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Recent work has emphasized the importance of evaluating estimates of a statistical functional (such as a
conditional mean, quantile, or distribution) using a loss function that is consistent for the functional of
interest, of which there is an infinite number. If forecasters all use correctly specified models free from
estimation error, and if the information sets of competing forecasters are nested, then the ranking induced
by a single consistent loss function is sufficient for the ranking by any consistent loss function. This article
shows, via analytical results and realistic simulation-based analyses, that the presence of misspecified
models, parameter estimation error, or nonnested information sets, leads generally to sensitivity to the
choice of (consistent) loss function. Thus, rather than merely specifying the target functional, which
narrows the set of relevant loss functions only to the class of loss functions consistent for that functional,
forecast consumers or survey designers should specify the single specific loss function that will be used
to evaluate forecasts. An application to survey forecasts of U.S. inflation illustrates the results.
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1. INTRODUCTION

Misspecified models pervade the observational sciences and
social sciences. In such fields, researchers must contend with
limited data, which inhibits both their ability to refine their
models, thereby introducing the risk of model misspecification,
and their ability to estimate these models with precision, intro-
ducing estimation error (parametric or nonparametric). This
article considers the implications of these empirical realities for
the comparison of forecasts, in light of recent work in statistical
decision theory on the importance of the use of consistent
scoring rules or loss functions in forecast evaluation (see, e.g.,
Gneiting 2011a). This article shows that in analyses where
forecasts are possibly based on models that are misspecified,
subject to estimation error, or that use nonnested informa-
tion sets (e.g., expert forecasters using different proprietary
datasets), the choice of scoring rule or loss function is even
more critical than previously noted.

Recent work in the theory of prediction has emphasized the
importance of the choice of loss function used to evaluate the
performance of a forecaster. In particular, there is a growing
recognition that the loss function used must “match,” in a
specific sense clarified below, the quantity that the forecaster
was asked to predict, for example, the mean, the median, or
the probability of a particular outcome (e.g., rain, a recession),
etc. In the widely cited “Survey of Professional Forecasters,”
conducted by the Federal Reserve Bank of Philadelphia, experts
are asked to predict a variety of economic variables, with
questions such as “What do you expect to be the annual average
CPI inflation rate over the next 5 years?”’ In the Thomson
Reuters/University of Michigan Survey of Consumers, respon-
dents are asked “By about what percent do you expect prices
to go (up/down) on the average, during the next 12 months?”
The presence of the word “expect” in these questions is an indi-
cation (at least to statisticians) that the respondents are being
asked for their mathematical expectation of future inflation.

The oldest continuous survey of economists’ expectations, the
Livingston survey, on the other hand, simply asks “What is
your forecast of the average annual rate of change in the CPI?,”
leaving the specific type of forecast unstated.

In point forecasting, a loss function is said to be “consistent”
for a given statistical functional (e.g., the mean, median, etc.),
if the expected loss is minimized when the given functional
is used as the forecast (see Gneiting 2011a and discussion
therein). For example, a loss function is consistent for the mean
if no other quantity leads to a lower expected loss than the
mean. The class of loss functions that is consistent for the
mean is known as the Bregman class (see, e.g., Savage 1971;
Banerjee, Guo, and Wang 2005; Bregman 1967, and includes
the squared-error loss function as a special case). The class of
loss functions that is consistent for the «-quantile is known as
the generalized piecewise linear (GPL) class (see, e.g., Gneiting
2011b), which nests the familiar piece-wise linear function
from quantile regression (see, e.g., Koenker et al. 2017). In
density or distribution forecasting the analogous idea is that of
a “proper” scoring rule (see, e.g., Gneiting and Raftery 2007): a
scoring rule is proper if the expected loss under distribution P is
minimized when using P as the distribution forecast. Evaluating
estimates of a given functional using consistent loss functions
or proper scoring rules is a minimal requirement for sensible
rankings of the competing forecasts.

Gneiting (2011a, p. 757) summarized the implications of
the above work as follows: “If point forecasts are to be issued
and evaluated, it is essential that either the scoring function be
specified ex ante, or an elicitable target functional be named,
such as the mean or a quantile of the predictive distribution, and
scoring functions be used that are consistent for the target func-
tional.” This article contributes to the literature by refining this
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recommendation to reflect real-world deviations from the ideal
predictive environment, and suggests that only the first part of
the above recommendation should stand; specifying the target
functional is generally not sufficient to elicit a forecaster’s
best (according to a given, consistent, loss function) prediction.
Instead, forecasters should be told the single, specific loss
function that will be used to evaluate their forecasts.

First, I show that when two competing forecasts are gen-
erated using models that are correctly specified, free from
estimation error, and when the information sets of one of
the forecasters nests the other, the ranking of these forecasts
based on a single consistent loss function is sufficient for their
ranking using any consistent loss function (subject of course to
integrability conditions). This is established for the problem of
mean forecasting, quantile forecasting (nesting the median as a
special case), and distribution forecasting.

Second, and with more practical importance, I show via
analytical and realistic numerical examples that when any of
these three conditions is violated, that is, when the competing
forecasts are based on nonnested information sets, or misspeci-
fied models, or models with estimated parameters, the ranking
of the forecasts is generally sensitive to the choice of consistent
loss function. This result has important implications for survey
forecast design and for forecast evaluation more generally.

I illustrate the ideas in this article with a study of the
inflation forecasting performance of respondents to the Survey
of Professional Forecasters (SPF) and the Michigan Survey of
Consumers, as well as the Federal Reserve staff’s “Greenbook™
forecasts. Under squared-error loss, I find that the Green-
book forecast beats SPF, which in turn beats Michigan, but
when a Bregman loss function is used that penalizes over- or
under-predictions more heavily, the rankings of these forecasts
switches. I also consider comparisons of individual respondents
to the SPF, and find cases where the ranking of two forecasters
is sensitive to the particular choice of Bregman loss function,
and cases where the ranking is robust across a range of Bregman
loss functions.

The (in)sensitivity of rankings to the choice of loss function
also has implications for the use of multiple loss functions to
compare a given collection of forecasts. If the loss functions
used are not consistent for the same statistical functional,
then it is not surprising that the rankings may differ across
loss functions (see, e.g., Engelberg, Manski, and Williams
2009; Gneiting 2011a; Patton 2011). If the loss functions are
consistent for the same functional, then in the absence of
misspecified models, estimation error or nonnested information
sets, the results in this article show that using multiple mea-
sures of accuracy adds no information beyond using just one
measure. (Note, however, that loss functions may have different
sampling properties, and a judicious choice of loss function
may lead to improved efficiency.) In the presence of these real-
world forecasting complications, averaging the performance
across multiple measures could mask true out-performance
under one specific loss function. In recent work, Ehm et al.
(2016) obtained mixture representations for the classes of loss
functions consistent for quantiles and expectiles which can be
used to determine whether one forecast outperforms another
across all consistent loss functions.

