copula Cij (ui,uj ; θ ) of C(θ ) on
(ui, uj ) ∈ (0, 1) × (0, 1) is Lipschitz continuous on �.

(iv) ŴT is Op(1) and converges in probability to W0, a
positive definite matrix.
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Proposition 1. Suppose that Assumptions 1, 2, and 3 hold.

Then, θ̂T ,S

p−→ θ0 as T , S → ∞.

A sketch of all proofs is presented in the appendix, and de-
tailed proofs are in the supplemental appendix (available online).
Assumption 3(iii) is needed to prove the stochastic Lipschitz
continuity of gT ,S(θ ), which is a sufficient condition for the
stochastic equicontinuity of gT ,S(θ ), and can easily be shown to
be satisfied for many bivariate parametric copulas. Assumption
3(ii) requires compactness of the parameter space, a common
assumption, and is aided by having outside information (such as
constraints from economic arguments) that allow the researcher
to bound the set of plausible parameters. While Pakes and
Pollard (1989) and McFadden (1989) show the consistency of
the SMM estimator for T , S diverging at the same rate, Propo-
sition 1 shows that the copula parameter is consistent at any
relative rate of T and S as long as both diverge. If we know
the function m(θ) in closed form, then GMM is feasible and is
equivalent to our estimator with S/T → ∞ as T , S → ∞.

We focus on weak consistency of our estimator because it
suffices for our asymptotic distribution theory, presented below.
A corresponding strong consistency result, that is, θ̂T ,S

a.s.−→ θ0,

may be obtained by drawing on recent work by Bouzebda and
Zari (2011). The key is to show uniform strong convergence of
the sample objective function, from which strong consistency
of the estimator easily follows (see, e.g., Newey and McFadden
1994). Uniform strong consistency of the objective function can
be shown by combining minor changes in the above assump-
tions (e.g., ŴT must converge a.s. to W0) with pointwise strong
convergence of the objective function, which can be obtained
using results of Bouzebda and Zari (2011).

2.3 Asymptotic Normality of the SMM Estimator

As QT,S(θ ) is nondifferentiable, the standard approach based
on a Taylor expansion is not available; however, the asymptotic
normality of our estimator can still be established with some
further assumptions:

Assumption 4.

(i) θ0 is an interior point of �.
(ii) g0(θ ) is differentiable at θ0 with derivative G0 such that

G′
0W0G0 is nonsingular.

(iii) gT ,S(θ̂T ,S)′ŴT gT ,S(θ̂T ,S) ≤ infθ∈� gT ,S(θ)′

ŴT gT ,S(θ ) + op(1/T + 1/S).

The first assumption above is standard, and the third assump-
tion is standard in simulation-based estimation problems (see,
e.g., Newey and McFadden 1994). The rate at which the op term
vanishes in part (iii) turns out to depend on the smaller of T or S,

as op(1/T + 1/S) = op(min(T , S)−1). The second assumption
requires the population objective function, g0, to be differen-
tiable even though its finite-sample counterpart is not, which is
common in simulation-based estimation. The nonsingularity of
G′

0W0G0 is sufficient for local identification of the parameters
of this model at θ0 (see Rothenberg 1971; Hall 2005). With
these assumptions in hand, we obtain the following result:

Proposition 2. Suppose that Assumptions 1, 2, 3, and 4 hold.
Then,

1√
1/T + 1/S

(θ̂T ,S − θ0)
d−→ N (0,	0) as T , S → ∞, (12)

where 	0 = (G′
0W0G0)−1G′

0W0
0W0G0(G′
0W0G0)−1, and


0 ≡ avar[m̂T ].

The rate of convergence is thus shown to equal min(T , S)1/2.

In general, one would like to set S very large to minimize the
impact of simulation error and obtain a

√
T convergence rate;

however, if the model is computationally costly to simulate, then
the result for S � T may be useful. When S and T diverge at dif-
ferent rates, the asymptotic variance of min(T , S)1/2(θ̂T ,S − θ0)
is simply 	0. When S and T diverge at the same rate, say
S/T → k ∈ (0,∞), the asymptotic variance of

√
T (θ̂T ,S − θ0)

is (1 + 1/k)	0, which incorporates efficiency loss from simu-
lation error. As usual, we find that 	0 = (G′

0

−1
0 G0)−1 if W0 is

the efficient weight matrix, 
−1
0 .

The proof of the above proposition uses recent results for
empirical copula processes presented in Fermanian, Radulović,
and Wegkamp (2004) and Rémillard (2010) to establish the
asymptotic normality of the sample dependence measures, m̂T ,

and requires us to establish the stochastic equicontinuity of
the moment functions, vT ,S(θ) = √

T [gT ,S(θ) − g0(θ )]. These
are shown in Lemmas 6 and 7 in the supplemental appendix
(available online).

Chen and Fan (2006), Chan et al. (2009), and Rémillard
(2010) show that estimation error from φ̂ does not enter the
asymptotic distribution of the copula parameter estimator for
maximum likelihood or (analytical) moment-based estimators,
and the above proposition shows that this surprising result also
holds for the SMM-type estimators proposed here. In applica-
tions based on parametric models for the marginal distributions,
the asymptotic covariance matrix of the copula parameter is
more complicated. In such cases, the model is fully parametric
and the estimation approach here is a form of two-stage GMM
(or SMM). In the absence of simulations, this can be treated
using existing methods (see, e.g., White 1994; Gouriéroux,
Monfort, and Renault 1996). If simulations are used in the cop-
ula estimation step, then the lemmas presented in the appendix
can be combined with existing results on two-stage GMM to ob-
tain the limiting distribution. This is straightforward but requires
some additional detailed notation, and so is not presented here.

