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Motivation

Financial decision making relies on forecasts of risk and return

�Risk� forecasting is di¢ cult as it is generally latent

Variance, beta, correlation, idiosyncratic variance, jump risk, etc.

Existing methods for forecast evaluation almost all rely on the target
variable being observable

Diebold-Mariano (1995), West (1996), White (2000), Romano-Wolf
(2005), Giacomini-White (2006), Hansen et al (2011)

Recent work on the econometrics of high frequency data has
provided estimators of many measures of risk, including those above

See Andersen, et al. (2006) for a review
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Example: An infeasible test

Example: forecasting the integrated variance IVt+1 =
R t+1
t σ2sds.

Compare forecast sequences F1,t+1 and F2,t+1 using loss function L

Null hypothesis of interest:

H†
0 : E[L(F1,t+1, IVt+1)] = E[L(F2,t+1, IVt+1)]

The di¢ culty: IVt+1 is unobservable, even at t + 1.

If IVt+1 were observable, then this would be a standard problem.
(Diebold-Mariano 95, West 96, Giacomini-White 06).

F But unobservable target ) infeasible test
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Example: A feasible test

First, �nd a proxy for IVt

eg: realized variance: RVt = ∑
[1/∆]
i j∆t ,iX j2

∆ is the sampling interval

∆t ,iX is the ith return of the log-price X in day t

Second, evaluate F1,t+1 and F2,t+1 w.r.t. the observable proxy

Standard evaluation methods can be used, but only for the
proxy null hypothesis:

H0 : E[L(F1,t+1,RVt+1)] = E[L(F2,t+1,RVt+1)]

F But �proxy null� 6= �true null�.
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Example: A negligibility result

Intuitively, the di¤erence between the proxy null and the true null is
�negligible� if:

1 The proxy is �precise enough�, and

2 The loss function is �well behaved�

This paper provides a general theory formalizing this intuition

allowing for almost all forecasting evaluation methods

allowing for almost all high-frequency based estimators.
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Contributions of this paper

Our primary contribution is methodological: we provide a general
framework for tests of predictive ability with a latent target variable.

The main result relies on two high level assumptions:

1 General conditions on the inference method to be used when the target
is observable

2 Conditions on the accuracy of the (high frequency) proxy used for the
target variable

F Primitive conditions for these assumptions are provided

Under these conditions we show that the asymptotic properties of
standard predictive ability tests, implemented using high frequency
proxies for the latent variable, are preserved
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Contributions of this paper, cont�d

En route to our main result, we make two additional contributions:

1 We present a simple unifying framework for considering much of the
extant literature on forecast evaluation: Diebold and Mariano (1995),
West (1996), White (2000), Giacomini and White (2006) and
McCracken (2007)

2 We provide results on rates of convergence for a large collection of high
frequency estimators: realized (co)variance, bipower (co)variation,
truncated (co)variation, realized correlation, realized beta, realised
skewness and kurtosis, jump power variation, realized semi-variance,
realized Laplace transform.
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A framework to bridge two literatures

Forecast evaluation High freq econometrics
Methods Risk measures

Diebold-Mariano (1995, JBES) Realized variance (ABDL 2003 BNS 2004 ECTA)

West (1996, ECTA) Bipower variation (BNS 2004 JFEC)

White (2000, ECTA) Truncated variation (Mancini 2009 SJS)

Hansen (2005, JBES) Avg sparse sampled RV (ZMA 2005 JASA)

Romano-Wolf (2005, ECTA) Realized semi-variance (BNKS 2010 book)

Giacomini-White (2006, ECTA) Realized Laplace transform (TT 2012 ECTA)

McCracken (2007, JoE) General vol and jump f�nals (Jacod 08, Jacod-Protter 12)
HLN (2011, ECTA) General jump-robust f�nals (Jacod-Rosenbaum 12 WP)

and others and others
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Existing work on forecasting latent target variables

Andersen and Bollerslev (1998, IER), Meddahi (2002, JAE) and
ABM (2004, IER) show that the apparent �poor�performance
volatility forecasts is improved when a better volatility proxy is used

Andersen, Bollerslev and Meddahi (2005, ECTA) show how to use
asymptotic theory on the volatility proxy to better estimate the R2

from predictive regressions for volatility

Hansen and Lunde (2006, JoE) and Patton (2011, JoE) that standard
forecast evaluation tests may be employed even when a proxy is used
when certain conditions are satis�ed:

1 The proxy is (�nite-sample) unbiased for the latent target variable

2 The loss function satis�es a condition on its second derivative
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Outline