This article is related to several recent articles. Elliott,
Ghanem, and Kriiger (2016) studied the problem of forecasting
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binary variables with binary forecasts, and the evaluation and
estimation of models based on consistent loss functions. Merkle
and Steyvers (2013) also considered forecasting binary vari-
ables, and provided an example where the ranking of forecasts
is sensitive to the choice of consistent loss function. Lieli and
Stinchcombe (2013, 2017) studied the identifiability of a fore-
caster’s loss function given a sequence of observed forecasts,
and find in particular for discrete random variables that whether
the forecast is constrained to have the same support as the target
variable or not has crucial implications for identification. In par-
ticular, Bregman losses become identifiable (up to scale) under
such restrictions, while GPL losses are still observationally
equivalent. Holzmann and Eulert (2014) showed that (correctly
specified) forecasts based on larger information sets lead to
lower expected loss. I build on these works, and the important
work of Gneiting (2011a), to show the strong conditions under
which the comparison of forecasts is insensitive to the choice
of loss function. A primary goal of this article is to show that in
many realistic prediction environments, sensitivity to the choice
of consistent loss function is the norm, not the exception.

A concrete outcome of this article is the following. In
macroeconomic forecasting, mean squared error (MSE) and
mean absolute error (MAE) are popular ways to compare
forecast accuracy (see, e.g., Elliott and Timmermann 2016). If
the target variable is known to be symmetrically distributed,
then the rankings by MSE and MAE will be the same, in the
limit, if the forecasts being compared are based on nested infor-
mation sets, and are free from both estimation error and model
misspecification. However, if any of these ideal conditions are
violated then the rankings yielded of MSE and MAE need not
be the same, and the choice of loss function will affect the
ranking. Similarly, in volatility forecasting MSE and QLIKE
(see Equation (5)) are widely used in forecast comparisons
(see, e.g., Bauwens, Hafner, and Laurent 2012). These are both
members of the Bregman family of loss functions, and so in the
ideal forecasting environment they will yield, asymptotically,
the same rankings of volatility forecasts. However, outside of
the ideal environment rankings will generally be sensitive to
the choice of loss function.

The remainder of the article is structured as follows. Sec-
tion 2 presents positive and negative results on forecast com-
parison in the absence and presence of real-world complica-
tions like nonnested information sets and misspecified models,
covering mean, quantile and distribution forecasts. Section 3
considers realistic simulation designs that illustrate the main
ideas of the article, and Section 4 presents an analysis of US
inflation forecasts. A supplemental web appendix contains all
proofs and some additional derivations.

2. COMPARING FORECASTS USING CONSISTENT
LOSS FUNCTIONS

2.1. Mean Forecasts and Bregman Loss Functions

The most well-known loss function is the quadratic or
squared-error loss function

~ ~\2
L(y.5) =(~-3)". (D)
Under quadratic loss, and given standard regularity conditions,
the optimal forecast of a variable Y; is well-known to be the
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(conditional) mean

V¥ = argmin E[L(Y,.3) |5]. )
yey
—E[YIF], ifL(y.5) = (-7, 3)

where F; is the information set available to the forecaster
for predicting Y;, and ) is the set of possible forecasts of
Y;, which is assumed to be at least as large as the support
of Y;. More generally, the conditional mean is the optimal
forecast under any loss function belonging to a general class
of loss functions known as Bregman loss functions (see, e.g.,
Banerjee, Guo, and Wang 2005; Gneiting 2011a). The class of
Bregman loss functions is then said to be “consistent” for the
(conditional) mean functional. Elements of the Bregman class
of loss functions, denoted LBregman, take the form
Lp.3)=¢0—¢()—¢ () v-3). @
where ¢ : Y — R is any strictly convex function. (Here
and throughout, we will focus on strict consistency of a loss
function, which in this section requires strict convexity of ¢;
see Gneiting (2011a) for discussion of consistency vs. strict
consistency.) Moreover, this class of loss functions is also
necessary for conditional mean forecasts, in the sense that if
the optimal forecast is known to be the conditional mean, then
without further assumptions it must be that the forecast was
generated by minimizing the expected loss of some Bregman
loss function. Two prominent examples of Bregman loss func-
tions are quadratic loss (Equation (1)) and QLIKE loss (Patton
2011), which is applicable for strictly positive random variables

L(y.5) =2 —log2 — 1. )
y y

The quadratic and QLIKE loss functions are unique (up to
location and scale constants) in that they are the only two
Bregman loss functions that only depend on the difference
(Savage 1971) or the ratio (Patton 2011) of the target variable
and the forecast.

To illustrate the variety of shapes that Bregman loss func-
tions can take, two parametric families of Bregman loss for
variables with support on the real line are presented below.
The first was proposed in Gneiting (2011a), and is a family
of homogeneous loss functions, where the “shape” parameter
determines the degree of homogeneity. We will call this the
class of homogeneous Bregman loss functions. It is generated
by using ¢ (x; k) = |x|* for k > 1

L(y.5:k) = =[5 ~ksen G) 5[ (v =3), k> 1.6

This family nests the squared-error loss function at k = 2. (The
nondifferentiability of ¢ can be ignored if ¥; is continuously
distributed, and the absolute value components can be dropped
altogether if the target variable is strictly positive, see Patton
2011.)

A second, nonhomogeneous, family of Bregman loss can be
obtained using ¢ (x;a) = 2a72 exp {ax} fora # 0

2
L(y,3:a) = 3 (exp {ay} — exp {a}})

2

——expf{ad} (v -9, a#0. (D
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We will call this the class of exponential Bregman loss func-
tions. This family nests the squared-error loss function as a —
0, and is convenient for obtaining closed-form results when
the target variable is normally distributed, which we exploit
below. This loss function has some similarities to the “Linex”
loss function, see Varian (1974) and Zellner (1986), in that
it involves both linear and exponential terms, however, a key
difference is that the above family implies that the optimal
forecast is the conditional mean, and does not involve higher-
order moments.