2.4 Consistent Estimation of the Asymptotic Variance

The asymptotic variance of our estimator has the familiar
form of standard GMM applications; however, the components

0 and G0 require more care in their estimation than in stan-
dard applications. We suggest using an iid bootstrap to estimate

0, with the following steps: (i) sample with replacement from
the standardized residuals {η̂t }Tt=1 to obtain a B bootstrap sam-
ples, {η̂(b)

t }Tt=1, b = 1, 2, . . . , B; (ii) use {η̂(b)
t }Tt=1 to compute the

sample moments and denote as m̂(b)
T ; (iii) calculate the sample

covariance matrix of m̂(b)
T across the bootstrap replications, and
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scale it by the sample size:


̂T ,B = T

B

B∑
b=1

(
m̂(b)

T − m̂T

)(
m̂(b)

T − m̂T

)′
. (13)

For the estimation of G0, we suggest a numerical derivative of
gT ,S(θ) at θ̂T ,S ; however, the fact that gT ,S is nondifferentiable
means that care is needed in choosing the step size for the
numerical derivative. In particular, Proposition 3 shows that
we need to let the step size go to zero, as usual, but slower
than the inverse of the rate of convergence of the estimator
[i.e., 1/ min(

√
T ,

√
S)]. Let ek denote the kth unit vector whose

dimension is the same as that of θ , and let εT,S denote the step
size. A two-sided numerical derivative estimator ĜT ,S of G has
kth column as follows:

ĜT ,S,k = gT ,S(θ̂T ,S+ekεT ,S) − gT ,S(θ̂T ,S−ekεT ,S)

2εT,S

,

k = 1, 2, . . . , p. (14)

Combine this estimator with ŴT to form

	̂T ,S,B = (Ĝ′
T ,SŴT ĜT ,S)−1Ĝ′

T ,SŴT 
̂T ,BŴT ĜT ,S

× (Ĝ′
T ,SŴT ĜT ,S)−1. (15)

Proposition 3. Suppose that all assumptions of Proposition
2 are satisfied, and that εT,S → 0, εT,S × min(

√
T ,

√
S) → ∞,

and B → ∞ as T , S → ∞. Then, 
̂T ,B

p−→ 
0, ĜT ,S

p−→ G0

and 	̂T ,S,B

p−→ 	0 as T , S → ∞.

2.5 A Test of Overidentifying Restrictions

If the number of moments used in estimation is greater than
the number of copula parameters, then it is possible to conduct
a simple test of the overidentifying restrictions, which can be
used as a specification test of the model.

Proposition 4. Suppose that all assumptions of Proposition 3
are satisfied and that the number of moments (m) is greater than
the number of copula parameters (p). Then,

JT,S ≡ min(T , S)gT ,S(θ̂T ,S)′ ŴT gT ,S(θ̂T ,S)
d−→ u′A′

0A0u as T , S → ∞,

where u ∼N (0, I) and A0 ≡ W1/2
0 


1/2
0 R0, R0 ≡ I − 


−1/2
0

G0(G′
0W0G0)−1G′

0W0

1/2
0 . If ŴT = 
̂

−1
T ,B, then JT,S

d−→
χ2

m−p as usual.

As in standard applications, the above test statistic has a
chi-squared limiting distribution if the efficient weight matrix

(
̂
−1
T ,B) is used. When any other weight matrix is used, the test

statistic has a sample-specific limiting distribution, and critical
values in such cases can be obtained via a simple simulation:
(i) compute R̂ using ĜT ,S , ŴT , and 
̂T ,B ; (ii) simulate u(k) ∼
iid N (0, I), for k = 1, 2, . . . , K , where K is large; (iii) for each

simulation, compute J
(k)
T ,S = u(k)′R̂′
̂

1/2′
T ,BŴT 
̂

1/2
T ,BR̂u

(k)
; (iv) use

the sample (1 − α) quantile of {J (k)
T ,S}Kk=1 as the critical value for

this test statistic.
The need for simulations to obtain critical values from the

limiting distribution is nonstandard but is not uncommon; this
arises in many other testing problems (see, e.g., Wolak 1989;

White 2000; Andrews 2001). Given that u(k) is standard Normal,
and that R̂ need only be computed once, obtaining critical values
for this test is simple and fast.

2.6 SMM Under Model Misspecification

All of the above results hold under the assumption that the
copula model is correctly specified. In the event that a specifi-
cation test rejects a model as misspecified, one is led directly
to the question of whether these results, or extensions of them,
hold for misspecified models.

In the literature on GMM, there are two common ways to
define misspecification. Newey (1985) defines a form of “local”
misspecification (where the degree of misspecification vanishes
in the limit), and in that case it is simple to show that the
asymptotic behavior of the SMM estimator does not change
except for the mean of limit distribution. Hall and Inoue (2003)
consider “nonlocal” misspecification. Formally, a model is said
to be misspecified if there is no value of θ ∈ �, which satisfies
g0(θ) = 0. As Hall and Inoue (2003) note, misspecification is
only a concern when the model is overidentified, and so in this
section we assume m > p. The absence of a parameter that
satisfies the population moment conditions means that we must
instead consider a “pseudo-true” parameter:

Definition 1. The pseudo-true parameter is θ∗(W0) ≡
arg minθ∈� g′

0(θ)W0g0(θ).

The true parameter, θ0, when it exists, is determined only by
the population moment condition g0(θ0) = 0, while the pseudo-
true parameter also depends on the weight matrix W0, and
thus is denoted θ∗(W0). With the additional assumptions below,
consistency of the SMM estimator under misspecification can
be proven. The following proposition extends the results for
GMM under misspecification in Hall (2000) and Hall and Inoue
(2003), as it is established under the discontinuity of the moment
functions.

Assumption 5. (i) (Nonlocal misspecification) ‖g0(θ)‖ > 0
for all θ ∈ �.

(ii) (Identification) There exists θ∗(W0) ∈ � such
that g0(θ∗(W0))′W0g0(θ∗(W0)) < g0(θ )′W0g0(θ) for all θ ∈
�\{θ∗(W0)}.

Proposition 5. Suppose that Assumptions 1, 2, 3(ii)–3(iv),

and 5 hold. Then, θ̂T ,S

p−→ θ∗(W0) as T , S → ∞.

