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Asking for an expert forecast

How should we ask experts for their (point, interval or density) forecasts?

It is broadly accepted that the method used to evaluate experts should be
tied to the quantity that forecasters were asked to predict:

If they are asked for their conditional expectation, we should evaluate experts
in terms of their ability to match the mean of the target variable.

Similarly if they are asked for the median, Value-at-Risk, a prediction interval,
a probability density forecast, etc.

Eg, the same number will likely not be a good forecast of the mean and VaR.

Being clear about the quantity of interest to the forecast user provides
structure (details below) on how we evaluate expert forecasts.
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Some real-world complications

This paper addresses whether the way we ask experts for their forecasts
should also vary with the forecast �environment�?

(a) Are the best forecasting models possibly misspeci�ed?

(b) Are competing forecasters using non-nested information sets?

(c) Are the forecasts subject to estimation error?

This paper shows that the presence of any of the above features provides
even greater structure on how we should ask for an expert forecast.

What do economic surveys actually ask for?
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What do surveys ask for?

Survey of Professional Forecasters, run by the Philadelphia Fed:

�What do you expect to be the annual average CPI in�ation rate over the next
5 years?� (Section 7 of the survey)

Thomson Reuters/University of Michigan Survey of Consumers:

�By about what percent do you expect prices to go (up/down) on the average,
during the next 12 months?�(Question A12b)

Livingston survey:

�What is your forecast of the annual rate of change in the CPI?�
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Mean forecasts and Bregman loss functions

Minimizing expected quadratic loss leads to the conditional mean:

Ŷ �t+hjt � arg miny2Y
E
h
(Yt+h � ŷ)2 jFt

i
= E [Yt+h jFt ]

This is in fact true for an entire family of functions known as Bregman loss
functions (Banerjee, et al. 2005 IEEE; Gneiting 2011 JASA; Bregman, 1967)

L (y , ŷ ; φ) = φ (y)� φ (ŷ)� φ0 (ŷ) (y � ŷ) , φ convex

Bregman loss functions are said to be �consistent� for the mean, in that the
mean minimizes the expected loss for any L 2 LBregman

No other quantity (median, mode, etc.) leads to lower expected loss

The mean is said to be �elicitable� using Bregman loss
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Mean forecasts , Bregman loss functions

Perhaps more surprising is that this class of loss functions is
su¢ cient *and* necessary for the conditional mean to optimal:

Ŷ �t+hjt � arg min
y2Y

E [L (Yt+h , ŷ) jFt ] = E [Yt+h jFt ]

, L 2 LBregman

Su¢ ciency of Bregman loss is easy to verify: the �rst-order condition for the
optimal forecast is

FOC 0 = φ00
�
Ŷ �t+hjt

� �
E [(Yt+h) jFt ]� Ŷ �t+hjt

�

Necessity is a bit harder to establish and interpret

Patton (2011) uses a generalized Farkas lemma but other proofs are possible
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A few interesting features of Bregman loss

Bregman loss:

L (y , ŷ ; φ) = φ (y)� φ (ŷ)� φ0 (ŷ) (y � ŷ) , φ convex

Savage (1971, JASA): The only Bregman loss function that is solely a
function of the di¤erence forecast error, y -ŷ , is the quadratic loss function.

Patton (2011, JoE ): The only Bregman loss function that is solely a function
of the ratio forecast error, y/ŷ , is the QLIKE loss function:

L (y , ŷ) =
y
ŷ
� log y

ŷ
� 1

Savage (1971, JASA): The only Bregman loss function that is
symmetric is the quadratic loss function.

Patton (Duke) Comparing Possibly Misspeci�ed Forecasts October 2016 � 8 �



Illustrating the variety of Bregman loss functions

Consider the following two parametric families of Bregman loss functions:

1 Homogeneous Bregman:

L (y , ŷ ; k) = jy jk � jŷ jk � ksgn (ŷ) jŷ jk�1 (y � y) , k > 1

Nests quadratic loss at k = 2

2 Exponential Bregman:

L (y , ŷ ; a) =
2
a2
(exp fayg � exp faŷg)� 2

a
exp faŷg (y � ŷ) , a 6= 0

Nests quadratic loss as a ! 0

Note the similarity to �linex� loss.
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Homogeneous Bregman loss functions
Bregman loss functions can be asymmetric in either direction, and be convex or not
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Exponential Bregman loss functions
Bregman loss functions can be asymmetric in either direction
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Evaluating possibly misspeci�ed forecasts

Gneiting (2011, JASA):

F �If point forecasts are to be issued and evaluated, it is essential that either
the scoring function be speci�ed ex ante, or an elicitable target functional
be named, such as the mean or a quantile of the predictive distribution, and
scoring functions be used that are consistent for the target functional.�

) If you ask for a forecast of the mean, you should evaluate using a
Bregman loss function.