1 Introduction and motivation

2 Theory

1 General structure for existing forecast evaluation tests

2 Negligibility result for applications with latent forecast target

3 Primitive conditions for the negligibility result

3 Simulation study

4 Empirical application

5 Conclusion

Li and Patton (Duke) High Frequency Predictive Accuracy March 2014 � 10 �



Outline

1 Introduction and motivation

2 Theory

1 General structure for existing forecast evaluation tests
2 Negligibility result for applications with latent forecast target

3 Primitive conditions for the negligibility result

3 Simulation study

4 Empirical application

5 Conclusion

Li and Patton (Duke) High Frequency Predictive Accuracy March 2014 � 11 �



Base case: Forecast evaluation with observable target
Forecasts

Forecast models:

Ft+τ (β) = [F1,t+τ (β) , ...,FK ,t+τ (β)] 2 Ft : K forecast models

β̂t 2 Ft : estimator of β

β� : pseudo-true population parameter

Example: volatility forecasting using a GARCH model:

σ2 = w + bσ2t�1 + ar
2
t�1, β = [w , b, a]0

Rolling window forecast: β̂t uses data from t � R + 1 to t
Expanding window forecast: β̂t uses data from 1 to t

Sample size T = R + P (Total = Regression + Prediction)
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Base case: Forecast evaluation with observable target
Actual forecasts and forecast models

1 Inference concerning the actual forecast, based on Ft+τ(β̂t ).

We can simply treat Ft+τ(β̂t ) as an observable sequence Ft+τ.

The form of Ft+τ(�) and the structure of β̂t are irrelevant.

Treated by Diebold-Mariano (1995) and Giacomini-White (2006).

2 Inference concerning the forecast model, based on Ft+τ(β
�).

Ft+τ(β
�) is the (unobservable) �oracle� forecast.

Need to know the form of Ft+τ(�) and the structure of β̂t to solve a
�two-step� inference problem

Treated by West (1996), White (2000), McCracken (2007).
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Base case: Forecast evaluation with observable target
Performance measures

Relative performance: ft+τ � f
�
Yt+τ,Ft+τ

�
β̂t
�
, ht
�

Example 1: Relative quadratic loss

ft+τ =
�
Yt+τ � F1,t+τ

�
β̂t
��2 � �Yt+τ � F2,t+τ

�
β̂t
��2

Example 2: General loss, compared with a common benchmark

ft+τ = L
�
Yt+τ � Fj ,t+τ

�
β̂t
��
� L

�
Yt+τ � F0,t+τ

�
β̂t
��
1�j�K

Example 3: �instrumented� loss:

ft+τ = L
�
Yt+τ � Fj ,t+τ

�
β̂t
��
� L

�
Yt+τ � F0,t+τ

�
β̂t
��
ht
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Base case: Forecast evaluation with observable target
Null and alternative hypotheses

Denote:

Relative performance: ft+τ � f (Yt+τ,Ft+τ(β̂t ), ht )
�Oracle� relative performance: f �t+τ � f (Yt+τ,Ft+τ(β

�), ht )
f̄T � P�1 ∑Tt=R ft+τ, and f̄ �T � P�1 ∑Tt=R f

�
t+τ.

Proxy equal predictive ability (DM95, West96, GW06, Mc07)

H0 : E [f �t+τ] = 0 for all t � 1
Ha : lim inf

T!∞
jE[f̄ �j ,T ]j > 0, for some j 2 f1, . . . , dim(f )g.

Proxy superior predictive ability (White00, Hansen05, RW05)

H0 : E [f �t+τ] � 0 for all t � 1
Ha : lim inf

T!∞
E[f̄ �j ,T ] > 0, for some j 2 f1, . . . , dim(f )g.
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Base case: Forecast evaluation with observable target
Assumptions

Assumption A1: (aT (f̄T �E[f̄ �T ]) , a
0
T ST )

d�! (ξ,S)

Comments:

1 aT and a0T are normalizing sequences (eg, aT =
p
P and a0T = 1)

2 ST is typically a HAC estimator, and S is the variance of ξ

3 ST may be inconsistent: nested models (McCracken 2007) or ��xed b�
asymptotics (Kiefer-Vogelsang 2002)
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Base case: Forecast evaluation with observable target I
Assumption A1: Limiting behavior of components of test statistic

Assumption A1: (aT (f̄T �E[f̄ �T ]) , a
0
T ST )

d�! (ξ,S) .