While consistency of θ̂T ,S under misspecification is easily ob-
tained, establishing the limit distribution of θ̂T ,S is not straight-
forward. Hall and Inoue (2003) showed that the limit distribution
of GMM (with smooth, differentiable moment functions) de-
pends on the limit distribution of the weight matrix, not merely
the probability limit of the weight matrix. In SMM applications,
it is possible to show that the limit distribution will addition-
ally depend on the limit distribution of the numerical derivative
matrix ĜT ,S . Furthermore, under misspecification one needs an
alternative approach to establish stochastic equicontinuity of the
objective function, which is required to obtain the limit distribu-
tion of the estimator. We leave the study of this limit distribution
for future research.
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3. SIMULATION STUDY

In this section, we present a study of the finite sample prop-
erties of the SMM estimator studied in the previous section.
We consider two widely known copula models, the Clayton and
the Gaussian (or Normal) copulas (see Nelsen 2006 for dis-
cussion) and the “factor copula” proposed in Oh and Patton
(2011) outlined below. A closed-form likelihood is available
for the first two copulas, while the third copula requires a
numerical integration step to obtain the likelihood (details on
this are presented in the supplemental appendix, available on-
line). In all cases, we contrast the finite-sample properties of the
MLE with the SMM estimator. The first two copulas also have
closed-form cumulative distribution functions, and so quantile
dependence [defined in Equation (3)] is also known in closed
form. For the Clayton copula, we have Kendall’s tau in closed
form (τ = κ/(2 + κ)) but not Spearman’s rank correlation (see
Nelsen 2006). For the Normal copula, we have both Spear-
man’s rank correlation in closed form [ρS = 6/π arcsin(ρ/2)]
and Kendall’s tau [τ = 2/π arcsin(ρ)] (see Demarta and
McNeil 2005; Nelsen 2006). This allows us to also compare
GMM with SMM for these copulas, to quantify the loss in ac-
curacy from having to resort to simulations.

The factor copula we consider is based on the following
structure:

Let Xi = Z + εi, i = 1, 2, . . . , N,

where Z ∼ Skew t(0, σ 2, ν−1, λ), εi ∼ iid t(ν−1),

and εi⊥⊥Z ∀i (16)

[X1, . . . , XN ]′ ≡ X ∼ Fx= C (Gx, . . . , Gx) ,

where we use the skewed t distribution of Hansen (1994). We
use the copula of X implied by the above structure as our “factor
copula” model, and it is parameterized by (σ 2, ν−1, λ). For the
factor copula, we have none of the above dependence measures
in closed form. For the simulation, we set the parameters to
generate rank correlation of around 1/2, and so set the Clayton
copula parameter to 1, the Gaussian copula parameter to 1/2,
and the factor copula parameters to σ 2 = 1, ν−1 = 1/4, and
λ = −1/2.

We consider two different scenarios for the marginal distri-
butions of the variables of interest. In the first case, we assume
that the data are iid with standard Normal marginal distributions,
meaning that the only parameters that need to be estimated are
those of the copula. This case is contrasted with a scenario where
the marginal distributions of the variables are assumed to follow
an AR(1)-GARCH(1,1) process:

Yit = φ0 + φ1Yi,t−1 + σitηit , t = 1, 2, . . . , T ,

σ 2
it = ω + βσ 2

i,t−1 + ασ 2
i,t−1η

2
i,t−1, (17)

ηt ≡ [η1t , . . . , ηNt ]
′ ∼ iid Fη = C (�,�, . . . , �) ,

where � is the standard Normal distribution function and C
can be Clayton, Gaussian, or the factor copula implied by
Equation (16). We set the parameters of the marginal dis-
tributions as [φ0, φ1, ω, β, α] = [0.01, 0.05, 0.05, 0.85, 0.10],
which broadly matches the values of these parameters when
estimated using daily equity return data. In this scenario, the
parameters of the models for the conditional mean and variance
are estimated, and then the estimated standardized residuals
are obtained: η̂it = σ̂−1

it (Yit − φ̂0 − φ̂1Yi,t−1). These residuals

are used in a second stage to estimate the copula parameters.
In all cases, we consider a time series of length T = 1000, cor-
responding to approximately 4 years of daily return data, and
we use S = 25 × T simulations in the computation of the de-
pendence measures to be matched in the SMM optimization.
We use five dependence measures in estimation: Spearman’s
rank correlation, and the 0.05, 0.10, 0.90, 0.95 quantile depen-
dence measures, averaged across pairs of assets. We repeat each
scenario 100 times; and in the results below, we use the iden-
tity weight matrix for estimation. (Corresponding results based

on the efficient weight matrix, ŴT = 
̂
−1
T ,B, are comparable,

and available in the supplemental appendix, available online.)
We also report the computation times (per simulation) for each
estimation.

Table 1 reveals that for all three dimensions (N = 2, 3, and
10) and for all three copula models, the estimated parameters
are centered on the true values, with the average estimated bias
being small relative to the standard deviation. Looking across
the dimension size, we see that the copula model parameters
are almost always more precisely estimated as the dimension
grows. This is intuitive, given the exchangeable nature of all
three models.

Comparing the SMM estimator with the ML estimator, we see
that the SMM estimators suffer a loss in efficiency of around
50% for N = 2 and around 20% for N = 10. The loss is great-
est for the ν−1 parameter of the factor copula, and is moderate
and similar for the remaining parameters. Some loss is of course
expected, and this simulation indicates that the loss is moderate
overall. Comparing the SMM estimator to the GMM estima-
tor, we find a loss in efficiency of zero to 3%, indicating only
a slight loss in accuracy from having to estimate the popula-
tion moment function via simulation. The simulation results in
Table 2, where the copula parameters are estimated after the es-
timation of AR-GARCH models for the marginal distributions
in a separate stage, are very similar to the case when no marginal
distribution parameters are required to be estimated, consistent
with Proposition 2.

