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Motivation

A model for the distribution of returns on a collection of �nancial assets is
crucial for risk management and asset allocation

And these collections tend to be large: eg, median number of stocks held by
US mutual funds is 94 (25/75 percentiles are 46 and 208)

But there are relatively few dynamic, high-dimension models available

Many are based on multivariate Normality, despite its limitations

Almost all use data from a common sampling frequency

We propose a new approach for constructing and estimating high
dimension distribution models, drawing on two areas of recent research:

1 High frequency data is very useful for estimating lower-frequency second
moments (eg, correlation)

2 Copula-based distributions are useful for constructing �exible models
in high dimensions
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High frequency data in lower frequency copula models

Exploiting high frequency data in lower-frequency copula-based models is not
straightforward:

Unlike covariances, the copula of daily returns is not generally a known
function of the copula of high frequency returns

So most of the nice theory from high frequency �nancial econometrics cannot
be used directly

We propose decomposing the dependence structure of daily returns
into linear and nonlinear components:

High frequency data is used to accurately model the linear dependence

Low frequency data and a new class of copulas is used to capture the
remaining nonlinear dependence
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Decomposition of dependence

Linear
dependence

Nonlinear
dependence

Dependence

Linear dependence: Captured by correlation

Nonlinear dependence: Any dependence beyond linear correlation
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Standard use of copulas in the literature

Linear
dependence

Nonlinear
dependence

Dependence Captured by
the copula

Chasing two rabbits with only one tool

A heavy burden for the copula model
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Our approach: in pictures

Linear
dependence

Nonlinear
dependence

Dependence

Captured by
the copula

Captured by
HF data

Chasing two rabbits with two tools: high frequency data and copulas

High frequency data shares the heavy burden with the copula model
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Our approach: in equations

We construct a model for a N-vector of daily returns rt as follows. Let:

rt = �t +H
1=2
t et

where Et�1 [et ] = 0, Et�1 [ete0t ] = I

Use standard methods to estimate �t

Use high frequency data to obtain improved estimates of Ht

We propose a HAR-type model for Ht (more details below)

Decompose the distribution of the uncorrelated residuals as

et s iid F (�;�) = C (F1 (�;�) ; :::;FN (�;�) ;�)

Can easily choose Fi to ensure that E [eit ] = 0 and E
�
e2it
�
= 1

But also need to ensure that F is such that E [eitejt ] = 0 8 i 6= j
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Contributions of this paper

This paper makes four main contributions. We:

1 Propose a new class of �jointly symmetric�copulas, useful in MV density
models that contain a covariance matrix model (eg, DCC, HAR, SV, etc.)

2 Show that composite likelihood methods can be used to estimate these new
models, and verify good �nite sample properties via simulations

3 Propose a new, simple model for high-dimension covariance matrices,
drawing on the HAR and DCC models of Corsi (2009) and Engle (2002)

4 Apply these news models to a detailed study of 104 US equity returns, and
show that they outperform existing approaches both in- and out-of-sample

Patton (Duke) High Dim/High Freq Copulas February 2015 � 8 �



Outline

1 Introduction

2 Models of linear and nonlinear dependence

Jointly symmetric copulas

A new covariance matrix model

3 Estimation and comparison via composite likelihood

4 Simulation study

5 Analysis of S&P 100 equity returns
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A model for uncorrelated residuals

A key building block for our model is an N-dim distribution F that guarantees
an identity correlation matrix

There are very few existing copulas that do this

Normal copula with identity correlation matrix (ie, independence copula)

t copula with identity correlation matrix, when combined with symmetric
marginals

The idea in this paper is to exploit the fact that multivariate distributions that
satisfy a certain symmetry condition automatically ensure zero correlation
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Joint symmetry and lack of correlation

De�nition: Let X be a vector of N variables and let a 2 RN : Then
X is jointly symmetric about a if the following 2N vectors of N random variables
have the same joint distribution

~X(i) =
h
~X (i)1 ; :::; ~X

(N)
1

i
, i = 1; 2; :::; 2N

where ~X (N)j = (Xj � aj ) or (aj � Xj ) for j = 1; 2; ::;N

Lemma 1: If X is jointly symmetric and has �nite second moments, then it has
an identity correlation matrix.

Lemma 2: Let X s F = C (F1; :::;FN ) ; where Xi is symmetric about ai 8 i : Then
X is jointly symmetric i¤ C is jointly symmetric.