Diebold-Mariano (1995) and Giacomini-White (2006):

1 aT =
p
P, a0T = 1

2
p
P
�
f̄T �E[f̄ �T ]

� d�! ξ s N (0,Σ)

3 ST=HAC estimator of Σ, such that ST
p�! Σ
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Base case: Forecast evaluation with observable target II
Assumption A1: Limiting behavior of components of test statistic

Assumption A1: (aT (f̄T �E[f̄ �T ]) , a
0
T ST )

d�! (ξ,S) .

West (1996):

1 aT =
p
P, a0T = 1

2
p
P
�
f̄T �E[f̄ �T ]

� d�! ξ s N (0,Ω), where

Ω = S¤ +Π
�
FBS 0fh + SfhB

0F 0
�
+ 2ΠFVβF 0

3 ST=HAC estimator of Ω, such that ST
p�! Ω
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Base case: Forecast evaluation with observable target III
Assumption A1: Limiting behavior of components of test statistic

Assumption A1: (aT (f̄T �E[f̄ �T ]) , a
0
T ST )

d�! (ξ,S) .

McCracken (2007) (OOS-t test):

1 aT = P, a0T = 1 (or aT =
p
P, a0T =

p
P)

2 ST = PΩ̂T , where Ω̂T =
1
P ∑Tt=R (ft+τ � f̄T )2

3
�
Pf̄T ,PΩ̂T

� d�! (ξ,S), so OOS-t �
p
P f̄Tp
Ω̂T

d�! Γ1�Γ2/2
Γ1/2
2

, where

Γ1, Γ2 are functionals of a vector Brownian motion
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Base case: Forecast evaluation with observable target IV
Assumption A1: Limiting behavior of components of test statistic

Assumption A1: (aT (f̄T �E[f̄ �T ]) , a
0
T ST )

d�! (ξ,S) .

Giacomini-White (2006) with Kiefer-Vogelsang (2005) std error

1 aT =
p
P, a0T = 1

2
p
P
�
f̄T �E[f̄ �T ]

� d�! ξ s N (0,Σ)

3 ST=inconsistent HAC estimator of Σ, where ST
d�! S
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Base case: Forecast evaluation with observable target
Assumption A2: Properties of the test statistic

We consider a test statistic

ϕT = ϕ
�
aT f̄T , a

0
T ST

�

Assumption A2: ϕ (�, �) is continuous a.s. under the law of (ξ,S)

This assumption is satis�ed by all tests in the literature:

t-tests: ϕt-stat (ξ,S) = ξ/
p
S

F -tests: ϕF -stat (ξ,S) = ξ 0S�1ξ

Max tests: ϕMax (ξ,S) = maxi ξ i or ϕSt-Max (ξ,S) = maxi ξ i/
p
St
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Base case: Forecast evaluation with observable target
Assumption A3: Estimation of a critical value

Assumption A3: The distribution function of ϕ (ξ,S) is continuous
at its 1� α quantile, z1�α. Moreover, the sequence of critical values
zT ,1�α

p�! z1�α.

For many tests the limit distribution of ϕT under the null is known

DM, West and GW: ϕT
D�! N (0, 1) or χ2q so critical values are known

McCracken (2007): Limit null distribution of ϕT is non-standard but
known and critical values provided in that paper

White (2000) and Hansen (2005): Critical values not known, but can
be consistently estimated using the bootstrap
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Base case: Forecast evaluation with observable target
Assumptions B1-B2: Behavior of test statistic (for alternative)

Assumption B1: For any S̃ 2 S

1 ϕ
�
u, S̃

�
� ϕ

�
u0, S̃

�
whenever u � u0

2 ϕ
�
u, S̃

�
! ∞ whenever uj ! ∞ for some j 2 f1, ..., dim (f )g

Assumption B2: For any S̃ 2 S , ϕ
�
u, S̃

�
! ∞ whenever juj j ! ∞

for some j 2 f1, ..., dim (f )g

So test statistic is increasing in aT f̄T , and diverges if an element of
the numerator diverges. (B1(b) corresponds to one-sided tests; B2 to
two-sided tests)
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Base case: Forecast evaluation with observable target
Proposition 1: Asymptotic size and power of tests

We consider non-randomized tests of the form

φT = 1 fϕT > z1�αg

Proposition 1: Assume A1�A3 and B1�B2.

1 E [φT ]! α under EPA proxy null, and
E [φT ]! 1 under proxy alternative.

2 lim supT!∞ E [φT ] � α under SPA proxy null, and
E [φT ]! 1 under proxy alternative.
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Forecast evaluation with *unobservable* target
True hypotheses

Now we consider the observable variable Yt as a proxy for the true,
latent, target variable Y †

t .