In Table 3, we present the finite-sample coverage probabili-
ties of 95% confidence intervals based on the asymptotic nor-
mality result from Proposition 2 and the asymptotic covariance
matrix estimator presented in Proposition 3. As shown in that
proposition, a critical input to the asymptotic covariance ma-
trix estimator is the step size used in computing the numerical
derivative matrix ĜT ,S . This step size, εT,S, must go to zero,
but at a slower rate than 1/

√
T . Ignoring constants, our sim-

ulation sample size of T = 1000 suggests setting εT,S > 0.03,

which is much larger than standard step sizes used in comput-
ing numerical derivatives. We study the impact of the choice of
step size by considering a range of values from 0.0001 to 0.1.
Table 3 shows that when the step size is set to 0.01 or 0.1, the
finite-sample coverage rates are close to their nominal levels.
However, if the step size is chosen too small (0.001 or smaller),
then the coverage rates are much lower than nominal levels.

Table 3 also presents the results of a study of the rejection
rates for the test of overidentifying restrictions presented in
Proposition 4. Given that we consider W = I in this table, the
test statistic has a nonstandard distribution, and we use K =
10,000 simulations to obtain critical values. The rejection rates
are close to their nominal levels 95% for the all three copula
models.
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Table 1. Simulation results for iid data

Clayton copula Normal copula Factor copula

MLE SMMMLE GMM SMM SMM∗ MLE GMM SMM
κ κ κ κ ρ ρ ρ σ 2 ν−1 λ σ 2 ν−1 λ

True 1.00 1.00 1.00 1.00 0.5 0.5 0.5 1.00 0.25 −0.50 1.00 0.25 −0.50

N = 2
Bias 0.001 −0.014 −0.006 −0.004 0.004 −0.001 −0.001 0.026 −0.002 −0.026 0.016 −0.012 −0.089
St dev 0.085 0.119 0.122 0.110 0.024 0.034 0.034 0.135 0.045 0.144 0.152 0.123 0.199
Median 1.011 0.982 0.991 0.998 0.503 0.497 0.498 1.027 0.251 −0.500 0.985 0.243 −0.548
90-10% 0.216 0.308 0.293 0.294 0.063 0.086 0.087 0.331 0.118 0.355 0.374 0.363 0.540
Time 0.061 0.060 512 49.5 0.021 0.292 0.483 254 103

N = 3
Bias 0.015 0.008 0.006 0.008 0.003 −0.004 −0.005 0.014 −0.001 −0.012 0.032 −0.002 −0.057
St dev 0.061 0.090 0.092 0.091 0.020 0.025 0.026 0.120 0.028 0.109 0.124 0.111 0.157
Median 1.013 1.003 0.999 0.998 0.503 0.497 0.499 1.001 0.250 −0.502 1.031 0.256 −0.542
90-10% 0.155 0.226 0.219 0.216 0.049 0.064 0.068 0.297 0.073 0.222 0.297 0.293 0.395
Time 0.113 0.091 1360 56.2 0.023 0.293 0.815 263 136

N = 10
Bias 0.008 0.007 0.008 0.004 0.003 −0.002 −0.002 0.011 0.000 0.006 0.026 0.001 −0.011
St dev 0.050 0.068 0.066 0.059 0.014 0.017 0.017 0.092 0.016 0.063 0.093 0.070 0.082
Median 1.005 1.002 1.005 0.999 0.504 0.498 0.499 1.005 0.248 −0.494 1.013 0.255 −0.508
90-10% 0.132 0.198 0.177 0.152 0.035 0.039 0.045 0.240 0.034 0.166 0.248 0.186 0.168
Time 0.409 0.998 22289 170 0.475 0.331 3.140 396 341

NOTE: This table presents the results from 100 simulations of the Clayton copula, the Normal copula, and a factor copula. In the SMM and GMM estimation, all three copulas use
five dependence measures, including four quantile dependence measures (q = 0.05, 0.10, 0.90, 0, 95). The Normal and factor copulas also use Spearman’s rank correlation, while the
Clayton copula uses either Kendall’s (GMM and SMM) or Spearman’s (SMM∗) rank correlation. The marginal distributions of the data are assumed to be iid N(0, 1). Problems of
dimension N = 2, 3, and 10 are considered, the sample size is T = 1000, and the number of simulations used is S = 25 × T . The first row of each panel presents the average difference
between the estimated parameter and its true value. The second row presents the standard deviation of the estimated parameters. The third and fourth rows present the median and the
difference between the 90th and 10th percentiles of the distribution of estimated parameters. The last row in each panel presents the average time in seconds to compute the estimator.

Table 2. Simulation results for AR-GARCH data

Clayton copula Normal copula Factor copula

MLE SMMMLE GMM SMM SMM∗ MLE GMM SMM
κ κ κ κ ρ ρ ρ σ 2 ν−1 λ σ 2 ν−1 λ

True 1.00 1.00 1.00 1.00 0.5 0.5 0.5 1.00 0.25 −0.50 1.00 0.25 −0.50

N = 2
Bias −0.005 −0.029 −0.028 −0.020 0.003 −0.001 −0.001 0.021 −0.009 −0.029 0.015 −0.012 −0.073
St dev 0.087 0.124 0.124 0.108 0.024 0.035 0.036 0.137 0.046 0.150 0.155 0.121 0.188
Median 0.998 0.977 0.975 0.982 0.503 0.497 0.499 1.021 0.245 −0.503 0.995 0.235 −0.558
90-10% 0.228 0.327 0.340 0.267 0.061 0.084 0.090 0.343 0.118 0.382 0.411 0.346 0.509
Time 0.026 0.059 525 52 0.030 0.299 0.505 234 95

N = 3
Bias 0.006 −0.007 0.002 −0.008 0.003 −0.005 −0.006 0.007 −0.007 −0.011 0.013 −0.020 −0.052
St dev 0.060 0.087 0.088 0.080 0.020 0.026 0.026 0.118 0.028 0.110 0.121 0.106 0.148
Median 1.005 0.991 0.994 0.981 0.502 0.497 0.499 0.997 0.243 −0.502 1.005 0.238 −0.521
90-10% 0.145 0.205 0.213 0.195 0.050 0.065 0.068 0.315 0.074 0.224 0.311 0.297 0.357
Time 0.127 0.108 1577 73 0.022 0.288 1.009 232 119