This is a sensible recommendation, but this paper shows that in practice, it is
not su¢ cient to tell the survey respondents the target functional

) Respondents should be told the speci�c loss function that will be used to
evaluate their forecasts.
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Forecast evaluation using economic loss functions

Paper Target Loss function

Leitch & Tanner (1991, AER) Interest rates T-bill trading pro�ts
West, Edison, Cho (1993, JIE ) FX volatility Portfolio decisions
Fleming, Kirby, Ostdiek (2001, JF ) Asset volatility Portfolio decisions
Christo¤ersen & Jacobs (2004, JFE ) Equity volatility Option pricing errors

Speci�c economic applications trace out particular loss functions,
(and in turn imply a particular quantities as the target functionals)

This paper is more related to cases where only the target functional is known,
but arrives at similar conclusions
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Forecast comparison in ideal environments

Proposition: Assume that

(i) the information sets of forecasters A and B are nested, so that
FBt � FAt 8t or FAt � FBt 8t, and

(ii) forecasts A and B are optimal under some Bregman loss function.

F Then the ranking of these forecasts by MSE is su¢ cient for the ranking by
any Bregman loss function. That is

MSEA S MSEB ) E
h
L
�
Yt , Ŷ At

�i
S E

h
L
�
Yt , Ŷ Bt

�i
8L 2 LBregman

Proof is based necessity of Bregman for mean forecast optimality and the
law of iterated expectations (see paper for details).

See also Holzmann and Eulert (2014, AoAS)
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Model estimation in ideal environments

Proposition: Assume that

(i) E [Yt jFt ] = m (Xt ; θ0) for some θ0 2 Θ � Rp , p < ∞, and

(ii) ∂m (Xt ; θ) /∂θ 6= 0 a.s. 8 θ 2 Θ.

De�ne
θ�φ � argmin

θ2Θ
E [L (Yt ,m (Xt ; θ) ; φ)]

where L is a Bregman loss function characterized by φ.

F Then θ�φ = θ0 8φ.

Elliott, et al. (2016, REStat) has a related result for forecasts of binary
variables.
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Recap (or, �Why haven�t I heard about Bregman before?�)

In the �ideal� forecasting environment:

1 models are correctly speci�ed,

2 models are free from parameter estimation error, and

3 competing forecasts are based on nested information sets.

The variety of loss functions that are consistent for the mean may be ignored
(in the limit):

ranking by MSE is the same as by any Bregman loss

estimation by OLS is the same as by any Bregman loss

The e¢ ciency of estimation and comparison by these loss functions may
di¤er, but we do not focus on that here.
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Optimizing misspeci�ed models

If the model is misspeci�ed, then the optimal model parameters will generally
be sensitive to the choice of Bregman loss function used in estimation.

Simple example:

DGP Y = X 2 + ε, ε s iid N (0, 1)

X s iid N
�

µ, σ2
�

Model Y = α+ βX + e

F Then, across the class of Exponential Bregman loss functions with shape
parameter a, we �nd:

α̂�a = σ2 � µ2

(1� 2aσ2)
2 and β̂�a =

2µ

1� 2aσ2
for a 6= 1/

�
2σ2

�
See the following �gure for µ = σ2 = 1.
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Optimal approximations
The optimal linear approximation varies with the choice of (consistent) loss function
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Optimal approximations
Matching the estimation and the evaluation loss function can be helpful

Expected loss

Estimation loss function
a = 0.25 a = 0 a = �0.5

Evaluation a = 0.25 1.21 2.56 133.72
loss a = 0 4.06 2.99 7.94
function a = �0.5 18.42 13.22 9.03

F If forecasters use misspeci�ed models, they can improve their forecasts by
calibrating their models using the forecast consumer�s loss function.