Let f †
t+τ � f (Y †

t ,Ft+τ(β
�), ht ) with sample mean f̄ †

T . Then

Equal predictive ability:

H†
0 : E

h
f †
t+τ

i
= 0 for all t � 1

H†
a : lim inf

T!∞
jE[f̄ †

j ,T ]j > 0, for some j 2 f1, . . . , dim(f )g.

Superior predictive ability:

H†
0 : E

h
f †
t+τ

i
� 0 for all t � 1

H†
a : lim inf

T!∞
E[f̄ †

j ,T ] > 0, for some j 2 f1, . . . , dim(f )g.
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Forecast evaluation with *unobservable* target
Assumption C1: Approximation of hypothesis condition

Assumption C1: aT
�
E [f �t+τ]�E

�
f †
t+τ

��
! 0

This high level assumption allows us to obtain our main result (two
slides below)

Under this condition, tests of the quantity of interest, E
�
f †
t+τ

�
, can

be implemented on the proxy quantity, E [f �t+τ] .

Note that the restrictiveness of this assumption depends on aT , where

aT comes from aT (f̄T �E[f̄ �T ])
d�! ξ

So weaker for DM-West-GW tests, stronger for McC tests

Assumption C1 can be shown to be implied by the following two
assumptions:
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Forecast evaluation with *unobservable* target
Assumption C2: Accuracy of the proxy

Assumption C2: There exist some bounded deterministic sequence
fdtgt�1 and constants p 2 [1, 2), θ > 0 and C > 0 s.t.Yt+τ � Y †

t+τ


p
� Cd θ

t for all t > R

dt is the (possibly irregular and time-varying) mesh of the high
frequency grid

This is a high level assumption on accuracy, which needs to be veri�ed

We devote Section 3 of the paper to obtaining primitive conditions for
the result to hold
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Forecast evaluation with *unobservable* target
Assumption C3: Smoothness of the performance measurement function

Assumption C3: For some sequence mt+τ,

1
f (Yt+τ,Ft+τ, ht )� f

�
Y †
t+τ,Ft+τ, ht

� � mt+τ

Yt+τ � Y †
t+τ

,
and supt kmt+τkq � C for q � p/ (p � 1) , where p is from
Assumption C2

2 aT P�1 ∑Tt=R d
θ
t ! 0, where aT is from Assumption A1

Part (a) is a Lipschitz-type condition, and in some cases mt+τ is
constant

Note that this places constraints on the behavior of f as a function of
Y , not of β

Part (b) requires dt to be su¢ ciently small on average over the
prediction sample
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Forecast evaluation with *unobservable* target
Main result

Theorem 1: Assume A1�A3, B1�B2 and C1�C2.

1 E [φT ]! α under EPA true null, and
E [φT ]! 1 under true alternative.

2 lim supT!∞ E [φT ] � α under SPA true null, and
E [φT ]! 1 under true alternative.

That is, the asymptotic behavior of the test under the true null and
alternative hypotheses is the same as under the proxy hypotheses.

Thus the error in the proxy Yt for the latent target Y †
t is negligible
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Forecast evaluation with *unobservable* target
Discussion: Negligibility and West�s �asymptotic irrelevance�

Similar to our negligibility result, West (1996) de�nes in cases
exhibiting �asymptotic irrelevance�as those where valid inference may
be made while ignoring the presence of parameter estimation error

eg: P/R ! 0, or estimation and evaluation loss functions coincide

Our negligibility result is quite di¤erent:

1 Our latent quantity is a process
�
Y †
t
	
t�1 which grows in T , while in

West it is a �xed and �nite-dimensional vector, β�

2 West provides a correction to address the lack of asymptotic irrelevance
where needed: the correction adjusts the variance. In our case no such
correction is readily available: it requires dealing with a bias term
(which appears infeasible to estimate consistently).
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Forecast evaluation with *unobservable* target
Discussion: Weak versus Strong negligibility

The above is a �weak�negligibility result: E [φT ] under proxy
hypothesis

a� E [φT ] under true hypothesis

A �strong�negligibility result would be Pr
�
φT = φ†

T

�
�! 1

ie: Rejection decision using a test based on the proxy is the same,
asymptotically, as the decision made using a test based on the true
target variable

We argue that weak negligibility is all that is needed

Strong negligibility is too strict: requires feasible test to make same
Type I errors as infeasible test

Obtaining this would require much stronger assumptions (and harder
proofs).
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Simulation study