N = 10
Bias −0.004 −0.002 −0.004 −0.003 0.002 −0.003 −0.004 0.005 −0.006 0.008 −0.004 −0.016 −0.012
St dev 0.049 0.067 0.064 0.059 0.014 0.016 0.017 0.091 0.015 0.063 0.085 0.079 0.071
Median 0.995 0.996 0.987 0.988 0.503 0.497 0.497 1.002 0.243 −0.493 0.990 0.238 −0.508
90-10% 0.134 0.179 0.170 0.152 0.034 0.041 0.045 0.240 0.037 0.169 0.210 0.209 0.165
Time 0.292 1.059 24549 171 1.099 0.392 3.437 430 309

NOTE: This table presents the results from 100 simulations of the Clayton copula, the Normal copula, and a factor copula. In the SMM and GMM estimation, all three copulas use
five dependence measures, including four quantile dependence measures (q = 0.05, 0.10, 0.90, 0, 95). The Normal and factor copulas also use Spearman’s rank correlation, while the
Clayton copula uses either Kendall’s (GMM and SMM) or Spearman’s (SMM∗) rank correlation. The marginal distributions of the data are assumed to follow AR(1)-GARCH(1,1)
processes as described in Section 3. Problems of dimension N = 2, 3, and 10 are considered, the sample size is T = 1000, and the number of simulations used is S = 25 × T . The first
row of each panel presents the average difference between the estimated parameter and its true value. The second row presents the standard deviation of the estimated parameters. The
third and fourth rows present the median and the difference between the 90th and 10th percentiles of the distribution of estimated parameters. The last row in each panel presents the
average time in seconds to compute the estimator.
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Table 3. Simulation results on coverage rates

Clayton
copula

Normal
copula Factor copula

κ J ρ J σ 2 ν−1 λ J

N = 2
εT,S

0.1 91 98 94 98 94 100 95 98
0.01 46 99 92 98 94 99 96 100
0.001 2 99 76 98 76 79 74 99
0.0001 1 99 21 98 54 75 57 97

N = 3
εT,S

0.1 97 99 89 97 99 100 96 99
0.01 63 98 88 97 99 96 95 100
0.001 11 98 83 98 92 84 93 100
0.0001 2 100 38 99 57 70 61 99

N = 10
εT,S

0.1 96 99 87 97 97 97 95 98
0.01 88 99 87 96 96 97 97 97
0.001 18 100 87 98 97 95 88 97
0.0001 0 98 71 97 73 85 81 98

NOTE: This table presents the results from 100 simulations of the Clayton copula, the
Normal copula, and a factor copula, all estimated by SMM. The marginal distributions of
the data are assumed to follow AR(1)-GARCH(1,1) processes as described in Section 3.
Problems of dimension N = 2, 3, and 10 are considered, the sample size is T = 1000,

and the number of simulations used is S = 25 × T . The rows of each panel contain the
step size, εT,S , used in computing the matrix of numerical derivatives, ĜT ,S . The numbers
in column κ, ρ, σ 2, ν−1, and λ present the percentage of simulations for which the 95%
confidence interval based on the estimated covariance matrix contained the true parameter.
The numbers in column J present the percentage of simulations for which the test statistic
of overidentifying restrictions test described in Section 2 was smaller than its computed
critical value under 95% confidence level.

We finally consider the properties of the estimator under
model misspecification. In Table 4, we consider two scenarios:
one where the true copula is Clayton but the model is Normal,
and one where the true copula is Normal but the model is Clay-
ton. The pseudo-true parameters for these two scenarios are not
known in closed form, and we use a simulation of 10 million
observations to estimate it. The pseudo-true parameters are re-
ported in the top row of each panel of Table 4. Similar to the
correctly specified case, we see here that the estimated param-
eters are centered on the pseudo-true values, with the average
estimated bias being small relative to the standard deviation.
These misspecified scenarios also provide some insight into the
power of the specification test based on overidentifying restric-
tions. We find that for all three dimensions and for both iid and
AR-GARCH data, the J-test rejected the null of correct specifi-
cation across all 100 simulations, indicating this test has power
to detect model misspecification.

These simulation results provide support for the proposed
estimation method: for empirically realistic parameter values
and sample size, the estimator is approximately unbiased, with
estimated confidence intervals that have coverage close to their
nominal level when the step size for the numerical derivative
is chosen in line with our theoretical results, and the test for
model misspecification has finite-sample rejection frequencies
that are close to their nominal levels when the model is correctly
specified, and has good power to reject misspecified models.

Table 4. Simulation results for misspecified models

iid AR-GARCH

True copula Clayton Normal Clayton Normal
Model Normal Clayton Normal Clayton

N = 2
Pseudo-true 0.542 0.599 0.543 0.588
Bias −0.013 0.111 −0.007 0.046
St dev 0.050 0.173 0.035 0.120
Median 0.526 0.659 0.539 0.617
90-10% 0.130 0.433 0.091 0.265
Time 4 72 1 70
J-test prob. 0 0 0 0

N = 3
Pseudo-true 0.543 0.599 0.542 0.607
Bias 0.003 0.077 −0.002 0.006
St dev 0.039 0.164 0.027 0.088
Median 0.544 0.629 0.540 0.609
90–10% 0.107 0.432 0.072 0.198
Time 5 90 1 86
J-test prob. 0 0 0 0

N = 10
Pseudo-true 0.544 0.602 0.544 0.603
Bias 0.001 0.059 −0.001 0.047
St dev 0.033 0.118 0.016 0.116
Median 0.546 0.622 0.540 0.618
90-10% 0.086 0.307 0.043 0.314
Time 20 206 4 207
J-test prob. 0 0 0 0

NOTE: This table presents the results from 100 simulations when the true copula and the
model are different (i.e., the model is misspecified). The parameters of the copula models are
estimated using SMM based on rank correlation and four quantile dependence measures
(q = 0.05, 0.10, 0.90, 0, 95). The marginal distributions of the data are assumed to be
either iid N(0, 1) or AR(1)-GARCH(1,1) processes as described in Section 3. Problems of
dimension N = 2, 3, and 10 are considered, the sample size is T = 1000, and the number
of simulations used is S = 25 × T . The pseudo-true parameter is estimated using 10 million
observations. The last row in each panel presents the proportion of tests of overidentifying
restrictions that are smaller than the 95% critical value.