Figure 1 illustrates the variety of shapes that Bregman loss
functions can take and reveals that although all of these loss
functions yield the mean as the optimum forecast, their shapes
can vary widely: these loss functions can be asymmetric, with
either under-predictions or over-predictions being more heavily
penalized, and they can be strictly convex or have concave seg-
ments. Thus, restricting attention to loss functions that generate
the mean as the optimum forecast does not require imposing
symmetry or other assumptions on the loss function. Similarly,
in the literature on economic forecasting under asymmetric
loss (see, e.g., Granger 1969; Christoffersen and Diebold 1997,
Patton and Timmermann 2007), it is generally thought that
asymmetric loss functions necessarily lead to optimal forecasts
that differ from the conditional mean (they contain an “optimal
bias” term). Figure 1 reveals that asymmetric loss functions can
indeed still imply the conditional mean as the optimal forecast.
(In fact, Savage (1971) showed that of the infinite number of
Bregman loss functions, only one is symmetric: the quadratic
loss function.)

2.2. Forecast Comparison in Ideal and Less-Than-Ideal
Forecasting Environments

As usual in the forecast comparison literature, I will consider
ranking forecasts by their unconditional average loss, a quantity
that is estimable, under standard regularity conditions, given a
sample of data. (Forecasts themselves, on the other hand, are
of course generally based on conditioning information.) For
notational simplicity, I assume strict stationarity of the data, but
certain forms of heterogeneity can be accommodated by using
results for heterogeneous processes (see, e.g., White 2001). I
use ¢ to denote an observation, for example, a time period,
however, the results in this article are applicable wherever one
has repeated observations, for example, election forecasting
across states, sales forecasting across individual stores, etc.

First, consider a case where forecasters A and B are ranked
by MSE

A2
MSE; = E [(Y, - Y;) } i € {A,B) ®)
and we then seek to determine whether
MSE,4 S MSEg = E [L (Y,, Y;‘)]

SE[L(YTF)] VL€ Lloognm O

subject to these expectations existing. The following propo-
sition provides conditions under which the above implication
holds. Denote the information sets of forecasters A and B as F/
and FB.
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Figure 1. Various Bregman loss functions. The left column presents four elements of the “homogeneous Bregman” family, and the right
column presents four elements of the “exponential Bregman” family. The squared error loss function is also presented in each panel as a thin
solid line. In all cases the value for y ranges from —1 to 5, and the value of y is set at 2.

Assumption 1. The information sets of the forecasters are
nested, so ]-"tB - ]-',A Vt or ]-"tA - ]-',B Vt, and do not lead to
optimal forecasts that are identical for all ¢.

Assumption 2. If the forecasts are based on models, then the
models are free from estimation error.

Assumption 3. If the forecasts are based on models, then the
models are correctly specified for the statistical functional of
interest.

The above assumptions are presented somewhat generally,
as we will refer to them not only in this section on mean
forecasting, but also for the analyses of quantile and distribution
forecasting below. The second part of Assumption 1 rules
out the uninteresting case where two information sets lead to
identical forecasts, for example, they are identical information
sets, or where one information set is the union of the other
and an information set generated by some random variable
that does not lead to a change in the optimal forecast (such as
some completely independent random variable). Assumption 3
implies, in this section, that

36p; € Ost.E [Y,|]-",i] = m; (Z;60,) a.s. for some

Zl e Fl, fori e {A,B}, (10)

where m; is forecaster i’s prediction model, which has a finite-
dimensional parameter 6 that lives in ®. The “true” parameter
6o, is allowed to vary across i as the conditional mean of
Y, given F! will generally vary with the information set, F'.
Related, Assumption 2 implies in this section that

forallt=1,2,..., (1)

Yi=m; (Z;6F) as.
where 6 is some fixed parameter, and 9;“ = 6p,; in the case of
correct specification. Part (a) of the proposition below presents
a strong, positive, result that holds in the “ideal” forecasting
environment. Part (b) shows that a violation of any one of the
assumptions in part (a) is sufficient for the positive result to fail

to hold.

Proposition 1. (a) Under Assumptions 1, 2, and 3, the
ranking of two forecasts by MSE is sufficient for their ranking
by any Bregman loss function.

(b) If any of Assumptions 1, 2, or 3 fail to hold, then the
ranking of two forecasts may be sensitive to the choice of
Bregman loss function.

The proof of part (a) is given in the supplemental appendix.
Of primary interest in this article is part (b), and we provide
analytical examples for this part below.
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Under the strong assumptions of comparing only forecasters
with nested information sets, and who use only correctly
specified models with no estimation error, part (a) shows that
the ranking obtained by MSE is sufficient for the ranking by
any Bregman loss function. This implies that ranking forecasts
by a variety of different Bregman loss functions adds no
information beyond the MSE ranking. Related to this result,
Holzmann and Eulert (2014) showed in a general framework
that forecasts based on larger information sets lead generally to
lower expected loss.

All of the ranking results considered in this article are in
population; in finite evaluation samples rankings of forecasts
can switch simply due to sampling variation. If we denote
the number of observations available for model estimation and
forecast comparison as R and P, respectively, then the results
here apply for P — oo, and when discussing the presence of
parameter estimation error (as a violation of Assumption 2) we
assume that either R is finite or R/P — 0 as R,P — oo. If
instead we consider the case that P/R — 0 as R, P — oo, then
we would be in the environment described by Comment 1 to
West’s (1996, Theorem 4.1), where parameter estimation error
is present but asymptotically negligible. This environment is a
generalization of Assumption 2, and all results obtained under
Assumption 2 should apply in such an environment.