We consider three di¤erent DGPs for the simulation (described
below). All three have:

In-sample period: R 2 f500, 1000g observations

Out-of-sample period: P 2 f500, 1000, 2000g obs

So π � P/R 2 f1/2, ..., 4g

Euler discretization step (used to simulate the continuous-time
processes) is 1/23400

Corresponds to one-second sampling for a stock traded on the NYSE

Two models for a latent target variable are compared using a
quadratic loss function

All simulations are repeated 250 times.
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Simulation design A

DGP: Di¤usion as in Andersen-Bollerslev-Meddahi (05, ECTA):

dXt = 0.03dt + σt
�
�0.58dW1t +

p
1-0.582dW2t

�
d log σ2t = �0.01

�
0.84+ log σ2t

�
dt + 0.11dW1t

Target variable: quadratic variance of log-price process over one day

Proxies: RV using 1-sec, 5-sec, 1-min, 5-min, 30-min returns

Model 1: GARCH(1,1)

Model 2: HAR model using �ve-min RV
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Simulation design B

DGP: Di¤usion as in Andersen-Bollerslev-Meddahi (05, ECTA), with
log-price jumps added following Tauchen and Zhou (2011, JoE):

Jump arrival is Poisson with λ = 0.05

Jump size distributed as N
�
0.2, 1.42

�
Target variable: integrated variance of log-price process over one day

Proxies: BPV using 1-sec, 5-sec, 1-min, 5-min, 30-min returns

Model 1: GARCH(1,1) model applied to sqr-root of one-min BPV

Model 2: HAR model using one-min BPV
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Simulation design C I

DGP: Bivariate stochastic volatility model used in the simulation
study of Barndor¤-Nielsen and Shephard (2004, ECTA):

dXt = σtdWt

σtσ
0
t =

�
σ21t ρtσ1tσ2t
� σ22t

�
where σ21t = vt + ṽt

dvt = �0.04 (vt � 0.11) dt + 0.28
p
vtdB1t

dṽt = �3.74 (ṽt � 0.39) dt + 2.60
p
ṽtdB2t

and dσ22t = �0.035
�
σ22t � 0.636

�
dt + 0.236σ22tdB3t

and ρt =
�
e2xt � 1

�
/
�
e2xt + 1

�
dxt = �0.03 (xt � 0.64) dt + 0.118xtdB4t
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Simulation design C II

Target variable: integrated correlation over one day

Proxies: Realized correlation using 1-sec, 5-sec, 1-min, 5-min, 30-min
returns

Model 1: DCC(1,1) model for daily returns

Model 2: �DCC-R�(1,1) model, including lagged 30-min realized
correlation in the model
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Testing the null hypothesis

We use Giacomini-White (2006) to compare the models in each
simulation design, based on MSE:

H†
0 : E

�n
Y †
t � Ŷ1,t

�
β̂1,t ,R

�o2
�
n
Y †
t � Ŷ2,t

�
β̂2,t ,R

�o2�
= χ

In all 3 designs, the forecasts are not equally accurate, so χ 6= 0.

Our theory does not require χ = 0, so this is no problem

We compute the population values of χ using simulations of length
500,000 obs, and using the true latent target variable, Y †

t .

We implement two versions of the GW test:

1 Using Newey-West std errors, with truncation = 3P1/3

2 Using Kiefer-Vogelsang std errs and crit vals, with truncation = 0.5P
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Finite-sample rejection frequencies
Simulation design A: Forecasting log quadratic variation

GW-NW GW-KV
P= 500 1000 2000 500 1000 2000

R = 500
True 0.04 0.11 0.06 0.01 0.02 0.02
∆ = 5 sec 0.04 0.11 0.07 0.01 0.02 0.02
∆ = 1 min 0.04 0.11 0.07 0.01 0.02 0.02
∆ = 5 min 0.04 0.11 0.08 0.01 0.02 0.03
∆ = 30 min 0.05 0.13 0.11 0.02 0.04 0.04

R = 1000
True 0.16 0.10 0.07 0.05 0.01 0.02
∆ = 5 sec 0.16 0.10 0.07 0.05 0.01 0.02
∆ = 1 min 0.16 0.10 0.07 0.06 0.01 0.02
∆ = 5 min 0.16 0.09 0.08 0.06 0.01 0.02
∆ = 30 min 0.21 0.13 0.11 0.09 0.02 0.02

Li and Patton (Duke) High Frequency Predictive Accuracy March 2014 � 40 �



Finite-sample rejection frequencies
Simulation design B: Forecasting log integrated variance