4. APPLICATION TO THE DEPENDENCE BETWEEN
FINANCIAL FIRMS

This section considers models for the dependence between
seven large financial firms. We use daily stock return data over
the period January 2001 to December 2010, a total of T = 2515
trade days, on Bank of America, Bank of New York, Citigroup,
Goldman Sachs, J.P. Morgan, Morgan Stanley, and Wells Fargo.
Summary statistics for these returns are presented in Table S4 of
the supplemental appendix (available online), and indicate that
all series are positively skewed and leptokurtotic, with kurtosis
ranging from 16.0 (J.P. Morgan) to 119.8 (Morgan Stanley).

To capture the impact of time-varying conditional means and
variances in each of these series, we estimate the following
autoregressive, conditionally heteroscedastic models:

rit = φ0i + φ1i ri,t−1 + φ2i rm,t−1 + εit , εit = σitηit ,

where

σ 2
it = ωi + βiσ

2
i,t−1 + α1iε

2
i,t−1 + γ1iε

2
i,t−11[εi,t−1≤0]

+α2iε
2
m,t−1 + γ2iε

2
m,t−11[εm,t−1≤0], (18)

where rit is the return on one of these seven firms and rmt

is the return on the S&P 500 index. We include the lagged
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Table 5. Sample dependence statistics

Bank of Bank of Citi Goldman J.P. Morgan Wells
America New York group Sachs Morgan Stanley Fargo

Panel A: Correlation estimates

BoA 0.586 0.691 0.556 0.705 0.602 0.701
BoNY 0.551 0.574 0.578 0.658 0.592 0.595
Citi 0.685 0.558 0.608 0.684 0.649 0.626
Goldman 0.564 0.565 0.609 0.655 0.759 0.548
JPM 0.713 0.633 0.694 0.666 0.667 0.683
Morgan S 0.604 0.587 0.650 0.774 0.676 0.578
Wells F 0.715 0.593 0.636 0.554 0.704 0.587

Panel B: Quantile dependence estimates

BoA 0.219 0.239 0.219 0.398 0.298 0.358
BoNY −0.048 0.179 0.199 0.159 0.219 0.199
Citi −0.045 −0.004 0.199 0.318 0.219 0.199
Goldman −0.068 0.000 0.032 0.239 0.378 0.199
JPM −0.024 −0.056 −0.012 0.012 0.239 0.358
Morgan S −0.060 −0.020 −0.064 −0.036 −0.008 0.219
Wells F 0.020 −0.052 0.044 −0.028 0.024 0.000

NOTE: This table presents measures of dependence between the seven financial firms under analysis. The upper panel presents Spearman’s rank correlation (upper triangle) and linear
correlation (lower triangle), and the lower panel presents the difference between the 10% quantile dependence measures (lower triangle) and average 1% upper and lower quantile
dependence (upper triangle). All dependence measures are computed using the standardized residuals from the models for the conditional mean and variance.

market index return in both the mean and variance specifications
to capture any influence of lagged information in the model for
a given stock, and in the model for the market index itself we set
φ1 = α1 = γ1 = 0. Estimated parameters from these models are
presented in Table S5 of the supplemental appendix (available
online), and are consistent with the values found in the empirical
finance literature (see, e.g., Bollerslev, Engle, and Nelson 1994).
From these models, we obtain the estimated standardized resid-
uals, η̂it , which are used in the estimation of the dependence
structure.

In Table 5, we present measures of dependence between these
seven firms. The upper panel reveals that rank correlation be-
tween their standardized residuals is 0.63 on average, and ranges
from 0.55 to 0.76. The lower panel of Table 5 presents measures
of dependence in the tails between these series. The upper trian-
gle presents the average of the 1% and 99% quantile dependence

measures presented in Equation (6), and we see substantial de-
pendence here, with values ranging between 0.16 and 0.40. The
lower triangle presents the difference between the 90% and 10%
quantile dependence measures, as a gauge of the degree of asym-
metry in the dependence structure. These differences are mostly
negative (14 out of 21), indicating greater dependence during
crashes than during booms.

Table 6 presents the estimation results for three different cop-
ula models of these series. The first model is the well-known
Clayton copula, the second is the Normal copula, and the third is
a “factor copula” as proposed by Oh and Patton (2011). The first
copula allows for lower tail dependence, but imposes that up-
per tail dependence is zero. The second copula implies zero tail
dependence in both directions. The third copula allows for tail
dependence in both tails, and allows the degree of dependence
to differ across positive and negative realizations.

Table 6. Estimation results for daily returns on seven stocks

Clayton copula Normal copula Factor copula

MLE SMM SMM-opt MLE SMM SMM-opt MLE SMM SMM-opt
κ κ κ ρ ρ ρ σ 2, ν−1, λ σ 2, ν−1, λ σ 2, ν−1, λ

Estimate 0.907 1.274 1.346 0.650 0.682 0.659 1.995 2.019 1.955
Std err 0.028 0.048 0.037 0.007 0.010 0.008 0.020 0.077 0.069
Estimate – – – – – – 0.159 0.088 0.115
Std err – – – – – – 0.010 0.034 0.033
Estimate – – – – – – −0.021 −0.015 −0.013
Std err – – – – – – 0.032 0.035 0.034
QSMM × 100 – 19.820 19.872 – 0.240 0.719 – 0.040 0.187
Jpval – 0.000 0.000 – 0.043 0.001 – 0.139 0.096
Time 0.7 344 360 0.5 6 6 1734 801 858

NOTE: This table presents estimation results for various copula models applied to seven daily stock returns in the financial sector over the period January 2001 to December 2010.
Estimates and asymptotic standard errors for the copula model parameters are presented, as well as the value of the SMM objective function at the estimated parameters and the p-value
of the overidentifying restriction test. Estimates labeled “SMM” are estimated using the identity weight matrix; estimates labeled “SMM-opt” are estimated using the efficient weight
matrix.
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Figure 1. This figure plots the probability of both variables being less than their q quantile (q < 0.5) or greater than the q quantile (q > 0.5).
For the data, this is averaged across all pairs, and a bootstrap 90% (pointwise) confidence interval is presented.

