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1. INTRODUCTION

Politis and White (2004) reviewed the problem of (nonparametric)
bootstrapping for time series, and presented different block bootstrap
methods in a unified way. In addition, results of Lahiri (1999) were
reviewed, a corrected bound was suggested on the asymptotic relative
efficiency (ARE) of different methods, and practically useful estimators of
the optimal block size for the aforementioned block bootstrap methods
were proposed.

Recently, however, Nordman (2008) discovered an error in Lahiri’s
(1999) calculation of the variance associated with the stationary bootstrap
of Politis and Romano (1994). Since the theoretical results of Politis and
White (2004) were building on Lahiri’s (1999) calculations, a correction is
in order and given in what follows. Furthermore, the proposed estimators
of the optimal block size must be modified, and this results in different
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finite-sample behavior of the bootstrap methods employed with estimated
block size.

The corrections are as follows:

1. The correct value for the variance constant DSB defined in Theorem 3.1
of Politis and White (2004) is DSB = 2g 2(0);

2. The above corrected expression for DSB is simple enough so that
Lemma 2.1 of Politis and White (2004) is now replaced by the simple
statement that:

ARECB/SB := lim
N→∞

MSEopt ,CB

MSEopt ,SB
= (2/3)(2/3) � 0�7631428, (1)

where MSEopt ,CB := infbMSE(�̂2
b,CB), and MSEopt ,SB := infbMSE(�̂2

b,SB);
3. Equations (6) and (7) of Politis and White (2004) still give the optimal

(expected) block size for the stationary bootstrap and the optimized
large-sample MSE of estimation as long as the correct expression for DSB

is used;
4. Equation (8) of Politis and White (2004) should be corrected as follows:

D̂SB = 2ĝ 2(0);
5. Using the corrected expression for D̂SB , Eq. (9) of Politis and White

(2004) gives the estimator of the optimal (expected) block size for the
stationary bootstrap, and Theorem 3.2 remains valid as stated.

2. CORRECTED SIMULATION RESULTS

The simulation results of Politis and White (2004) were based on
the wrong value of the constant DSB and are, therefore, inaccurate. The
simulations were re-run anew, and an additional numerical error in Table 1
of Politis and White (2004) was also captured. The corrected Tables 1–4 are
given below; they should replace the respective Tables 1–4 of Politis and
White (2004). The corrected MatLab code for the practical implementation
of the Politis/White block selection algorithms is available from the Web
site http://www.economics.ox.ac.uk/members/andrew.patton/code.html.

For the simulations, 1000 time series were generated of length N from
the AR(1) model: Xt = �Xt−1 + Zt , with �Zt� ∼ i.i.d. N (0, 1).

What is apparent from the new Tables 2 and 3 is that the Politis/White
block selection algorithms work exceptionally well even better to what was
previously thought. On average, the estimated block sizes are between
90% and 110% of the respective true optimal block sizes. Furthermore,
the reduction in the standard deviation of these estimated block sizes is
dramatic when going from N = 200 to N = 800. This approximate halving
of the RMSE with a quadruple sample size was predicted by the theoretical

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
k
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
3
:
2
2
 
2
6
 
O
c
t
o
b
e
r
 
2
0
0
9



374 A. Patton et al.

TABLE 1 Theoretical optimal block sizes bopt ,SB and bopt ,CB ;
the brackets [·] indicate ‘closest integer’ to the entry

bopt ,SB bopt ,CB

� = 0�7, N = 200 11.47 [13.12]
N = 800 18.20 [20.83]
� = 0�1, N = 200 2.01 [2.31]
N = 800 3.20 [3.66]
� = −0�4, N = 200 5.66 [6.48]
N = 800 8.99 [10.23]

TABLE 2 Empirical mean, standard deviation, and root mean
squared error (RMSE) of the quantity b̂opt ,SB/bopt ,SB

b̂opt ,SB/bopt ,SB Mean St. dev. RMSE

� = 0�7, N = 200 0.859 0.342 0.370
N = 800 0.927 0.244 0.254
� = 0�1, N = 200 0.959 0.943 0.943
N = 800 0.881 0.323 0.344
� = −0�4, N = 200 1.062 0.644 0.646
N = 800 1.081 0.368 0.377

TABLE 3 Empirical mean, standard deviation, and root mean
squared error (RMSE) of the quantity b̂opt ,CB/bopt ,CB

b̂opt ,CB/bopt ,CB Mean St. dev. RMSE

� = 0�7, N = 200 0.896 0.329 0.345
N = 800 0.951 0.244 0.249
� = 0�1, N = 200 1.142 0.911 0.922
N = 800 1.022 0.336 0.337
� = −0�4, N = 200 1.135 0.638 0.652
N = 800 1.128 0.369 0.391

TABLE 4 The true �2∞, and the mean and MSE of its two estimators based on estimated block
size; the last column indicates the finite-sample attainable relative efficiency (FARE) of the SB
relative to the CB

�2∞ E �̂2
b̂opt ,SB

E �̂2
b̂opt ,CB

MSEb̂opt ,SB
MSEb̂opt ,CB

FARECB/SB

� = 0�7, N = 200 11.111 7.692 8.207 22.220 19.257 0.867
N = 800 11.111 9.115 9.460 9.223 7.574 0.821
� = 0�1, N = 200 1.235 1.110 1.142 0.052 0.051 0.983
N = 800 1.235 1.143 1.163 0.022 0.018 0.820
� = −0�4, N = 200 0.510 0.611 0.577 0.049 0.031 0.632
N = 800 0.510 0.552 0.542 0.010 0.007 0.692

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
D
u
k
e
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
3
:
2
2
 
2
6
 
O
c
t
o
b
e
r
 
2
0
0
9



Correction to “Automatic Block-Length Selection for the Dependent Bootstrap” 375

results of Politis and White (2004), but its empirical verification is quite
remarkable recalling that these algorithms are totally automatic.

Table 4 reports the performance of the circular and stationary
bootstrap methods based on estimated block sizes. To do that, the
notion of finite-sample “attainable” relative efficiency (FARE) of the SB
relative to CB was defined in Politis and White (2004) as FARECB/SB :=
MSE(�̂2

b̂opt ,CB
)/MSE(�̂2

b̂opt ,SB
). First note that in the cases of positive

dependence, the FAREs are larger than the asymptotic limit of 0.76 from
Eq. (1); this is similar to the findings of the old simulation. In the case
� = −0�4, however, the FAREs are smaller than 0.76 but only a somewhat
smaller; in this case, the old Table 4 was very misleading (having been
constructed based on the wrong formula). In all cases, the tendency of the
FAREs to move towards the asymptotic limit of 0.76 when the sample size
increases is noted giving credence to the conjecture offered in Section 4
of Politis and White (2004).
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