GW-NW GW-KV
P= 500 1000 2000 500 1000 2000

R = 500
True 0.05 0.06 0.06 0.04 0.05 0.04
∆ = 5 sec 0.06 0.06 0.06 0.04 0.04 0.05
∆ = 1 min 0.07 0.08 0.07 0.05 0.06 0.06
∆ = 5 min 0.03 0.05 0.04 0.02 0.06 0.05
∆ = 30 min 0.03 0.02 0.00 0.03 0.03 0.01

R = 1000
True 0.03 0.04 0.04 0.03 0.04 0.05
∆ = 5 sec 0.03 0.04 0.04 0.04 0.04 0.05
∆ = 1 min 0.04 0.05 0.06 0.03 0.04 0.06
∆ = 5 min 0.03 0.04 0.05 0.04 0.04 0.06
∆ = 30 min 0.02 0.01 0.01 0.02 0.01 0.01
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Finite-sample rejection frequencies
Simulation design C: Forecasting correlation

GW-NW GW-KV
P= 500 1000 2000 500 1000 2000

R = 500
True 0.22 0.17 0.17 0.07 0.05 0.03
∆ = 5 sec 0.22 0.17 0.17 0.07 0.05 0.03
∆ = 1 min 0.22 0.17 0.18 0.07 0.05 0.02
∆ = 5 min 0.22 0.17 0.18 0.08 0.05 0.02
∆ = 30 min 0.20 0.16 0.17 0.07 0.04 0.03

R = 1000
True 0.24 0.22 0.20 0.13 0.08 0.05
∆ = 5 sec 0.24 0.21 0.20 0.13 0.08 0.05
∆ = 1 min 0.24 0.21 0.20 0.14 0.08 0.06
∆ = 5 min 0.24 0.21 0.20 0.14 0.08 0.05
∆ = 30 min 0.24 0.22 0.20 0.14 0.08 0.05
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Conclusions from the simulation study

Simulation results strongly support for the theory presented above

Rejection rates from tests using high frequency proxies are
comparable to infeasible tests based on the latent target variable

Some of these tests have a tendency to over-reject when sample size is
small, and this tendency is �inherited�by tests that use a proxy

Use of a proxy does not lead to worse properties than tests based on
the latent target variable

Intuition for why this works:
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One simulation of a time series of integrated correlation
500 observations from the BNS speci�cation
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One simulation of a time series of integrated correlation
30-min realized correlation as a proxy for true integrated correlation
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One simulation of a time series of integrated correlation
DCC forecasts of integrated correlation are noisier than the proxy (unsurprising)
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One simulation of a time series of integrated correlation
DCC-R forecasts of integrated correlation are noisier than the proxy (unsurprising)
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One simulation of a time series of integrated correlation
Squared errors using true correlation vs. squared errors using proxy
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Monte Carlo distribution of test statistics
Proxy distribution very close to �true� distribution
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Intuition for the (positive) simulation results

Our �negligibility� condition is:

aT
�

E [f �t+τ]�E
h
f †
t+τ

i�
! 0

where aT is such that

aT (f̄T �E[f �T ])
d�! ξ

In the standard case we have aT =
p
P, and ξ s N (0,Σ) .

Strictly, the negligibility condition requires

E [f �t+τ]�E
h
f †
t+τ

i
� 1/

p
P

but in practice we actually need

E [f �t+τ]�E
h
f †
t+τ

i
�
p

Σ / P
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Comparison of bias and variability
The bias is very small relative to the variance of the test statistic, so negligibility holds
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Empirical application

We illustrate the theory proposed here with an application to
correlation forecasting

Economically interesting: used for hedging, pairs trading, etc.
Statistically di¢ cult: latent

We will compare 4 di¤erent DCC-type models for predicting daily
correlation (described in detail below)

1 Baseline DCC model

2 Extension to allow for a �leverage e¤ect�

3 Extension to use high frequency data to estimate current correlation

4 Both extensions
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Data

We use daily asset returns on two pairs of stocks

1 Proctor & Gamble and General Electric

2 Microsoft and Apple

Extensions to include all four, or even more, stocks are possible

Sample period: Jan 2000 �Dec 2010, so T = 2733 obs

In-sample: R = 1500, Out-of-sample: P = 1233

To evaluate these forecasts we use high frequency data from TAQ,
with realized correlation estimated using sampling frequency between
1 minute and 130 minutes.

We compute realized correlation using 10 equally-spaced subsamples.