To verify part (b) of the above proposition, we consider
deviations from the three “ideal environment” assumptions
used in part (a). Consider the following example: assume that
the target variable follows a persistent, but strictly stationary
AR(S) process

=¢o+¢ Y1+ +¢sVis+e, &~idN(QO1),

(12)
where ¢9 = 1 and [¢1,...,¢5] = [0.8,0.3,—-0.5,0.2,0.1].
These parameter values are stylized, but are broadly compatible
with estimates for standard macroeconomic time series like
US interest rates (see, e.g., Faust and Wright 2013). We then
consider a set of forecasting models. The first three contain
no estimation error, and have parameters that are correct given
their information sets

AR() ¥, = o+ BiYi—1, (13)
ARQ) Y, =804 81,1 + 82Y; 2, (14)
ARG) Vi=go+¢1Yi1+---+¢s¥is.  (15)

The first two models use too few lags, while the third model
nests the data-generating process and will produce the optimal
forecast. The parameters of the first two models are obtained by
minimizing the (population) expectation of any Bregman loss
function. As each of these models are correctly specified given
their (limited) information sets, Proposition 3(a), presented in
Section 2.3, implies that the optimal parameters are not affected
by the specific Bregman loss function used in estimation; I use
MSE (making these linear projection coefficients) and present
the specific values of the optimal parameters in Appendix SA.1,
along with details on the derivation of these parameter values.
Turning now to the evaluation of the AR forecasts, in the
upper-left panel of Figure 2, I plot the ratio of the expected loss
for a given forecast to that for the optimal forecast, as a function
of the parameter, a, of the exponential Bregman loss function.
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(Due to the exponential function, this loss function can lead
to large numerical values, which can lead to computational
issues in standard software. These can be overcome by simply
scaling by some strictly positive value, e.g., the expected loss
for the optimal forecast, if available, or some other value.) We
see in that panel that the rankings are as expected: the AR(1)
model has higher average loss than then AR(2), which in turn
has higher average loss than the AR(5). These rankings hold
for all values of a, consistent with part (a) of Proposition 1.
More generally, the ranking method of Ehm et al. (2016)
could be applied, and would show that these rankings hold for
any Bregman loss function, not only those in the exponential
Bregman family.

Now consider comparing two misspecified models. The first
is a simple random walk forecast, and the second is a “two-
period average” forecast

Random walk ¥, = Y;_, (16)
A 1
Two-period average Y; = 3 Y1+ Y 0). (17)

Neither of these forecasts has any estimation error and their
information sets are nested, but both models are misspecified.
The lower-left panel of Figure 2 compares the average losses for
these two forecasts, and we observe that the random walk pro-
vides the better approximation when the exponential Bregman
loss function parameter is near zero, but the two-period average
forecast is preferred when the parameter is further from zero.

Now we consider the impact of parameter estimation error.
Consider the feasible versions of the AR(2) and AR(5) fore-
casts, with the parameters are estimated by OLS using a rolling
window of 36 observations, corresponding to three years of
monthly data

@(2) 1A/t = So,t + Sl,th—l + gz,th—z, (18)
ARG) Vi=¢os+drYio1 +---+¢s.Yis. (19

We compare @(2) and @(5) to see whether any traclg—off
exists between goodness of fit and estimation error: AR(5)
is correctly specified, but requires the estimation of three
more parameters; AR(2) excludes three useful lags, but is
less affected by estimation error. Analytical results for the
finite-sample estimation error in misspecified AR(p) models
are not available, and so we use 10,000 simulated values to
obtain the average losses for these two models. The results are
presented in the upper-right panel of Figure 2. We see that the
expected loss of AR(S) is below that of AR(2) for values of the
exponential Bregman parameter near zero, while the ranking
reverses when the parameter is greater than approximately 0.4
in absolute value. Thus, there is indeed a trade-off between
goodness-of-fit and estimation error, and the ranking switches
as the loss function parameter changes. This reversal of ranking
is not possible in the “ideal environment” case.

Finally, we seek to show that relaxing only Assumption 1
(nested information sets) can lead to a sensitivity in the ranking
of two forecasts. For reasons explained below, consider a
different data generating process, where the target variable is
affected by two independent Bernoulli shocks, X; and W;

Y =Xepup + (1 —Xp) ug + Wine

+ 0 = W) um + Z, (20)
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Figure 2. This figure presents the ratio of expected exponential Bregman loss for a given forecast to that for the optimal forecast, as a function

of the exponential Bregman parameter a.

where X; ~ iid Bernoulli (p), W; ~ iid Bernoulli (¢), Z; ~
iid N (0, 1).

Forecaster X has access to a “local variation” signal X; that
is regular (p = 0.5) but not very strong (u; = —1, ug =1),
while Forecaster W has access to a ‘“crisis” signal W,
that is irregular (¢ = 0.05) but large when it arrives
(mc = =5, upy = 0). If both forecasters optimally use their
(nonoverlapping) information sets, then their forecasts are

YY = que + (1= @) i + p + (. — pem) Xi,

YW= pur+ (1= p) e + par + (e — pan) We. (21)

The lower-right panel of Figure 2 shows that the “crisis” fore-
caster is preferred for exponential Bregman parameter values
less than zero, while the “local variation” forecaster is preferred
for larger parameter values.

We have thus demonstrated that relaxing any one of the
three “ideal environment” assumptions in part (a) of Propo-
sition 1 can lead to sensitivity of forecast rankings to the
choice of Bregman loss function. Thus, rather than merely
specifying the target functional to be the mean, which narrows
the set of relevant loss functions only to the class of Bregman
loss functions, forecast consumers or survey designers should
specify the specific Bregman loss function that will be used
to evaluate forecasts. In the next section we consider how
this information may be used by forecast producers to better
estimate the parameters of their forecasting models.

It should be noted that it may be possible to partially relax
Assumptions 1-3 in Proposition 1, or to place other restrictions
on the problem, and retain (some, possibly partial) robustness
of the ranking of forecasts to the choice of Bregman loss
function. One example is when the competing forecasts are
correct given their (possibly limited) information sets, free from
estimation error, and the target variable and the forecasts are
Normally distributed. In this case the following proposition
shows we can omit the assumption of nested information sets
and retain robustness of rankings for any exponential Bregman
loss function. (This explains the need for an alternative DGP in
demonstrating sensitivity to nonnested information sets.)

Proposition 2. If (1) Yy ~ N (u, 02) , (i1) f’} ~N (/L, a)lz) for
i € (A, B}, and (iii) E [Y,u?;'] = P fori e {A, B, then

MSE4

S MSEp & E [L (Yt, f/;‘)]
<
=E

[L (Yt, I?IB)] VL € LExp—Bregman-

Other special cases of robustness may be arise if, for exam-
ple, the form of the model misspecification was known, or if the
target variable has a particularly simple structure (e.g., a binary
random variable, see, e.g., Elliott, Ghanem, and Kriiger 2016).
I do not pursue further special cases here.
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2.3. Optimal Approximations From a Possibly Misspeci-
fied Model

In this section, we consider the implications of model
misspecification for the producers of forecasts. Consider the
problem of calibrating a parametric forecasting model to gener-
ate the best prediction. If the model is correctly specified, then
part (a) of Proposition 3 shows that minimizing the expected
loss under any Bregman loss function will yield a consistent
estimator of the model’s parameters. We contrast this robust
outcome with the sensitivity to the choice of loss function
that arises under model misspecification in part (b). Elliott,
Ghanem, and Kriiger (2016) provided several useful related
results on this problem when both the target variable and the
forecast are binary. They showed that even in this relatively
tractable case, the presence of model misspecification generally
leads to sensitivity of estimated parameters to the choice of
(consistent) loss function. Lieli and Nieto-Barthaburu (2010)
also presented some relevant results for this case.