For all three copulas, we implement the SMM estimator pro-
posed in Section 2, with the identity weight matrix and the
efficient weight matrix, using five dependence measures: Spear-
man’s rank correlation, and the 0.05, 0.10, 0.90, 0.95 quantile
dependence measures, averaged across pairs of assets. We also
implement the MLE for comparison. The value of the SMM ob-
jective function at the estimated parameters is presented for each
model, along with the p-value from a test of the overidentifying
restrictions based on Proposition 4. We use Proposition 3 to
compute the standard errors, with B = 1000 bootstraps used to
estimate 
T ,S, and εT,S = 0.1 used as the step size to compute
ĜT ,S .

The parameter estimates for the Normal and factor copula
models are similar for ML and SMM, while they are quite
different for the Clayton copula. This may be explained by the
results of the test of overidentifying restrictions: the Clayton
copula is strongly rejected (with a p-value of less than 0.001 for
both choices of weight matrix), while the Normal is less strongly
rejected (p-values of 0.043 and 0.001). The factor copula is not
rejected using this test for either choice of weight matrix. The
improvement in fit from the factor copula appears to come from
its ability to capture tail dependence: the parameter that governs
tail dependence (ν−1) is significantly greater than zero, while
the parameter that governs asymmetric dependence (λ) is not
significantly different from zero.

Given that our sample period spans the financial crisis, one
may wonder whether the copula is constant throughout the pe-
riod. To investigate this, we implement the copula structural
break test proposed by Rémillard (2010), using 1000 simula-
tions for the “multiplier” method, and find a p-value of 0.001,
indicating strong evidence of a change in the copula over this
period. Running this test on the last two years of our sample
period (January 2009 to December 2010) results in a p-value of
0.191, indicating no evidence of a change in the copula over this
subperiod. In Table S6 of the supplemental appendix (available

online), we present results from the estimation of these copula
models for this subperiod. The estimated parameters all indicate
a slight increase in dependence relative to the full sample es-
timates, including an increase in the degree of tail dependence
between these firms. The results of the specification tests for
this subsample are very similar to the full sample results.

Figure 1 sheds some further light on the relative performance
of these copula models, over the full sample. This figure com-
pares the empirical quantile dependence function with those
implied by the three copula models. An iid bootstrap with
B = 1000 replications is used to construct pointwise confidence
intervals for the sample quantile dependence estimates. We see
here that the Clayton copula is “too asymmetric” relative to the
data, while both the Normal and the factor copula models appear
to provide a reasonable fit.

5. CONCLUSION

This article presents the asymptotic properties of a new
simulation-based estimator of the parameters of a copula
model, which matches measures of rank dependence implied
by the model to those observed in the data. The estimation
method shares features with the SMM (see, e.g., McFadden
1989; Newey and McFadden 1994); however, the use of rank
dependence measures as “moments” means that existing results
on SMM cannot be used. We extend results on SMM estimators
using empirical process theory for copula estimation (see
Fermanian, Radulović, and Wegkamp 2004; Chen and Fan
2006; Rémillard 2010) to show the consistency and asymptotic
normality of SMM-type estimators of copula models. We also
provide a method for obtaining a consistent estimate of the
asymptotic covariance matrix and a test of the overidentifying
restrictions. Our results apply to both iid and time series data,
and an extensive simulation study verifies that the asymptotic
results provide a good approximation in finite samples. We
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illustrate the results with an application to a model of the
dependence between the equity returns on seven financial
firms.

APPENDIX: SKETCH OF PROOFS

Detailed proofs are available in the supplemental appendix (available
online) to this article.

Proof of Proposition 1. First note that: (a) Q0(θ ) is uniquely mini-
mized at θ0 by Assumption 3(i) and positive definite W0 of Assump-
tion 3(iv), (b) � is compact by Assumption 3(ii), (c) Q0(θ ) consists
of linear combinations of rank correlations and quantile dependence
measures that are functions of pairwise copula functions, so Q0(θ ) is
continuous by Assumption 3(iii). The main part of the proof requires
establishing that QT,S uniformly converges in probability to Q0, which
we show using five lemmas in the supplemental appendix (available
online): pointwise convergence of gT ,S(θ) to g0(θ) and stochastic Lip-
schitz continuity of gT ,S(θ ) are shown using results from Fermanian,
Wegkamp, and Radulović (2004) and Rémillard (2010) combined with
Assumption 3(iii). This is sufficient for the stochastic equicontinuity
of gT ,S and for the uniform convergence in probability of gT ,S to g0by
Lemmas 2.8 and 2.9 of Newey and McFadden (1994). Using the trian-
gle and Cauchy–Schwarz inequalities, this implies that QT,S uniformly
converges in probability to Q0. We have thus verified that the condi-
tions of Theorem 2.1 of Newey and McFadden (1994) hold, and we

have θ̂
p→ θ0 as claimed. �

Proof of Proposition 2. We prove this proposition by verifying the
five conditions of Theorem 7.2 of Newey and McFadden (1994) for
our problem: (i) g0(θ0) = 0 by construction of g0(θ ) = m(θ0) − m(θ).
(ii) g0(θ ) is differentiable at θ0 with derivative G0 such that G′