Li and Patton (Duke) High Frequency Predictive Accuracy March 2014 � 54 �



Forecasting models I

All models use the same mean and volatility speci�cations:

rit = µi + σit εit

σ2it = ωi + βiσ
2
i ,t�1 + αi r2i ,t�1 + δi r2i ,t�11 fri ,t�1 � 0g+ γiRV

1 min
i ,t�1

1 Baseline DCC model (Engle, 2002, JBES):

Qt = R̂ (1� a� b) + bQt�1 + aεt�1ε
0
t�1

ρt =
Q12,tp
Q11,tQ22,t
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Forecasting models II

2 DCC with an asymmetric term (Cappiello, et al., 2006, JFEC):

Qt = R̂ (1-a-b-d) + bQt�1 + aεt�1ε
0
t�1 + dηt�1η

0
t�1

where ηt � εt � 1 fεt � 0g

3 DCC with realized correlation:

Qt = R̂ (1-a-b-g) + bQt�1 + aεt�1ε
0
t�1 + g � RCorr65 mint�1

4 DCC with an asymmetric term and realized correlation:

Qt = R̂ (1-a-b-d � g)+bQt�1+ aεt�1ε
0
t�1+dηt�1η

0
t�1+ g �RCorr65 mint�1
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In-sample results

Estimating these models in-sample period yields log-likelihoods below,
along with p-values from LR tests against the DCC model:

PG-GE MS-AP

DCC �2786.8 �4109.5
A-DCC �2784.7

(0.043)
�4109.5
(1.000)

R-DCC �2781.8
(0.002)

�4094.3
(0.000)

AR-DCC �2781.4
(0.005)

�4094.3
(0.000)

So the realized term is signi�cant in both pairs; asymmetric term only
signif for PG-GE

But do these additional terms help improve forecast performance?
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Comparison of models for correlation forecasting: PG�GE
t-stats from GW test. Positive indicates model beats baseline DCC. KV crit val=2.77

DCC vs A-DCC DCC vs R-DCC DCC vs AR-DCC

RRho1m 1.947 1.626 1.745
RRho5m 1.845 2.040 2.099
RRho15m 2.047 1.945 1.962
RRho30m 2.246 1.529 1.679
RRho65m 1.642 0.828 0.947
RRho130m 0.850 0.830 0.655
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Comparison of models for correlation forecasting: MS�AP
t-stats from GW test. Positive indicates model beats baseline DCC. KV crit val=2.77

DCC vs A-DCC DCC vs R-DCC DCC vs AR-DCC

RRho1m -1.024 4.405� 3.712�

RRho5m -1.156 4.357� 2.234
RRho15m -1.195 4.279� 2.116
RRho30m -1.055 3.948� 2.289
RRho65m -1.168 3.506� 2.222
RRho130m -1.243 3.342� 1.847
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Summary and conclusion

We present a general forecast evaluation framework allowing for a
latent target variable

Forecasting: correctly speci�ed or mis-speci�ed, nested or non-nested,
rolling or recursive, EPA or SPA, single or step-wise procedures

High frequency: general volatility and jump functionals,
semi-variance, ratios (eg, beta and correlation)

A set of realistic Monte Carlo studies provides support for the
asymptotic theory

Our empirical application shows evidence that the DCC model can be
improved by including high frequency data
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Appendix
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Forecast evaluation with *unobservable* target I
Assumptions on continuous time DGP

Assumption HF: Let k � 2 and C > 0 be constants. Then suppose:
1 The process (Xt )t�0 is a d-dimensional Itô semimartingale with the
following form

Xt = X0 +
Z t
0
bsds +

Z t
0

σsdWs + Jt ,

Jt =
Z t
0

Z
R

δ (s, z) 1fkδ(s ,z )k�1gµ̃ (ds, dz)

+
Z t
0

Z
R

δ (s, z) 1fkδ(s ,z )k>1gµ (ds, dz) ,

bs is a d -dimensional càdlàg adapted process
Ws is a d 0 -dimensional standard Brownian motion
σs is a d � d 0 càdlàg adapted process, and cs = σsσ

|
s

δ (�) is a d -dimensional predictable function
µ is a Poisson random measure on R+ �R with compensator
ν (ds , dz) = ds 
 λ (dz) for some σ-�nite measure λ and µ̃ = µ� ν.
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Forecast evaluation with *unobservable* target II
Assumptions on continuous time DGP