Proposition 3. Denote the model for E [Y;|F;] as m (Z;;0)
where Z; € Fyand 0 € ® C RP, p < oo. Define

05 = argmin E[L (¥;,m (Z;0):9)]. (22)

where L is a Bregman loss function characterized by the convex
function ¢. Assume (i) dm (Z;;60) /06 # 0 a.s. VO € © for both
(a) and (b) below.

(a) Assume (ii) 3! 8y € O s.t. E[Y;|F] = m(Z;00) as.,
then 9;; =6y V ¢.

(b) Assume (ii’) # 6g € O s.t. E[Y|Fi] = m (Z;6p) as.,
then 9; may vary with ¢.

Assumption (i) in the above proposition is required for
identification, imposing that the model is sensitive to changes
in the parameter 6. Assumption (ii) is a standard definition of a
correctly specified parametric model, and ensures global iden-
tification of 6y, while Assumption (ii’) is a standard definition
of a misspecified parametric model.

The proof of part (a) is presented in the supplemental
appendix. This result is related to the theory for quasi maxi-
mum likelihood estimation (see, e.g., Gourieroux, Monfort, and
Trognon 1984; White 1994).

To verify part (b) consider the following illustrative exam-
ple, where the DGP is

Y, = X> 4 &, & 1X, Vi,s
X, ~ iid N (u 02) . g ~iid N0, 1)

(23)

but the forecaster mistakenly assumes the predictor variable
enters the model linearly

Y[ =+ ﬂX[ + e;. (24)
To obtain analytical results to illustrate the main ideas, con-
sider a forecaster using the exponential Bregman loss function
defined in Equation (7), with parameter a. Using results for
functions of normal random variables (see Appendix SA.1 for
details) we can analytically derive the optimal linear model
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parameters [«, 8] as a function of a, subject to the condition
—1
that a # (20?)

2
. W A 2p
@f=0t- —F ——  pr=—
“ Pa 1 —2ac?

(25)
(1 — 2a02)2

This simple example reveals three important features of the
problem of loss function-based parameter estimation in the
presence of model misspecification. First, the loss function
shape parameter does not always affect the optimal model

parameters. In this example, if X ~ N (O, 02) , then (&;‘, ,é;‘) =

(02,0) for all values of the loss function parameter. Second,
identification issues can arise even when the model appears to
be prima facie well identified. In this example, the estimation

problem is not identified at a = (202)_1. Issues of identifi-
cation when estimating under the “relevant” loss function have
been previously documented (see, e.g., Weiss 1996; Skouras
2007).

Finally, when p # 0, the optimal model parameters will
vary with the loss function parameter, and thus the loss function
used in estimation will affect the optimal approximation. Fig-
ure 3 illustrates this point, presenting the optimal linear approx-
imations for three choices of exponential Bregman parameter,
when 4 = o2 = 1. The approximation yielded by OLS
regression is obtained when a = 0. If we consider a loss
function that places more (less) weight on errors that occur for
low values of the forecast, a = —0.5 (a = 0.25) the line flattens
(steepens), and Figure 3 shows that this yields a better fit for the
left (right) side of the distribution of the predictor variable.

The above results motivate declaring the specific loss func-
tion that will be used to evaluate forecasts, so that survey
respondents can optimize their (potentially misspecified) mod-
els taking the relevant loss function into account. It is important
to note, however, that it is not always the case that optimizing
the model using the relevant loss function is optimal in finite

Exponential Bregman-optimal linear approximations

20 T T T T T T T
data
- e e=g =(0.25 P
151 a=0 (OLS) 7 |
—a =05 ,’

Figure 3. This figure presents the optimal linear approximations to
a nonlinear DGP based on the exponential Bregman loss function for
three choices of “shape” parameter; the choice a = 0 corresponds to
quadratic loss, and the fit is the same as that obtained by OLS.



Patton: Comparing Possibly Misspecified Forecasts

samples: there is a trade-off between bias in the estimated
parameters (computed relative to the probability limits of the
parameter estimates obtained using the relevant loss function)
and variance (parameter estimation error). It is possible that
an efficient (low variance) but biased estimation method could
out-perform a less efficient but unbiased estimation method in
finite samples. This is related to work on estimation under the
“relevant cost function” (see, e.g., Weiss 1996; Christoffersen
and Jacobs 2004; Skouras 2007; Hansen and Dumitrescu 2016;
Elliott, Ghanem, and Kriiger 2016).

2.4. Comparing Quantile Forecasts

This section presents results for quantile forecasts that cor-
respond to those above for mean forecasts. The correspond-
ing result for the necessity and sufficiency of Bregman loss
for mean forecasts is presented in Saerens (2000), see also
Komunjer (2005), Gneiting (2011b), and Thomson (1979):
the class of loss functions that is necessary and sufficient for
quantile forecasts is called the “generalized piecewise linear”
(GPL) class, denoted L¢p;

L(y.y:0)=1{y<3}-a)(g(®) —g®»). (6

where g is a strictly increasing function, and @ € (0,1)

indicates the quantile of interest. A prominent example of a

GPL loss function is the “Lin-Lin” (or “tick”) loss function,
which is obtained when g is the identity function

L(y.%:a)=1{y<3}—-a)(-y) (27)

and which nests absolute error (up to scale) when o« = 1/2.

However, there are clearly an infinite number of loss functions

that are consistent for the o quantile. The following is a

homogeneous parametric GPL family of loss functions (for

variables with support on the real line) related to that proposed
by Gneiting (2011b)

L(y.3;0,0) = (1{y <3} —«)
A\ |~|b
x (sen () I = sen ) ") /6, b > 0.
(28)
Plotting some elements of the homogeneous GPL loss function
family (i.e., different choices of b) reveals that their shapes can
vary substantially.