Result: Any combination of symmetric marginals and jointly symmetric copula
yields a jointly symmetric joint distribution, implying an identity correlation matrix
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Jointly symmetric copula models

There are numerous interesting/useful copula models in the literature, almost
none of which are jointly symmetric.

We overcome this lack of choice by proposing a novel way to obtain a jointly
symmetric copula: rotate existing copulas
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Example: rotations of the Clayton copula
Bivariate distributions with rotated Clayton copulas and N(0,1) margins
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Example: a jointly symmetric Clayton copula
Bivariate distributions with jointly symmetric Clayton copula and N(0,1) margins
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Example: other jointly symmetric distributions
Bivariate distributions with jointly symmetric copulas and N(0,1) margins
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N-dimensional jointly symmetric copulas

Theorem: Given any N-dimensional copula C with density c; then

(i) The following copula CJS is jointly symmetric:

CJS (u1; : : : ; uN ) =
1
2N

"
2X

k1=0

� � �
2X

kN=0

(�1)R � C (eu1; : : : ; euN )#

where eui =

8<: 1; ki = 0
ui ; ki = 1

1� ui ; ki = 2
, and R =

NX
i=1

1 fki = 2g

(ii) The probability density function cJS implied by CJS is

cJS (u1; : : : ; uN ) =
1
2N

"
2X

k1=1

� � �
2X

kN=1

c (eu1; : : : ; euN )#
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A new, simple covariance matrix model I

Let � be the sampling frequency (eg, �ve minutes), yielding 1=�
observations per trade day, and de�ne the realized covariance matrix as

RCov�t =
X1=�

j=1
rt�1+j�r0t�1+j� =

q
RV�t RCorr

�
t

q
RV�t

where RV�t = diag
��
RV�1t ; :::;RV

�
Nt

�	

We suggest using a HAR model (Corsi, 2009) for the log realized variances:

logRV�i ;t = �
(const)
i + �

(day )
i logRV�i ;t�1

+�
(week)
i

1
4

X5

j=2
logRV�i ;t�j

+�
(month)
i

1
15

X20

j=6
logRV�i ;t�j + �it

estimated via OLS for each variance.

Patton (Duke) High Dim/High Freq Copulas February 2015 � 19 �

ap172
Rectangle



A new, simple covariance matrix model I

Let � be the sampling frequency (eg, �ve minutes), yielding 1=�
observations per trade day, and de�ne the realized covariance matrix as

RCov�t =
X1=�

j=1
rt�1+j�r0t�1+j� =

q
RV�t RCorr

�
t

q
RV�t

where RV�t = diag
��
RV�1t ; :::;RV

�
Nt

�	

We suggest using a HAR model (Corsi, 2009) for the log realized variances:

logRV�i ;t = �
(const)
i + �

(day )
i logRV�i ;t�1

+�
(week)
i

1
4

X5

j=2
logRV�i ;t�j

+�
(month)
i

1
15

X20

j=6
logRV�i ;t�j + �it

estimated via OLS for each variance.

Patton (Duke) High Dim/High Freq Copulas February 2015 � 19 �



A new, simple covariance matrix model II

We next propose a HAR-type model for the realized correlation matrix,
imposing parameter constraints similar to the DCC model of Engle (2002):

vech
�
RCorr�t

�
= (1� a� b � c) vech

�
RCorr�T

�
+a � vech

�
RCorr�t

�
+b � 1

4

X5

k=2
vech

�
RCorr�t�k

�
+c � 1

15

X20

k=6
vech

�
RCorr�t�k

�
+ �t

where (a; b; c) 2 R3:

This parsimonious model can easily be estimated via OLS, and guarantees
positive de�niteness if (a; b; c) > 0 and a+ b + c < 1:
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Multi-stage estimation

Our model for the vector of asset returns is

rt = �t +H
1=2
t et

where et s iid F (�;�) = C (F1 (�;�) ; :::;FN (�;�) ;�)

and F is constrained so that E [et ] = 0 and E [ete0t ] = I:

We will �rst discuss estimation of C; and then consider estimation of the rest
of the model (in stages)

Inference methods will take into account the multi-stage estimation method
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Composite likelihood estimation of the copula I

Our method for constructing a JS cpoula requires 2N evaluations of a given
original copula density. Even for moderate dimensions this can be very slow