In population, this is always true

In �nite samples, there is a possible bias-variance trade-o¤:
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Forecast comparison in not-so-ideal environments

Proposition: If

(i) the information sets of forecasters A and B are non-nested, so that
FBt * FAt for some t or FAt * FBt for some t, or

(ii) at least one of forecasts A and B are based on a misspeci�ed model, or

(iii) at least one of the forecasts A and B contains estimation error

F Then the ranking of these forecasts is, in general, sensitive to the choice of
Bregman loss function.

Proof: just requires an example � I present:

1 Analytical results for three stylized examples

2 Simulation-based results for more realistic examples
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Comparing misspeci�ed, error-ridden, nonnested models.

Consider the following simple DGP:

Yt = φ0 + φ1Yt�1....+ φ5Yt�5 + εt , εt s iid N (0, 1)

where φ0 = 1, and [φ1, ..., φ5 ] = [0.8, 0.3,�0.5, 0.2, 0.1] .

I will consider a variety of forecasting models, and will compare them using
the Exponential-Bregman loss function:

L (y , ŷ ; a) =
2
a2
(exp fayg � exp faŷg)� 2

a
exp faŷg (y � ŷ) , a 6= 0

! (y � ŷ)2 as a! 0

The combination of Exp-Breg and Normality allows me to obtain analytical
expressions for optimal forecasts, expected loss, etc.
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The ideal case

First, consider the ideal case. Three competing models:

AR(1) Ŷt = β0 + β1Yt�1
AR(2) Ŷt = γ0 + γ1Yt�1 + γ2Yt�2
AR(5) Ŷt = φ0 + φ1Yt�1 + φ2Yt�2 + ...+ φ5Yt�5

X These are all correct, given their limited information sets
X I obtain the pop�n parameters for AR(1) and AR(2), so no estimation error
X Their information sets are nested

The following �gure shows

E
�
L
�
Yt , Ŷmt ; a

��
E
�
L
�
Yt , Ŷ �t ; a

�� , m 2 fAR(1), AR(2), AR(5)g

as a function of the Exp-Breg parameter a, where Ŷ �t is the AR(5) forecast
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The ideal case
Expected losses never cross; rankings are as expected
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Misspeci�ed models

Recall the DGP:

Yt = 1+ 0.8Yt�1 + 0.3Yt�2 � 0.5Yt�3 + 0.2Yt�4 + 0.1Yt�5 + εt

Now consider two misspeci�ed models:

Random Walk Ŷt = Yt�1

Two-period Avg Ŷt =
1
2
(Yt�1 + Yt�2)

� These models are misspeci�ed
X But they contain no estimation error
X Their information sets are nested
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Comparing misspeci�ed forecasting models
Expected losses cross: ranking depends on choice of Bregman loss function
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Parameter estimation error

Recall the DGP:

Yt = 1+ 0.8Yt�1 + 0.3Yt�2 � 0.5Yt�3 + 0.2Yt�4 + 0.1Yt�5 + εt

Now consider two models subject to estimation error:

cAR(2) Ŷt = γ̂0,t + γ̂1,tYt�1 + γ̂2,tYt�2cAR(5) Ŷt = φ̂0,t + φ̂1,tYt�1....+ φ̂5,tYt�5

X These models are correctly speci�ed
� But they contain estimation error (rolling window OLS estimation, n = 36)
X Their information sets are nested

I use a simulation of 10 million OOS observations to approximate the
expected loss.
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Comparing forecasting models subject to estimation error
Expected losses cross: ranking depends on choice of Bregman loss function
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Nonnested information sets I

Unfortunately the Gaussian AR(p) + Exponential Bregman design does not
allow me to show the problems that arise with nonnested information sets

Can show that nonnested info sets cause no problems in this particular case

Instead, consider the following simple DGP:

Yt = XtµL + (1� Xt ) µH| {z }
small low or small high

+ WtµC + (1�Wt ) µM| {z }
crisis or not

+ Zt

where Xt s iid Bernoulli (p) , Wt s iid Bernoulli (q)
Zt s iid N (0, 1)

Forecaster X has access to a Bernoulli signal that is regular (p = 0.5) but
not very strong (µL = �1, µH = +1).