When the loss function belongs to the GPL family, the
optimal forecast satisfies

o« = ]E[l {Y, < f/;*} |J—;] =F, (Y;‘)
where Y;|F; ~ Fy, and if the conditional distribution function
is strictly increasing, then Y} = F; U(@|F) . Given its promi-
nence in econometric work, we now seek to determine whether
the ranking of two forecasts by Lin-Lin loss is sufficient for

their ranking by any GPL loss function (with the same «). That
is, whether

LinLin§ < LinLing < E [L (Y,, f/{‘)]

(29)

©B
<E [L (Yt, % )] VL e L%
subject to these expectations existing. Under the analogous

conditions to those for the conditional mean, a sufficiency result
obtains.

(30)
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Proposition 4. (a) Under Assumptions 1, 2, and 3, the
ranking of these two forecasts by expected Lin-Lin loss is
sufficient for their ranking by any L£¢p; loss function.

(b) If any of Assumptions 1, 2, or 3 fail to hold, then the
ranking of these two forecasts may be sensitive to the choice of
Lpy. loss function.

As in the conditional mean case, a violation of any of
Assumptions 1, 2, or 3 is sufficient to induce sensitivity to
the choice of consistent loss function. A proof of part (a)
and analytical examples establishing part (b) are presented in
the supplemental appendix. An example based on a realistic
simulation design is given in Section 3.

2.5. Mean Forecasts of Symmetric Random Variables

We next consider a case where some additional information
about the target variable is assumed to be known. A leading
example in economic forecasting is when the target variable
is assumed to be symmetrically distributed. In the following
proposition we show that when this assumption holds, the class
of loss functions that leads to the forecasters revealing their
conditional mean is even larger than in the general case in
Section 2.1: it is the convex combination of the Bregman and
the GPL!/2 class of loss functions. The second and third parts
present results on ranking forecasters when the “ideal environ-
ment” assumptions hold, or fail to hold. These results suggest
that it is even more important to declare which specific loss
function will be used to rank the forecasts in such applications,
as the set of loss functions that might be employed by survey
respondents is even larger than in either the mean (Bregman) or
median (GPL!/2) forecasting cases.

Proposition 5. Assume that Y;|F;—; ~ Ff, a symmetric
continuous distribution with finite second moments. Then,

(a) Any convex combination of a Bregman and a GPL!/? loss
function, Lpreg x GPL = ALBregman + (1 — A) ClG/gL, A e [0,1],
yields the mean of F} as the optimal forecast.

(b) Under Assumptions 1, 2, and 3, the ranking of these
forecasts by MSE or MAE is sufficient for their ranking by any
LBreg x GpL loss function.

(c) If any of Assumptions 1, 2, or 3 fail to hold, then the
ranking of these two forecasts may be sensitive to the choice of
LBreg x GpL loss function.

2.6. Comparing Density Forecasts

We now consider results corresponding to the mean and
quantile cases above for density or distribution forecasts. In
this case the central idea is the use of a proper scoring rule.
A “scoring rule” (see, e.g., Gneiting and Ranjan 2011), is a loss
function mapping the density or distribution forecast and the
realization to a measure of gain/loss. (In density forecasting this
is often taken as a gain, but for comparability with the above
two sections I will treat it here as a loss, so that lower values are
preferred.) A “proper” scoring rule is any scoring rule such that
it is minimized in expectation when the distribution forecast is
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equal to the true distribution. That is, L is proper if
]EF[L(F,Y)]E/L(F,y)dF(y)SEF[L(F,Y)] €1y

for all distribution functions F, Fe P, where P is the class of
probability measures being considered. (I will use distributions
rather than densities for the main results here, so that they
are applicable more generally.) Gneiting and Raftery (2007)
showed that if L is a proper scoring rule then it must be of the
form

L(F,y)=‘D(F)+‘IJ*(F,y)—/‘1’* (F,y)dF (y), (32

where W is a strictly convex, real-valued function, and W* is a
subtangent of W at F' € P. I denote the set of proper scoring
rules satisfying Equation (32) as Lproper- As an example of a
proper scoring rule, consider the “weighted continuous ranked
probability score” from Gneiting and Ranjan (2011)

o0

WCRPS (F, y; ) = / ® @) (F@)—1{y<z)’dz, (33)

—0oQ

where w is a strictly positive weight function on R. (Strict
positivity of the weights makes wCRPS strictly proper.) If @
is constant then the above reduces to the (unweighted) CRPS
loss function.

Now we seek to determine whether the ranking of two
forecasts by two distribution forecasts by any single proper
scoring rule, L;, is consistent for their ranking by any proper
scoring rule

E[L(FL1)] SE[L(FFY)] & E[L (FL1)]

SE[L (FF. V)] VL € Loroper. (34)

Under the analogous conditions to those for the conditional
mean and conditional quantile, a sufficiency result obtains.

Proposition 6. (a) Under Assumptions 1, 2, and 3, the
ranking of these two forecasts by any given proper scoring rule
is sufficient for their ranking by any other proper scoring rule.

(b) If any of Assumptions 1, 2, or 3 fail to hold, then the
ranking of these two forecasts may be sensitive to the choice of
proper scoring rule.

As in the conditional mean and quantile cases, a violation of
any of Assumptions 1, 2, or 3 is enough to induce sensitivity
to the choice of proper scoring rule. A proof of part (a)
and analytical examples establishing part (b) are presented in
the supplemental appendix. An example based on a realistic
simulation design is given in Section 3.

3. SIMULATION-BASED RESULTS FOR REALISTIC
SCENARIOS

Having established the theoretical possibility of ranking
sensitivity in Section 2, the objective of this section is to show
that such sensitivity is not a knife-edge result or a mathematical
curiosity, but rather a problem that may arise in many practical
forecasting applications. I consider three realistic forecasting
scenarios, all calibrated to standard economic applications, and
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show that the presence of model misspecification, estimation
error, or nonnested information sets can lead to sensitivity in
the ranking of competing forecasts to the choice of consistent
or proper loss functions.