Eg: computation time for one evaluation of density of JS Clayton:

N 10 20 30 50 100

Time 0:23 sec 4 min 70 hours 106 years 1017 years

We propose overcoming this di¢ culty by using composite likelihood
methods (Lindsay 1988)

Estimate parameters of the full model by maximizing the likelihoods of
submodels

Consistent if submodels are su¢ cient to identify parameter of full model

Less e¢ cient, though loss need not be great
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Composite likelihood estimation of the copula II

Composite likelihood is particularly attractive for jointly symmetric copulas:

Proposition: For an N-dimensional jointly symmetric copula generated using
Theorem 1, the (i ; j) bivariate marginal copula density is obtained as

cJSij (ui ; uj ) =
1
4
fcij (ui ; uj ) + cij (1-ui ; uj ) + cij (ui ; 1-uj ) + cij (1-ui ; 1-uj )g

where cij is the (i ; j) marginal copula density of the original N-dimensional copula.

Thus while the full copula model requires 2N rotations of the original density,
bivariate marginal copulas only require 22 rotations.
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Composite likelihood estimation of the copula III

Similar to Engle, et al. (2008), we consider CL based either on all pairs,
adjacent pairs, or just one pair of variables:

CLall (u1; : : : ; uN ) =
XN�1

i=1

XN

j=i+1
log ci ;j (ui ; uj )

CLadj (u1; : : : ; uN ) =
XN�1

i=1
log ci ;i+1 (ui ; ui+1)

CL�rst (u1; : : : ; uN ) = log c1;2 (u1; u2)

Comparison of compuation times for single evaluation of log-likelihood:

N 10 20 30 50 100

Full likelihood 0:23 sec 4 min 70 hours 106 years 1017 years
All pairs CL 0:05 sec 0:21 sec 0:45 sec 1:52 sec 5:52 sec
Adjacent pairs CL 0:01 sec 0:02 sec 0:03 sec 0:06 sec 0:11 sec
First pair CL 0:001 sec 0:001 sec 0:001 sec 0:001 sec 0:001 sec
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Composite likelihood estimation of the copula IV

The maximum composite likelihood estimator (MCLE) is then obtained as:

�̂MCLE = argmax
�

TX
t=1

CL (u1t ; ::; uNt ;�)

Under standard regularity conditions, Cox and Reid (2004) show that

p
T
�
�̂MCLE��0

�
d�!N

�
0;H�1

0 J0H�1
0

�

A key condition for CL to work is that the submodels used are
rich enough to identify the parameters

This needs to be veri�ed on a case by case basis

Is easily satis�ed for the jointly symmetric copulas we consider: all have just a
single unknown parameter, which appears in all bivariate submodels
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Model selection tests with composite likelihood I

We �rst de�ne the composite Kullback-Leibler information criterion (cKLIC)
following Varin and Vidoni (2005).

De�nition (Varin and Vidoni, 2005): Given an N-dimension random variable Z
with true density g; the composite Kullback-Leibler information criterion (cKLIC)
of a density h relative to g is

Ic (g;h) = Eg

"
log

N�1Y
i=1

gi (zi ; zi+1)� log
N�1Y
i=1

hi (zi ; zi+1)

#

where
N�1Q
i=1

gi (zi ; zi+1) and
N�1Q
i=1

hi (zi ; zi+1) are adjacent-pair composite likelihoods

using the true density g and a competing density h.

Above uses CL with adjacent pairs, but other cKLICs can be de�ned
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Model selection tests with composite likelihood II

Note that the expectation is with respect to the (complete) true density g
rather than the CL of the true density, so it possible to interpret
cKLIC as a linear combination of the KLICs of submodels:

Ic (g;h) =
N�1X
i=1

Eg

�
log

gi (zi ; zi+1)
hi (zi ; zi+1)

�
=

N�1X
i=1

Egi

�
log

gi (zi ; zi+1)
hi (zi ; zi+1)

�

This implies that existing in-sample model selection tests, such as those of
Vuong (1989) and Rivers and Vuong (2002) can be applied to model
selection using cKLIC.
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Model selection tests with composite likelihood III

We may also wish to select the best model in terms of out-of-sample (OOS)
forecasting performance measured by some scoring rule, S; for the model.

Gneiting and Raftery (2007) de�ne �proper� scoring rules as those which
ensure that the true density always receives a higher score than other densities

The log density, i.e. S (h (Zt+1)) = log h (Zt+1) is proper.