0W0G0

is nonsingular by Assumption 4(ii). (iii) θ0 is an interior point of �

by Assumption 4(i). (iv) This part requires showing the asymptotic
normality of

√
T gT ,S(θ0). We will present the result only for S/T →

k ∈ (0, ∞). The results for the cases that S/T → 0 or S/T → ∞
are similar. In Lemma 6 of the supplemental appendix (available on-

line), we show that
√

T (m̂T − m0(θ0))
d→ N (0, 
0) as T → ∞ and√

S(m̃S(θ0) − m0(θ0))
d→ N (0, 
0) as S → ∞ using Theorem 3 and

Theorem 6 of Fermanian, Radulović, and Wegkamp (2004) and Corol-
lary 1, Proposition 2, and Proposition 4 of Rémillard (2010). This
implies that

√
T gT ,S(θ0) =

√
T (m̂T − m0(θ0))︸ ︷︷ ︸

d→N(0,
0)

−
√

T

S︸︷︷︸
→1/

√
k

√
S(m̃S(θ0) − m0(θ0))︸ ︷︷ ︸

d→N(0,
0)

,

and so
√

T gT ,S(θ0)
d→ N (0, (1 + 1/k)
0) as T , S → ∞. (v) This

part requires showing that sup‖θ−θ0‖<δ

√
T ‖gT ,S(θ ) − gT ,S(θ0) −

g0(θ )‖/[1 + √
T ‖θ − θ0‖]

p→ 0. The main part of this proof involves
showing the stochastic equicontinuity of vT ,S(θ ) = √

T [gT ,S(θ ) −
g0(θ )]. This is shown in Lemma 7 of the supplemental appendix
(available online) by showing that {g·,·(θ ) : θ ∈ �} is a type II
class of functions in Andrews (1994), and then using that article’s
Theorem 1. �

Proof of Proposition 3. If μt and σ t are known constant, or if φ0 is
known, then the consistency of 
̂T ,B follows from Theorems 5 and 6 of
Fermanian, Radulović, and Wegkamp (2004). When φ0 is estimated,
the result is obtained by combining the results in Fermanian, Radulović,
and Wegkamp with those of Rémillard (2010): for simplicity, assume
that only one dependence measure is used. Let ρ̂ij and ρ̂

(b)
ij be the

sample rank correlations constructed from the standardized residuals
{η̂i

t , η̂
j
t }T

t=1 and from the bootstrap counterpart {η̂(b)i
t , η̂

(b)j
t }T

t=1. Also,

define the corresponding estimates, ρ̈ij and ρ̈
(b)
ij , using the true innova-

tions {ηi
t , η

j
t }T

t=1 and the bootstrapped true innovations {η(b)i
t , η

(b)j
t }T

t=1

(where the same bootstrap time indices are used for both {η̂(b)i
t , η̂

(b)j
t }T

t=1

and {η(b)i
t , η

(b)j
t }T

t=1). Define true ρ as ρ0. Theorem 5 of Fermanian,
Radulović, and Wegkamp (2004) shows that

√
T (ρ̈ij − ρ0) =

√
T (ρ̈(b)

ij − ρ̈ij ) + op(1).

Corollary 1 and Proposition 4 of Rémillard (2010) show, under As-
sumption 2, that

√
T (ρ̂ij − ρ̈ij ) = op(1) and

√
T
(
ρ̂

(b)
ij − ρ̈

(b)
ij

)
= op(1).

Combining those three equations, we obtain
√

T (ρ̂ij − ρ0) =
√

T
(
ρ̂

(b)
ij − ρ̂ij

)
+ op(1), as T , B → ∞,

and so Equation (13) is a consistent estimator of 
0. Consistency of the
numerical derivatives ĜT ,S can be established using a similar approach

to Theorem 7.4 of Newey and McFadden (1994), and since ŴT

p→ W0

by Assumption 3(iv), we thus have 	̂T ,S,B

p→ 	0. �
Proof of Proposition 4. We consider only the case where S/T → ∞

or S/T → k > 0. The case for k = 0 is analogous. A Taylor expansion
of g0(θ̂T ,S) around θ0 yields
√

T g0(θ̂T ,S) =
√

T g0(θ0) + G0 ·
√

T (θ̂T ,S−θ 0) + o(
√

T ‖θ̂T ,S−θ 0‖),

and since g0(θ0) = 0 and
√

T ‖θ̂T ,S−θ 0‖ = Op(1)
√

T g0(θ̂T ,S) = G0 ·
√

T (θ̂T ,S−θ 0) + op(1). (19)

Then, consider the following expansion of gT ,S(θ̂T ,S) around θ0

√
T gT ,S(θ̂T ,S) =

√
T gT ,S(θ0) + ĜT ,S ·

√
T (θ̂T ,S−θ 0) + RT ,S(θ̂T ,S),

(20)

where the remaining term is captured by RT ,S(θ̂T ,S). Combining Equa-
tions (19) and (20), we obtain

√
T [gT ,S(θ̂T ,S) − gT ,S(θ0) − g0(θ̂T ,S)]

= (ĜT ,S−G0) ·
√

T (θ̂T ,S−θ 0) + RT ,S(θ̂T ,S) + op(1).

The stochastic equicontinuity of vT ,S(θ) = √
T [gT ,S(θ ) − g0(θ )] is es-

tablished in the proof of Proposition 2, which implies (see proof of
Proposition 2) that

√
T [gT ,S(θ̂T ,S) − gT ,S(θ0) − g0(θ̂T ,S)] = op(1).

By Proposition 3, ĜT ,S−G0 = op(1), which implies RT ,S(θ̂T ,S) =
op(1). Thus, we obtain the expansion of gT ,S(θ̂T ,S) around θ0 :
√

T gT ,S(θ̂T ,S) =
√

T gT ,S(θ0) + ĜT ,S ·
√

T (θ̂T ,S−θ 0) + op(1). (21)

The remainder of the proof is the same as in standard GMM applications
(see, e.g., Hall 2005). �

Proof of Proposition 5. Lemmas 1, 2, 3, and 4 are not affected by
misspecification. Lemma 5(i) is replaced by Assumption 5(ii). There-

fore, θ̂T ,S

p→ θ∗(W0). �

[Received November 2011. Revised September 2012.]
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