For the first example, consider a point forecast based on
a Bregman loss function, and so the target functional is the
conditional mean. Assume that the data generating process is
a stationary AR(5), with a strong degree of persistence, similar
to U.S. inflation or long-term bond yields

Y[ = Y[_] - 002Y[_2 - OOZY[_?, - OOIY[_4

—0.01Y,_s + &, & ~iidN(0,1). (35)

Now consider the comparison of a parsimonious misspecified
model with a correctly specified model that is subject to
estimation error. The first forecast is based on a random walk
assumption, and the second forecast is based on a correctly
specified AR(5) model with estimated parameters

A

A=y, (36)
fGB = <f>0,z + le,th—l + qu,rYzfz + ¢33,th73
+¢aiYims + b5, Yios, (37)

where qASj,, is the OLS estimate of ¢; based on data from
t—100tot — 1, forj = 0,1,...,5. I simulate this design
for 10,000 observations, and report the differences in average
losses for a variety of homogeneous and exponential Bregman
loss functions in Figure 4. This figure shows that the ranking of
these two forecasts is sensitive to the choice of Bregman loss
function: under squared-error loss (corresponding to parame-
ters 2 and 0, respectively, for the homogeneous and exponential
Bregman loss functions) the average loss difference is negative,
indicating that the AR(5) model has larger average loss than the
random walk model, and thus the use of a parsimonious mis-
specified model is preferred to the use of a correctly specified
model that is subject to estimation error. The ranking is reversed
for homogeneous Bregman loss functions with parameter above
about 3.5, and for exponential Bregman loss functions with
parameter greater than about 0.5 in absolute value.

Next, consider quantile forecasts for a heteroscedastic time
series process, designed to mimic daily stock returns. Such
data often have some weak first-order autocorrelation, and
time-varying volatility that is well-modeled using a GARCH
(Bollerslev 1986) process

Y = w; +or&, & ~iidN (0,1)
where w; = 0.03 +0.05Y,_;
0?2 =0.054 0902, +0.0507 ;&2 ;.

(38)

I compare two forecasts based on nonnested information sets.
The first forecast exploits knowledge of the conditional mean,
but assumes a constant conditional variance, while the second
is the reverse

v =uw+607" (),
V=it (@),

(39)

where o1 = E[Y;], 52 = V[Y;], and & is the standard normal
CDF. I consider these forecasts for two quantiles, a tail quantile
(e = 0.05) and an intermediate quantile between the tail and



Patton: Comparing Possibly Misspecified Forecasts

805

Average of Random Walkloss minus AR(5) loss

Avg loss diff
o
(6]

I

\

\
1 2 3 4
Homog Bregman parameter

2

1.5

-1 -0.5 0 0.5 1
Exp Bregman parameter

Figure 4. Average loss from a random walk forecast minus that from an estimated AR(S) forecast, for various homogeneous (left panel) and

exponential (right panel) Bregman loss functions.

the center of the distribution (o = 0.25). I compare these
forecasts using the family of homogeneous GPL loss functions
in Equation (28), and report the results based on a simulation of
10,000 observations.

In the right panel of Figure 5, where « = 0.05, we see
that the forecaster who has access to volatility information
(Forecaster B) has lower average loss, across all values of the
loss function parameter, than the forecaster who has access
only to mean information. This is consistent with previous
empirical research on the importance of volatility on estimates
of tails. However, when looking at an intermediate quantile,
a = 0.25, we see that the ranking of these forecasts switches:
for loss function parameter values less than about one, the
forecaster with access to mean information has lower average
loss, while for loss function parameter values above one we see
the opposite.

As a final example, consider the problem of forecasting
the distribution of the target variable. I use a GARCH(l,1)
specification (Bollerslev 1986) for the conditional variance, and
a left-skewed ¢ distribution (Hansen 1994) for the standardized

residuals, with parameters broadly designed to match daily US
stock returns

Y, = o184,

g, ~ iid Skew 7 (0, 1,6, —0.25)

0?2 =0.054 0902 | +0.0507 ;&2 ;. (40)

The first distribution forecast is based on the normal distribu-
tion, with mean zero and variance estimated using the past 100
observations. This is a parsimonious specification, but imposes
an incorrect model for the predictive distribution. The second
forecast is based on the empirical distribution function (EDF)
of the data over the past 100 observations, which is clearly
more flexible than the first, but will inevitably contain more
estimation error

~ X 1 100

F =d(=), whereé?=—, Y2 . (41

s (1) (6) where 67 = —oo, ¥ YiL, (4D)
100

FBJ(X):— I{Yt—JSX}

100 4
j=1

(42)

Mean forecaster minus Vol forecaster

T
—@—alpha=0.25

|
|
|
0.5 |
|
|
|
|

Avg loss diff

0 0.5 1 1.5 2
GPL shape parameter

5

T
—&— alpha=0.05

0
0 0.5 1 1.5 2
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Figure 5. Average loss from a AR-constant volatility forecast minus that from a constant mean-GARCH forecast for various GPL loss
functions. (Lin-Lin loss is marked with a vertical line at 1.) The left panel is for the 0.25 quantile, and the right panel is for the 0.05 quantile.
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I consider the weighted CRPS scoring rule (wCRPS) from
Equation (33) where the weights are based on the standard
normal CDF

w(@GA) =22 @+ -1 A-P@), Ae[0,1]. (43)
When A = 0, the scoring rule places more weight on the left
tail than the right tail, and the opposite occurs for A = 1. When
A = 0.5 the scoring rule weights both tails equally. Since w is
a convex combination of two weight functions (¥ and 1 — @),
the expected wCRPS is linear in A.

This design is simulated for 10,000 observations, and the
differences in average losses are [0.51, —0.53, —1.62] for A =
[0,0.5, 1]. Thus, the ranking of these two distribution forecasts
is sensitive to the choice of (proper) scoring rule: for weights
below about 0.25 (i.e., those with a focus on the left tail), we
find the EDF is preferred to the normal distribution, while for
weights above 0.25, including the equal-weighted case at 0.5,
the normal distribution is preferred to the EDF. Thus, the addi-
tional estimation error in the EDF generally leads to it being
beaten by the parsimonious, misspecified, normal distribution,
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unless the scoring rule places high weight on the left tail, which
is long given the left-skew in the true distribution.

4. EMPIRICAL ILLUSTRATION: EVALUATING
FORECASTS OF US INFLATION

In this section, I illustrate the above ideas using survey
forecasts of U.S. inflation. Inflation forecasts are central to
many important economic decisions, perhaps most notably
those of the Federal Open Markets Committee in their setting
of the Federal Funds rate, but also pension funds, insurance
companies, and asset markets more broadly. Inflation is also
notoriously hard to predict, with many methods failing to beat
a simple random walk model, see Faust and Wright (2013) for
a recent comprehensive survey.