We may consider a similar scoring rule based on log composite density:

S (h (Zt+1)) =
N�1X
i=1

log hi (Zi ;t+1;Zi+1;t+1)

We show that this scoring rule is also proper.

Thus OOS tests based on CL are related to the cKLIC, analogous to
OOS tests based on the (full) likelihood being related to the KLIC.

Patton (Duke) High Dim/High Freq Copulas February 2015 � 29 �



Multi-stage estimation of the complete model

In our empirical work we use an AR(1) for the mean: �̂
mean
i 8 i

Estimate the individual variance models using the HAR model: �̂
var
i 8 i

Estimate the HAR-correlation model: �̂
corr

Compute the standardized uncorrelated residuals

êt = Ĥ
�1=2
t rt

and estimate their (symmetric) marginal distributions: �̂
mar
i 8 i

Estimate the jointly symmetric copula model: �̂
cop
:

De�ne

�̂MSML =
h
�̂
mean
1 ; :::; �̂

mean
N ; �̂

var
1 ; : : : ; �̂

var
N ; �̂

corr
; �̂
mar
1 ; : : : ; �̂

mar
N ; �̂

cop
i

Multi-stage ML estimation (including with a composite likelihood stage) is a
form of multi-stage GMM estimation, and under standard regularity
conditions it can be shown (see Newey and McFadden, 1994) that

p
T
�
�̂MSML���

�
d�! N (0;V �MSML) as T !1
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Finite-sample properties of CL estimators

We consider the estimation of jointly symmetric copula parameters via
composite likelihood, compared with maximum likelihood (where feasible).

We use the JS Clayton and JS Gumbel copulas

Dimension of problem varies: N 2 f2; 3; 5; 10; :::; 100g :

Sample size is T = 1000:
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Standard deviation of ML and CL as a function of N
ML is best, but infeasible for N>10; CL-adj gets close to CL-all for N>50
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Data used in our empirical analysis

We study daily returns on all constituents of the S&P 100 index (N = 104)
over the period January 2006�December 2012 (T = 1761)

High frequency data is from the NYSE TAQ database, cleaned following
Barndor¤-Nielsen, Hansen, Lunde and Shephard (2009)

We adjust for stock splits and dividends using the adjustment factor from
CRSP

We use 5-minute sampling to compute the realized covariance matrix
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Summary stats and mean models

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Summary statistics
Skewness -0.07 -0.66 -0.32 -0.03 0.18 0.56
Kurtosis 11.86 6.92 8.47 10.50 13.40 20.02
Corr 0.47 0.33 0.40 0.46 0.52 0.63

Conditional mean model
Constant 0.00 -0.00 0.00 0.00 0.00 0.00
AR(1) -0.05 -0.13 -0.08 -0.06 -0.03 0.01

Tests for skewness, kurtosis, and correlation

# of rejections
H0 : Skew [rit ] = 0 3 out of 104
H0 : Kurt [rit ] = 3 104 out of 104
H0 : Corr [rit ; rjt ] = 0 5356 out of 5356
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Volatility and correlation models
We also consider a GJR-GARCH/DCC model (details in paper)

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

Variance model

Constant �(const)i -0.00 -0.08 -0.04 -0.01 0.02 0.10
HAR day �(day )i 0.38 0.32 0.35 0.38 0.40 0.44
HAR week �(week)i 0.31 0.23 0.28 0.31 0.35 0.39
HAR month �(mth)i 0.22 0.16 0.20 0.21 0.24 0.30

Correlation model
Est Std Err

HAR day (a) 0.12 0.01
HAR week (b) 0.32 0.02
HAR month (c) 0.38 0.03
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Marginal distribution models

Cross-sectional distribution
Mean 5% 25% Median 75% 95%

HAR standardized residuals
Mean 0.00 -0.01 -0.00 0.00 0.01 0.02
Std dev 1.09 0.96 1.02 1.08 1.14 1.29
Skewness -0.16 -1.58 -0.47 -0.08 0.34 0.72
Kurtosis 13.12 5.06 6.84 9.87 16.03 32.72
Correlation 0.00 -0.04 -0.02 0.00 0.02 0.05