2 The process σt is a d � d 0 Itô semimartingale with the form

σt = σ0 +
Z t
0
b̃sds +

Z t
0

σ̃sdWs +
Z t
0

Z
R

δ̃ (s, z) µ̃ (ds, dz) ,

where

b̃s is a d � d 0 càdlàg adapted process
σ̃s is a d � d 0 � d 0 dimensional càdlàg adapted process
and δ̃ (�) is a d � d 0 dimensional predictable function.
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Forecast evaluation with *unobservable* target III
Assumptions on continuous time DGP

3 For some constant r 2 (0, 2], and nonnegative deterministic functions
Γ (�) and Γ̃(�) on R, we have

kδ (s, z) k � Γ (z)
and kδ̃(s, z)k � Γ̃(z) for all (s, z) 2 R+ �R

and Z
R
(Γ (z)r ^ 1)λ (dz) +

Z
R

Γ (z)k 1fΓ(z )>1gλ (dz) < ∞,

and
Z

R
Γ̃ (z)k λ (dz) < ∞
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Forecast evaluation with *unobservable* target IV
Assumptions on continuous time DGP

4 Let

b0s = bs �
Z

R
δ (s, z) 1fkδ(s ,z )k�1gλ (ds) if r 2 (0, 1]

b0s = bs if r 2 (1, 2]

Then we have for all s � 0,

Ekbskk +Ekb0skk +Ekσskk +Ekb̃skk +Ekσ̃skk � C .
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Forecast evaluation with *unobservable* target V
Assumptions on continuous time DGP

5 For each day t, the process X is sampled at deterministic discrete times
t � 1 = τ(t, 0) < � � � < τ (t, nt ) = t, where nt is the number of
intraday returns. Moreover, with

dt ,i = τ(t, i)� τ(t, i � 1)

we have

dt = sup
1�i�nt

dt ,i ! 0

and nt = O(d�1t ) as t ! ∞
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Example: Volatility functions for continuous case

Notation: ∆t ,iX is the ith return on day t, with sampling interval dt ,i .

Proxy: Yt � bIt (g) = ∑nt
i=1 g(∆t ,iX/d1/2

t ,i )dt ,i .

The latent target:

Y †
t � It (g) �

Z t

t�1
ρ (cs ; g) ds

where cs is the spot variance-covariance matrix of Xt and

ρ (cs ; g) = E [g (U) jcs ] for U � N (0, cs ).
Examples:

g(x) = xx|: It (g) =
R t
t�1 cs ds

g(x) = x4/3: It (g) =
R t
t�1 σ4s ds

g(x) = cos(
p
2ux): It (g) =

R t
t�1 exp(�uσ2s ) ds.
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Example: Volatility functions for continuous case I

Proposition: Let p 2 [1, 2). Suppose for some constant C > 0 the
following conditions hold:

1 Xt is continuous

2 g(�) and I (�; g) are di¤erentiable and for some k1 � 0,
k∂g (x) k � C (1+ kxkk1 ) and k∂ρ (A; g) k � C (1+ kAkk1/2)

3 Assumption HF with some k � max f2k1p/ (2� p) , 2g

4 E [jρ(cs ; g2)j+ jρ (cs ; g) jp ] � C for all s � 0.

Then
kbIt (g)� It (g) kp � Kd1/2

t .
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Example: Volatility functions for continuous case II

This establishes the applicability of our �negligibility� result to
(no-jump) high frequency applications under quite weak conditions.

The paper presents similar results for jump functionals, jump-robust
volatility functionals, and some additional special cases:

Realized variance and covariance (in presence of jumps)

Bi-power variation

Realized semi-variance

Realized correlation and beta
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Comparison of models for correlation forecasting: PG�GE
t-stats from GW test. Positive indicates second model beats �rst model. KV crit val=2.77

A-DCC vs R-DCC A-DCC vs AR-DCC R-DCC vs AR-DCC

RRho1m 1.231 1.426 0.762
RRho5m 1.627 1.819 0.517
RRho15m 1.470 1.703 1.000
RRho30m 0.881 1.271 0.486
RRho65m -0.153 0.413 0.973
RRho130m 0.688 0.516 -0.031
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Comparison of models for correlation forecasting: MS�AP
t-stats from GW test. Positive indicates second model beats �rst model. KV crit val=2.77

A-DCC vs R-DCC A-DCC vs AR-DCC R-DCC vs AR-DCC

RRho1m 3.134� 3.657� -1.580
RRho5m 4.506� 6.323� -1.586
RRho15m 4.044� 5.449� -1.441
RRho30m 4.635� 7.284� -0.882
RRho65m 6.059� 7.868� -0.635
RRho130m 3.392� 5.061� -1.582
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