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Introduction

The development of new estimators of asset price variability has been
a very active area of research in the past decade

See Andersen, et al. (2006) or Barndor¤-Nielsen and Shephard (2007)
for recent reviews of the literature on realised volatility estimators.

Issues considered by papers in this area:

Accuracy of estimators based on higher frequency data

E¢ ciency

Robustness to microstructure e¤ects

Ability to distinguish the continuous and the �jump�components of
variation

Estimation of covariances and correlations
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This paper�s main question

F Do combinations of RV estimators o¤er gains in accuracy relative to
individual estimators?

This question is motivated by the success of combinations in
forecasting applications, see Bates and Granger (1969), Stock and
Watson (2004), and Timmermann (2006) for example.

Why do combination forecasts work well? From Timmermann (2006):

1 Combine information from each individual forecast: directly applies to
volatility estimation

2 Average across di¤erences in impact of structural breaks: directly
applies to volatility estimation

3 Less sensitive to model mis-speci�cation: applies to volatility
estimation in terms of assumptions used to obtain speci�c estimators



Contribution of this paper

1 We propose methods for constructing theoretically optimal
combinations of RV estimators, in terms of average accuracy.

This problem is non-standard, as the target variable (the quadratic
variation of the process) is unobservable

Uses an extension of the data-based ranking method in Patton (2008),
which avoids the need to make strong assumptions about the
underlying price process.

2 We apply these methods to a collection of 32 di¤erent realised
measures, across 8 distinct classes of estimators, using data on IBM
from 1996-2008.

We use the step-wise testing method of Romano and Wolf (2005) and
the MCS of Hansen, Lunde and Nason (2005) to identify best individual
estimators, and to compare them with combination estimators.

We compare these estimators both in terms of in-sample accuracy, and
in an out-of-sample forecasting experiment.



Notation

θt the Ft -meas. latent target variable, eg: QVt or IVt

Xit , i = 1, 2, ..., n the F̃t -meas. realised volatility estimators

m the number of intra-daily observations

T the number of daily observations

L (θ,X ) the pseudo-distance measure

θ̃t a F̃t -meas., noisy, but unbiased estimator of θt

Yt the proxy or instrument for θt



The pseudo-distance measure

We measure accuracy using the average distance between the
estimator and the quantity of interest:

Infeasible E [L (θt ,Xit )] R E [L (θt ,Xjt )]

Feasible E [L (Yt ,Xit )] R E [L (Yt ,Xjt )]

where Yt is the proxy for θt .

General results are given for the class of pseudo-distance measures
proposed in Patton (2006). Empirical results use MSE or QLIKE:

MSE L (θ,X ) = (θ � X )2

QLIKE L (θ,X ) =
θ

X
� log θ

X
� 1



Combinations of RV estimators

Let Xt = [X1t , ...,Xnt ]
0 be the vector of all n individual RV

estimators, and consider a parametric combination of these:

X combot = g (Xt ;w)

eg 1 g (Xt ;w) = w0 +
n

∑
i=1
wiXit

eg 2 g (Xt ;w) = w0 �
n

∏
i=1
Xwiit

Optimal combinations:

w� � arg min
w2W

E [L (θt , g (Xt ;w))]

~w� � arg min
w2W

E [L (Yt , g (Xt ;w))]

ŵ�T � arg min
w2W

1
T

T

∑
t=1
L (Yt , g (Xt ;w))



Assumptions for the main theoretical result

In addition to standard regularity conditions, we require:

Assumption P1: E
�
θ̃t jθt ,Ft�1

�
= θt , where Ft�1 is info set generated

by complete path of log-price process.

Assumption P2: Yt = ∑J
j=1 λj θ̃t+j , for 1 � J < ∞, λj � 0 8 j , and

∑J
j=1 λj = 1.

Assumption T1: θt = θt�1 + ηt , where E [ηt jFt�1] = 0

The �rst assumption is reasonable, if we believe squared daily returns
to be noisy but unbiased estimators of QV

In presence of jumps some care is required to �nd a proxy for IV.

The third assumption is stronger. Critical for the result is that θt is
persistent. This can be captured either through a RW approximation
(as above) or an AR approximation.



Optimal combinations of RV estimators

Proposition: Under assumptions P1, P2, T1 and regularity conditions,
and if L is a member of the class of distance measures in Patton (2006),
then ~w�= w� and:

V̂�1/2
T

p
T (ŵ�T �w�)

D! N (0, I ) , as T ! ∞

Thus we can estimate the optimal combination parameter and
overcome the fact that the target variable is latent.



Application to estimating IBM price variability

We apply this method to estimating the variability of open-to-close
returns on IBM, over Jan 1996 to July 2008, 3168 trading days.