Marginal t distribution parameter estimates
HAR 5.30 4.12 4.75 5.12 5.87 6.88

Tests for skewness, kurtosis, and correlation
# of rejections

HAR DCC
H0 : Skew [eit ] = 0 4 out of 104 6 out of 104
H0 : Kurt [eit ] = 3 104 out of 104 104 out of 104
H0 : Corr [eit ; ejt ] = 0 497 out of 5356 1 out of 5356
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Jointly symmetric copula models

We consider three classes of models for the standardized residuals (et):

Jointly symmetric copula models (Clayton, Gumbel, Frank and t) combined
with N Student�s t distributions for the marginals

The independence copula model, with N Student�s t dist�ns for the marginals

A jointly symmetric multivariate t distribution

The �rst two are copula-based approaches, allowing for separate speci�cation
of the marginals and copula

The third corresponds to existing �best practice� for this problem

We do not even bother considering the MV Normal distribution...
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Jointly symmetric copula model results

Jointly symmetric copula models Benchmarks
t Clayton Frank Gumbel Indep MV t dist

HAR Est. 39:44 0:09 1:27 1:02 - 6:43y

s.e. 4:35 0:01 0:09 0:01 - 0:14

t-test of indep 8.45 10.07 13.43 5.25 - 45.72
Rank of LogL 1 2 3 4 5 6

DCC Est. 28:21 0:11 1:60 1:03 - 7:10y

s.e. 5:50 0:02 0:15 0:01 - 0:36

t-test of indep 6.13 7.36 10.36 4.40 - 17.80
Rank of LogL 7 8 9 10 11 12
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Linear correlation from the HAR model (Citi-GS)
Correlation varies from 0.25 to 0.75 over the sample period
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Quantile dependence (1%) from the JS t model (Citi-GS)
Quant dep(q) = C(q,q)/q. Ranges from 0.03 to 0.35
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Model comparison tests

We use the composite likelihood KLIC (cKLIC) to compare these models:

H0 : E
�
CLAt � CLBt

�
= 0

vs. H1 : E
�
CLAt � CLBt

�
> 0

H2 : E
�
CLAt � CLBt

�
< 0

Rivers and Vuong (2002) provide a method for testing this null (in-sample)
for the non-nested models

We use Giacomini and White (2006) to test the out-of-sample analogue of
this null

OOS comparisons involve a penalty for excess parameters

We use a rolling window estimation scheme, with the last two years as the
OOS period
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In-sample model comparison t-statistics: HAR vs HAR
A positive value indicates the column model beats the row model

tJS ClaytonJS FrankJS GumbelJS Indep MV t
tJS �

ClaytonJS 2.92 �
FrankJS 2.16 1.21 �
GumbelJS 5.38 6.02 1.75 �

Indep� 8.45 10.07 13.43 5.25 �
MV t 19.70y 19.52 19.45 19.23 18.40z �

The jointly symmetric t copula model signi�cantly beats all competitors

The multivariate t distribution is beaten by all competitors

Patton (Duke) High Dim/High Freq Copulas February 2015 � 44 �



In-sample model comparison t-statistics: DCC vs DCC
A positive value indicates the column model beats the row model

tJS ClaytonJS FrankJS GumbelJS Indep MV t
tJS �

ClaytonJS 4.48 �
FrankJS 2.69 1.27 �
GumbelJS 6.74 7.47 1.74 �

Indep� 6.13 7.36 10.36 4.40 �
MV t 18.50y 18.11 17.94 17.60 15.69z �

The jointly symmetric t copula model signi�cantly beats all competitors

The multivariate t distribution is beaten by all competitors
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In-sample model comparison t-statistics: HAR vs DCC
A positive value indicates the column model beats the row model

HAR models
tJS ClaytonJS FrankJS GumbelJS Indep MV t

tJS 7.86 7.85 7.85 7.84 7.82 6.92
ClaytonJS 7.86 7.86 7.85 7.85 7.83 6.93

DCC FrankJS 7.85 7.85 7.84 7.83 7.82 6.91
models GumbelJS 7.88 7.87 7.87 7.86 7.84 6.94

Indep� 7.90 7.90 7.90 7.89 7.87 6.97
MV t 8.95 8.95 8.94 8.94 8.92 8.03

HAR models beat DCC equivalents for all choices of copula model

Even the worst HAR model signi�cantly beats the best DCC model
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Out-of-sample model comparison t-statistics: HAR vs HAR
A positive value indicates the column model beats the row model

tJS ClaytonJS FrankJS GumbelJS Indep MV t
tJS �

ClaytonJS 1.50 �
FrankJS 0.89 0.44 �
GumbelJS 2.88 3.09 1.21 �

Indep 2.57 2.60 2.34 1.84 �
MV t 10.75 10.63 10.65 10.48 10.00 �

The jointly symmetric t; Clayton and Frank copula models are
signif better than all others, but not signif di¤ from each other