First, I consider a comparison of the consensus forecast
(defined as the cross-respondent median) of CPI inflation
from the SPF (available from tinyurl.com/yckzneb9) and
the Thomson Reuters/University of Michigan Survey of
Consumers (available from tinyurl.com/y8ef5htj), as well as

Surveyforecasts of annual CPI inflation, 1982-2016

Inflation (annual,%)

2

Actual

- = =—SPF

— — — Michigan
Greenbook

83Q1 85Q1 87Q1 89Q1 91Q1 93Q1 95Q1 97Q1 99Q1 01Q1 03Q1 05Q1 07Q1 09Q1 11Q1 13Q1 15Q1

Figure 6. Time series of actual and predicted annual U.S. CPI inflation, updated quarterly, over the period 1982Q3-2016Q2. The inflation
forecasts are from the Survey of Professional Forecasters, the Michigan survey of consumers, and the Federal Reserve’s “Greenbook.”

Table 1. Summary statistics

Mean SD Min Max
Actual 2.760 1.373 —1.378 6.255
SPF 3.162 1.279 1.565 8.058
Greenbook 2.917 1.357 0.900 6.400
Michigan 3.163 0.689 1.700 6.900
Forecaster 20 3.432 1.453 0.853 12.142
Forecaster 506 1.640 0.508 —0.047 2.597
Forecaster 510 2.261 0.434 1.256 3.136

NOTES: This table presents summary statistics on realized annual US CPI inflation and forecasts of this quantity, all measured in percent, over the period 1982Q3 to 2016Q2. All
forecasts are for a one-year horizon. “SPF” is the consensus forecast from the Survey of Professional Forecasters, “Greenbook” is the Federal Reserve staff forecasts (ending in 2013Q4),
and “Michigan” is from the Thomson Reuters/University of Michigan Survey of Consumers. The last three rows correspond to forecasts from individual respondents to the Survey of

Professional Forecasters, across all observations available for each of the respondents.
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the Federal Reserve staff “Greenbook” forecasts (available at
tinyurl.com/y6vquzq?2). For this illustration, I examine one-year
horizon forecasts, which are directly available for the Michigan
and Greenbook forecasts, and can be computed using the one-
quarter SPF forecasts for horizons 1 to 4. The sample period
is 1982Q3 to 2016Q2, a total of 136 observations, except for
the Greenbook forecasts which are only available until 2013Q4
(these forecasts are only available to the public with a five-
year lag.) As the “actual” series I use, the 2016Q4 vintage
of CPI data (available at tinyurl.com/y84skovo). A plot of the
forecasts and realized inflation series is presented in Figure 6,
and summary statistics are presented in Table 1.

I also consider a comparison of individual respondents to
the Survey of Professional Forecasters. These respondents are
identified in the database only by a numerical identifier, and I
select Forecasters 20, 506, and 510, as they all have relatively
long histories of responses. (I compare individual forecasters
for all periods in which both forecasters are present in the
database.) Like the consensus forecasts, I also consider the one-
year forecasts from the individual respondents.

Given the difficulty in capturing the dynamics of inflation,
it is likely that all forecasters are subject to model misspecifi-
cation. Further, only relatively few observations are available
for forecasters to estimate their model, making estimation error
a relevant feature of the problem. Moreover, these forecasts are
quite possibly based on nonnested information sets, particularly
in the comparison of professional forecasters with the Michigan
survey of consumers and the Federal Reserve forecasts. Thus,

Homog Bregman loss
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the practical issues highlighted in Section 2 are all potentially
relevant here.

Figure 7 presents the results of comparisons of these fore-
casts, for a range of Bregman loss functions. In the left panels,
I consider homogeneous Bregman loss functions (Equation
(6)) with parameter ranging from 1.1 to 4 (nesting squared-
error loss at 2) and in the right panels, I consider exponential
Bregman loss functions (Equation (7)) with parameter ranging
from —1 to 1 (nesting squared-error loss at 0). In the top panel,
we see that the sign of the difference in average losses for SPF
and Michigan varies with the parameter of the loss function: the
SPF forecast has lower average loss for values of the Bregman
parameter less than 3.5 and 0.5 in the homogeneous and
exponential cases, respectively, while the reverse holds true for
parameters above these values. (The difference in average loss
is slightly below zero for the squared-error loss case.) The loss
difference between the SPF and Greenbook forecasts is positive
for values of the Bregman parameter greater than 1.5 and
—0.2 in the homogeneous and exponential cases, respectively,
and (slightly) negative for parameter values less than those
thresholds. These results indicate that the ranking of these
forecasts of inflation depend on whether over-predictions are
more or less costly than under-predictions. (For a given value
of the loss function parameter, a Diebold and Mariano (1995)
test can be implemented to formally test whether the average
loss differences are different from zero. Perhaps unsurprisingly,
given the relatively short samples available here, in no case is
the null rejected.)

Exp Bregman loss
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Figure 7. Differences in average losses between two forecasts, for a range of loss function parameters. The “homogeneous Bregman” loss
function is in the left column, and the “exponential Bregman” loss function is in the right column. The squared-error loss function is nested at 2

and O for these loss functions, and is indicated by a vertical line.
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In the lower panels, I compare SPF forecaster 20 to fore-
caster 506, and we again see sensitivity to the choice of loss
function: for loss functions that penalize under-prediction more
than over-prediction (homogeneous Bregman with parameter
less than 2.25, and exponential Bregman with parameter less
than zero) forecaster 20 is preferred, while when the loss
functions penalize over-prediction more than under-prediction
the ranking is reversed. The lower panels also reveal an example
of a robust ranking: Forecaster 506 has larger average loss
than Forecaster 510 for all homogeneous and exponential
Bregman loss functions considered; in no case does the ranking
reverse.

5. CONCLUSION

Using analytical results, realistic simulation designs, and
an application to U.S. inflation forecasting, this article shows
that the ranking of competing forecasts can be sensitive to
the choice of consistent loss function or scoring rule. In the
absence of model misspecification, parameter estimation error
and nonnested forecaster information sets, this sensitivity is
shown to vanish, but in almost all practical applications at
least one of these complications may be a concern. In the
presence of these complications, a conclusion of this article is
that declaring the target functional is not generally sufficient to
elicit a forecaster’s best (according to a given, consistent, loss
function) forecast; rather best practice for point forecasting is
to declare the single, specific loss function that will be used
to evaluate forecasts, and to make that loss function consistent
for the target functional of interest to the forecast consumer.
Reacting to this, forecasters may then wish to estimate their
predictive models, if a model is being used, based on the loss
function that will evaluate their forecast.

SUPPLEMENTARY MATERIALS

The supplemental appendix for this article is available at
http://econ.duke.edu/~ap172/research.html.
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