Forecaster W has access to a Bernoulli signal that is irregular (q = 0.05) but
valuable when it arrives (µC = �5, µM = 0).
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Nonnested information sets II

Recall the DGP:

Yt = XtµL + (1� Xt ) µH| {z }
small low or small high

+ WtµC + (1�Wt ) µM| {z }
crisis or not

+ Zt

where Xt s iid Bernoulli (p)

Wt s iid Bernoulli (q)

Zt s iid N (0, 1)

Forecasts:

Ŷ xt = qµC + (1� q) µM + µH + (µL � µH )Xt

Ŷ wt = pµL + (1� p) µH + µM + (µC � µM )Wt

X These models are correctly speci�ed (given their information sets)
X They contain no estimation error
� But their information sets are nonnested
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Comparing forecasting models with nonnested info sets
Expected losses cross: ranking depends on choice of Bregman loss function
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Discussion of the results

�Ideal environment� result: if information sets are nested and models are
perfect, then survey respondents only need to be told the statistical
functional of interest (the mean, in this case).

Ranking can be done using any Bregman loss function (eg, MSE)

Estimated model parameters have same probability limit

No gains from using multiple Bregman loss functions

�Real-world environment� result: in the presence of realistic deviations
from the �ideal� environment, survey respondents should be told the speci�c
(consistent) loss function

Rankings of forecasts can switch depending on choice of Bregman loss function

Optimal approximating model can vary with choice of Bregman loss function

Averaging across multiple Bregman loss functions may cloud results
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Extensions: Quantile forecasts

All of the above results (positive and negative) generalize to quantile
forecasts, using the fact that

α = E
h
1
n
Yt+h � Ŷ �t+hjt

o���Fti, L 2 Lα
GPL

where Lα
GPL is the class of generalized piecewise linear (GPL) loss

functions, given by

L (y , ŷ ; α) = (1 fy � ŷg � α) (g (ŷ)� g (y)) , g increasing

See Gneiting (2011, IJF ).

Class of GPL loss functions is also �exible: consider homogeneous GPL loss:

g (x) = sgn (x) jx jb , b > 0
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Homogeneous GPL loss functions
Many loss functions are consistent for a given quantile
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Extensions: Distribution forecasts

All of the above results (positive and negative) generalize to distribution
forecasts, using the fact that all proper scoring rules must be of the form

L (F , y) = Ψ (F ) +Ψ� (F , y)�
Z

Ψ� (F , y) dF (y)

where Ψ is convex and Ψ� is a subtangent of Ψ at F , see Gneiting and
Raftery (2007, JASA).

The KLIC is proper:

KLIC (F , y) = � log F 0 (y)

So is the class of �weighted continuous ranked probability scores�:

wCRPS (F , y) =
Z ∞

�∞
ω (z) (F (z)� 1 fy � zg)2 dz

and ω : R !R+.
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Most general case

If a given target functional is elicitable (ie, there exists a loss function that is
consistent for it), then:

1. Under nested information sets & correctly speci�ed models, the �ideal
environment� result holds (Holzmann and Eulert, 2014, AoAS)

If in addition the class of consistent loss functions has more than one
element, then:

2. In the presence of misspeci�ed models, nonnested info sets, or estimation
error, it is possible to construct cases where the ranking is sensitive to the
chosen loss function

This paper: mean, quantile and distribution forecasts

Merkle and Steyvers (2013, DA): probability forecasts of binary variables

Elliott, Ghanem, Krüger (2016, REStat): binary forecasts of binary variables

Conjecture: possible to �nd examples for any case covered by (2)
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Some realistic examples

In this section I will illustrate the sensitivity of the rankings of forecasts to
the choice of consistent loss function using some realistic examples.

The objective here is to show that for empirically-relevant simulation designs,
the choice of consistent loss function can lead to important di¤erences in
rankings of forecasts, and in estimated parameters

i.e., it does not take crazy DGPs to see this sensitivity in practice

I will consider:

1 A mean forecasting example (Bregman loss)

2 A quantile forecasting example (GPL loss)

3 A distribution forecasting example (Proper scoring rule)
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Mean forecasting

DGP is a persistent AR(5):

Yt = Yt�1 � 0.02Yt�2 � 0.02Yt�3 � 0.01Yt�4 � 0.01Yt�5 + εt

εt s N (0, 1)

Models:

Ŷ At = Yt�1
Ŷ Bt = φ̂0,t + φ̂1,tYt�1 + φ̂2,tYt�2 + φ̂3,tYt�3 + φ̂4,tYt�4 + φ̂5,tYt�5

where
h
φ̂0,t , ..., φ̂5,t

i
based on rolling window of 100 observations

Simulate for 10,000 observations, and report the di¤erences in average loss for
homogeneous and exponential Bregman loss functions in the following �gure.
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Random Walk loss minus AR(5) loss
Random walk wins for most Homog loss fns, and for Exp loss �near�the quadratic
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Quantile forecasting