We consider a total of 32 individual RV estimators from 8 distinct
classes of estimators

For each estimator we follow the implementation of the authors of the
original paper as closely as possible (and in most cases exactly)

We compare these individual estimators with 3 simple combination
estimators (arithmetic mean, median, and geometric mean)

We compare accuracy both using the previous method for estimating
(in-sample) accuracy, and using an out-of-sample forecasting
experiment



Description of the estimators I

1 Realised variance: RV (m)t = ∑m
j=1 r

2
t ,j

Sampling frequency: 1sec, 5sec, 1min, 5min, 1hr and 1day
Sampling method: calendar time and tick time (Hansen and Lunde
2006, Oomen 2006)
Bandi and Russell�s (2006, 2008) MSE-optimal frequency (in calendar
time), with and without their bias correction

2 First-order autocorrelation adjusted RV, as in French, et al.
(1987), Zhou (1996), Hansen and Lunde (2006), Bandi and Russell
(2008)

Estimated on 1min and 5min returns, in calendar time.

3 Two-scale RV of Zhang, et al. (2006) and Multi-scale RV of Zhang
(2006)

1tick and 1min tick-time frequencies



Description of the estimators II
4 Realised kernels of Barndor¤-Nielsen, et al. (2008), using their
optimal bandwidth for each kernel

Kernels: Bartlett, Cubic, modi�ed Tukey-Hanning2, non-�at-top Parzen
1tick and 1min tick-time sampling

5 Realised range-based RV of Christensen and Podolskij (2007) and
Martens and van Dijk (2007)

Using 5min blocks, and 1min prices within each block, similar to
Christensen and Podolskij.

6 Bi-power variation of Barndor¤-Nielsen and Shephard (2006).

1min and 5min sampling, in calendar time

7 Quantile-based realised variance of Christensen, et al. (2008)

Using quantiles of 0.85, 0.90, and 0.96. Number of sub-intervals=1.
Prices sampled every 1min in tick time

8 MinRV and MedRV of Andersen, et al. (2008):

Using 1min tick time sampling



Summary statistics on a sub-set of the estimators

Standard
Mean Deviation Skewness Kurtosis Minimum

RV1 sec 3.158 3.005 2.940 22.270 0.168
RV1min 2.438 2.387 3.647 34.193 0.116
RV1day 2.403 6.228 10.638 193.816 0.000
RVAC 1,1min 2.440 2.392 3.592 32.743 0.117
TSRVtick 2.177 2.202 3.994 39.384 0.081
MSRVtick 2.181 2.287 5.572 85.553 0.081
RKTH2 2.381 2.784 7.761 158.827 0.109
RRV 2.310 2.537 4.647 52.061 0.123
BPV1min 2.105 2.075 2.632 12.867 0.077
QRV 2.441 2.273 2.430 11.563 0.104
MedRV 2.260 2.157 2.600 13.216 0.109



Correlation between a sub-set of the estimators

RV1 sec RV5min RV1day RVAC 1min RKTH2,1min QRV

RV1 sec 1 0.855 0.431 0.939 0.839 0.906
RV1min 0.938 0.948 0.517 0.997 0.939 0.956
RV1day 0.431 0.570 1 0.514 0.593 0.483
RVAC 1min 0.939 0.947 0.514 1 0.939 0.955
TSRVtick 0.913 0.938 0.507 0.983 0.931 0.935
MSRVtick 0.904 0.952 0.519 0.980 0.945 0.913
RKTH2 0.874 0.975 0.550 0.967 0.974 0.885
RRV 0.902 0.984 0.550 0.982 0.974 0.933
BPV1min 0.912 0.878 0.478 0.960 0.871 0.974
QRV 0.906 0.872 0.483 0.955 0.867 1
MedRV 0.919 0.882 0.487 0.961 0.874 0.980



In-sample performance of the estimators
The data-based ranking method of Patton (2008) requires some choices:

1 We use a one-period lead of RV5 min as our instrument for the latent
quadratic variation

Using a lower frequency (eg RV1day) reduces the power of tests

Using a higher frequency risks violating the unbiasedness assumption

2 We will present results using QLIKE; results using MSE are in a web
appendix.

Results are broadly similar, though power is lower using MSE than
using QLIKE

3 We use the RW approximation rather than an AR approximation to
the dynamics in QV

This was found to be satisfactory in Patton (2008) on the same data

AR approximation leads to similar results, though with less precision



In-sample performance of a sub-set of the estimators

Avg ∆QLIKE Rank In MCS?
Full Full 96-99 00-03 04-08 Full

RV1 sec -0.013 14 6 28 21 �
RV1min -0.040 2 3 3 1 X
RV1day 29.191 35 35 35 35 �
RVAC 1,1min -0.040 1 2 2 2 X
TSRVtick -0.001 22 27 15 20 �
MSRVtick -0.003 21 26 17 19 �
RKTH2 -0.014 12 16 11 9 �
RRV -0.016 9 15 8 16 �
BPV1min 0.029 28 31 12 8 �
QRV -0.035 4 4 5 4 �
MedRV -0.024 6 9 6 10 �
RVMean -0.030 5 8 4 3 �
RVGeo�mean -0.015 10 12 13 18 �
RVMedian -0.020 8 11 7 6 �



In-sample Romano-Wolf tests

Benchmark: RV1day RV5min RVMean

Sample period Full Full Full

RV1 sec X � �
RV1min X X X
RV1day F � �
RVAC 1,1min X X X
TSRVtick X � �
MSRVtick X � �
RKTH2 X X �
RRV X X �
BPV1min X � �
QRV X X �
MedRV X X �
RVMean X X F
RVGeo�mean X X �
RVMedian X X �



Optimal combinations of RV estimators

In the paper we present estimated optimal linear combination weights
across the 32 individual estimators, but no clear patterns emerge
(unsurprising given multicollinearity)

The estimated optimal combinations can also be used to test the
optimality of the equally-weighted average:

H0 : w �0 = 0\ w �1 = ... = w �n = 1/n
vs. Ha : w �0 6= 0[ w �i 6= 1/n for some i = 1, 2, ..., n

) This null is rejected with a p-value of less than 0.001

Thus while a simple mean does well, it is possible to construct more
accurate combination estimators.



Encompassing of RV estimators

We can also test whether a single estimator �encompasses�all others,
in the same spirit as Chong and Hendry (1986) and Fair and Shiller
(1990):

H i0 : w �i = 1\ w �j = 0 8 j 6= i
vs. H ia : w �i 6= 1[ w �j 6= 0 for some j 6= i

) This null is rejected for every single estimator, with p-values all less
than 0.001.

This is very strong evidence for considering combination RV
estimators: no single estimator dominates all others.



Out-of-sample comparisons of RV estimators

We next consider comparing each of these estimators via a standard
forecast experiment.

We use the HAR model of Corsi (2004):

θ̃t = β0i + βDiXit�1 + βWi
1
5

5

∑
j=1
Xi ,t�j + βMi

1
22

22

∑
j=1
Xi ,t�j + εit

We use Jan 1996 - Dec 1999 as the initial estimation period, and
then re-estimate each day using a rolling window of 1011 days.

We again use RV5min as the volatility proxy

This is then a standard volatility forecasting problem, and we can
compare the forecasts using existing methods.



Out-of-sample performance of a sub-set of the estimators

Rank In MCS?
Avg. ∆QLIKE Full 00-03 04-08 Full

RV1 sec 0.006 33 29 33 �
RV1min -0.012 3 5 6 X
RVAC 1,1min -0.013 1 3 9 X
TSRVtick -0.002 17 19 13 �
MSRVtick 0.001 23 31 14 �
RKTH2 0.003 30 33 25 �
RRV -0.011 7 9 7 X
BPV1min -0.007 10 6 15 �
QRV -0.007 13 1 31 �
MedRV -0.007 12 2 28 �
RVMean -0.012 4 10 2 X
RVGeo�mean -0.013 2 11 1 X
RVMedian -0.011 6 12 4 �
FCASTMean -0.006 15 15 10 �
FCASTGeo�mean -0.007 14 14 8 �
FCASTMedian -0.005 16 16 11 �



Out-of-sample Romano-Wolf tests

Benchmark: RV1day RV5min RVMean FCASTMean

Sample: Full Full Full Full
RV1 sec X � � �
RV1min X X � X
RVAC 1,1min X X � X
TSRVtick X � � �
MSRVtick X � � �
RKTH2 X � � �
RRV X X � X
BPV1min X � � �
QRV X � � �
MedRV X � � �
RVMean X X F X
RVGeo�mean X X � X
RVMedian X X � X
FCASTMean X X � F
FCASTGeo�mean X X � X
FCASTMedian X X � �



Combine estimators or combine forecasts?

An interesting question arises on whether it is better to use a
combination RV estimator in the HAR model and then forecast, or to
estimate HAR models on individual RV estimators and then combine
the forecasts.

We compare HAR forecasts using RVMean, RVGeo�mean and RVMedian

with combination forecasts FCASTMean, FCASTGeo�mean, and
FCASTMedian using a simple Diebold-Mariano (1995) test

Mean DM t-stat = 7.66

Geo-mean DM t-stat = 7.10

Median DM t-stat = 6.49

Thus we �nd strong evidence that estimating a single HAR model on
a combination RV estimator dominates using a forecast combination
based on many individual forecasts.



Conclusion and summary of results

This paper�s main question: Do combinations of RV estimators o¤er
gains in accuracy relative to individual estimators? �! Yes!

Using a new method for comparing RV estimator accuracy and a
standard out-of-sample forecast experiment, we �nd that combination
RV estimators signi�cantly outperform individual estimators.

In-sample, only two estimators (RV1min and RVAC 1min) signi�cantly
out-perform a simple equally-weighted average RV estimator.

Out-of-sample, no estimator signi�cantly out-performs a simple
equally-weighted average RV estimator.

Further, no single RV estimator encompassed the information
available in all other estimators, providing additional support for
combination realised measures.
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