The multivariate t distribution is still beaten by all competitors
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Out-of-sample model comparison t-statistics: DCC vs DCC
A positive value indicates the column model beats the row model

tJS ClaytonJS FrankJS GumbelJS Indep MV t
tJS �

ClaytonJS 1.55 �
FrankJS 1.79 1.34 �
GumbelJS 2.96 3.31 0.01 �

Indep 3.10 3.12 2.38 2.44 �
MV t 14.65 14.33 14.56 13.88 12.80 �

The jointly symmetric t; Clayton and Frank copula models are
signif better than all others, but not signif di¤ from each other

The multivariate t distribution is still beaten by all competitors
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Out-of-sample model comparison t-statistics: HAR vs DCC
A positive value indicates the column model beats the row model

HAR models
tJS ClaytonJS FrankJS GumbelJS Indep MV t

tJS 5.23 5.23 5.23 5.23 5.22 4.55
ClaytonJS 5.23 5.23 5.23 5.23 5.22 4.55

DCC FrankJS 5.23 5.22 5.23 5.22 5.21 4.55
models GumbelJS 5.24 5.24 5.24 5.23 5.22 4.56

Indep 5.24 5.24 5.24 5.23 5.22 4.56
MV t 6.05 6.05 6.05 6.05 6.04 5.41

HAR models beat DCC equivalents for all choices of copula model

Even the worst HAR model signi�cantly beats the best DCC model
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Summary and conclusion

We propose a new class of dynamic, high-dimensional distribution models

We exploit high frequency data to accurately measure and model linear
dependence (correlation)

We use a new class of jointly symmetric copulas to capture any remaining
nonlinear dependence

We consider composite likelihood estimation and model comparison to
overcome the computational burden of estimating our JS copulas

In an application to daily returns on 104 US equities, we �nd:

Signi�cant gains to using high frequency data for estimating linear dependence

Signi�cant gains from capturing the remaining nonlinear dependence using a
jointly symmetric copula

Both of the above conclusions hold both in- and out-of-sample
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Appendix

Patton (Duke) High Dim/High Freq Copulas February 2015 � 51 �



Related literature: dynamic high dimension distributions

Use copula model to capture entire dependence structure

Patton (2006), Rodriguez (2007), Hafner and Manner (2010), Creal, et al.
(2013), De Lira and Patton (2014), and others

Model covariance matrix and combine with a Normal or Student�s t
distribution

Jondeau and Rockinger (2012), Hautsch et al. (2013), Jin and Maheu (2013),
and others

Combine a covariance matrix model for returns and a copula model for the
uncorrelated residuals

This paper, and Lee and Long (2009)
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Comparison with Lee and Long (2009)

Lee and Long also suggest a linear/nonlinear decomposition:

rt = �t +H
1=2
t ��1=2wt

where wt s iid G = Cw (G1; :::;GN )

Et�1 [wit ] = 0, Et�1
�
w 2it
�
= 1 and ��Et�1 [wtw0t ]

Key di¤erences from our approach:

LL allow for any model G; and impose the zero correlation constraint by
rotating the variables, wt ; by their covariance matrix, �:
This step rules out multistage estimation of G; as all marginals and the
coupla are needed to compute �
The covariance matrix � usually requires numerical methods for computation
Smaller: LL use a GARCH model for Ht ; while we exploit recent work in
high frequency methods to estimate this
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Where the bodies are buried...

Our model:

rt = �t +H
1=2
t et

where et s iid F = CJS (F1; :::;FN )

All components of this model are parametric: covariance, marginals, copula

x All are thus subject to model misspeci�cation

X In high dimension applications some parametric structure is needed

Residuals et are iid ) all dynamics in this model come from Ht (and �t)

x Rules out separate variation in higher-order moments or other dep measures

X Second-moment variation is easily most prominent in �nancial data

Joint symmetry assumption implies returns are conditionally symmetric

x Will not be plausible in some applications

X Can use Lee-Long method if needed (computationally di¢ cult)
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