DGP is a GARCH(1,1):

Yt = µt + σt εt , εt s iid N (0, 1)
where µt = 0.03+ 0.05Yt�1

σ2t = 0.05+ 0.9σ2t�1 + 0.05σ2t�1ε2t�1

Models are based on non-nested information sets:

Ŷ At = µt + σ̄Φ�1 (α)

Ŷ Bt = µ̄+ σtΦ�1 (α)

where µ̄ = E [Yt ] and σ̄2 = V [Yt ] .

Consider two quantiles, α = 0.05 and α = 0.25.

Compare forecasts using the homogeneous GPL loss function and report
results based on a simulation of 10,000 observations.
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�Mean�forecaster loss minus �Vol� forecaster loss
Vol forecaster wins for all loss when alpha=0.05; Results mixed for alpha=0.25
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Distribution forecasting

DGP is a GARCH(1,1) with skew t shocks

Yt = σt εt , εt s iid Skew t (0, 1, 6,�0.25)
where σ2t = 0.05+ 0.9σ2t�1 + 0.05σ2t�1ε2t�1

Forecasts:

F̂A,t (x) = Φ (x/σ̂t ) , where σ̂2t = 1/100∑100
j=1 Y

2
t�j

F̂B ,t (x) = 1/100∑100
j=1 1

�
Yt�j � x

	
Use the wCRPS scoring rule with weights based on a standard Normal CDF:

ω (z ;λ) � λΦ (z) + (1� λ) (1�Φ (z)) , λ 2 [0, 1]

λ = 1)more weight on the right tail than the left tail. (Reverse for λ = 0.)

λ = 0.5 )weighting is �at and weights both tails equally.
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Normal dist�n loss minus Empirical dist�n loss
Empirical distribution wins only when weight is particularly high on left tail
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Evaluating survey forecasts of US in�ation

To illustrate these ideas in practice, I consider two forecast comparisons, both
for U.S. in�ation over 1982Q3 to 2014Q1 (127 observations):

1 Compare consensus forecasts from Survey of Professional Forecasters and
Michigan Survey of Consumers

Likely to have non-nested information sets

Very likely to be based on models with estimation error or misspeci�cation

Forecast horizon is one year (to match Michigan), updated quarterly (to
match SPF)

2 Compare individual forecasters from the Survey of Professional Forecasters

Want to avoid criticism for using a �consensus� forecast

Forecast horizon is one quarter, updated quarterly

�Actual� in�ation �gures taken from 2014Q2 vintage of real-time CPI data
from the Philadelphia Fed
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Survey forecasts of annual CPI in�ation, 1982-2014
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Recall: Homog and Exp Bregman loss functions
Penalty is high for under prediction if k<2 or a<0; High for over prediction if k>2 or a>0.
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Average SPF loss minus Michigan loss
SPF beats Michigan for k<2 and a<0, loses for the rest
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Average Forecaster 20 loss minus Forecaster 506 loss
#20 beats #506 for k<2.5 and a<0.25, loses for the rest
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Average Forecaster 506 loss minus Forecaster 528 loss
#528 beats #506 for all loss functions considered
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Summary and conclusion

Clearly, forecasters will do better if they are told which statistical functional
of the target variable�s predictive distribution is of interest to the consumer

Eg: mean, median, Value-at-Risk, density

There is no �one� point forecast for a variable

Forecasters should then be compared only using loss functions consistent for
that functional

If mean, use Bregman loss

If α-quantile, use GPLα loss

If distribution, use a proper scoring rule

F It is no surprise if forecast rankings change across loss functions that are
consistent for di¤erent functionals
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Key recommendations for forecast survey design

In the ideal-world case, all forecasters�information sets are nested and all
models are correct and free from estimation error, then:

Ranking by one consistent loss fn is su¢ cient for any consistent loss fn

Forecasters need only be told the functional of interest to the user

But in the presence of real-world features like (any of):

model misspeci�cation

non-nested information sets

estimation error

F Forecasters should be told the speci�c loss function to be used for evaluation

They can then optimally tailor their model towards the user�s loss function

It is not su¢ cient to ask forecasters for their expectation (or median, or even
distribution) of the target variable.
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