Optimal Combinations of Realised Volatility Estimators

Andrew Patton and Kevin Sheppard

Department of Economics, and Oxford-Man Institute of Quantitative Finance University of Oxford

March 2009

Patton (Oxford) RV Combination March 2009 1

Introduction

- The development of new estimators of asset price variability has been a very active area of research in the past decade
 - See Andersen, et al. (2006) or Barndorff-Nielsen and Shephard (2007) for recent reviews of the literature on realised volatility estimators.
- Issues considered by papers in this area:
 - Accuracy of estimators based on higher frequency data
 - Efficiency
 - Robustness to microstructure effects
 - Ability to distinguish the continuous and the 'jump' components of variation
 - Estimation of covariances and correlations

Partial list of papers in this area

- French, et al. (1987)
- Zhou (1996)
- Andersen and Bollerslev (1998)
- Andersen, Bollerslev, Diebold and Labys (2001, 2003)
- Barndorff-Nielsen and Shephard (2004, 2004, 2006)
- Aït-Sahalia, Mykland and Zhang (2005), ZMA (2005)
- Hansen and Lunde (2006)
- Christensen and Podolskij (2007), Martens and van Dijk (2007)
- Bandi and Russell (2006, 2008)
- Christensen, Oomen and Podolskij (2008)
- Barndorff-Nielsen, Hansen, Lunde and Shephard (2009)

amongst many others

This paper's main question

- ★ Do combinations of RV estimators offer gains in accuracy relative to individual estimators?
 - This question is motivated by the success of combinations in forecasting applications, see Bates and Granger (1969), Stock and Watson (2004), and Timmermann (2006) for example.
 - Why do combination forecasts work well? From Timmermann (2006):
 - Combine information from each individual forecast: directly applies to volatility estimation
 - ② Average across differences in impact of structural breaks: directly applies to volatility estimation
 - Less sensitive to model mis-specification: applies to volatility estimation in terms of assumptions used to obtain specific estimators

Contribution of this paper

- We propose methods for constructing theoretically optimal combinations of RV estimators, in terms of average accuracy.
 - This problem is non-standard, as the target variable (the quadratic variation of the process) is unobservable
 - Uses an extension of the data-based ranking method in Patton (2008), which avoids the need to make strong assumptions about the underlying price process.
- We apply these methods to a collection of 32 different realised measures, across 8 distinct classes of estimators, using data on IBM from 1996-2008.
 - We use the step-wise testing method of Romano and Wolf (2005) and the MCS of Hansen, Lunde and Nason (2005) to identify best individual estimators, and to compare them with combination estimators.
 - We compare these estimators both in terms of in-sample accuracy, and in an out-of-sample forecasting experiment.

Notation

θ_t	the \mathcal{F}_t -meas. latent target variable, eg: QV_t or IV_t
$X_{it}, i = 1, 2,, n$	the $ ilde{\mathcal{F}}_t$ -meas. realised volatility estimators
m	the number of intra-daily observations
T	the number of daily observations
$L(\theta, X)$	the pseudo-distance measure
$ ilde{ heta}_t$	a $ ilde{\mathcal{F}}_t$ -meas., noisy, but unbiased estimator of $ heta_t$
Y_t	the proxy or instrument for $ heta_t$

The pseudo-distance measure

 We measure accuracy using the average distance between the estimator and the quantity of interest:

Infeasible
$$E[L(\theta_t, X_{it})] \gtrsim E[L(\theta_t, X_{jt})]$$

Feasible $E[L(Y_t, X_{it})] \gtrsim E[L(Y_t, X_{jt})]$

where Y_t is the proxy for θ_t .

 General results are given for the class of pseudo-distance measures proposed in Patton (2006). Empirical results use MSE or QLIKE:

$$\begin{array}{lll} \mathsf{MSE} & L\left(\theta,X\right) & = & \left(\theta-X\right)^2 \\ \mathsf{QLIKE} & L\left(\theta,X\right) & = & \frac{\theta}{X} - \log\frac{\theta}{X} - 1 \end{array}$$

Combinations of RV estimators

• Let $\mathbf{X}_t = [X_{1t}, ..., X_{nt}]'$ be the vector of all n individual RV estimators, and consider a parametric combination of these:

$$\begin{aligned} & X_t^{combo} &= & g\left(\mathbf{X}_t; \mathbf{w}\right) \\ \text{eg 1} & g\left(\mathbf{X}_t; \mathbf{w}\right) &= & w_0 + \sum_{i=1}^n w_i X_{it} \\ \text{eg 2} & g\left(\mathbf{X}_t; \mathbf{w}\right) &= & w_0 \times \prod_{i=1}^n X_{it}^{w_i} \end{aligned}$$

Optimal combinations:

$$\begin{split} \mathbf{w}^* & \equiv & \arg\min_{\mathbf{w} \in \mathcal{W}} \ E\left[L\left(\theta_t, g\left(\mathbf{X}_t; \mathbf{w}\right)\right)\right] \\ \mathbf{\tilde{w}}^* & \equiv & \arg\min_{\mathbf{w} \in \mathcal{W}} \ E\left[L\left(Y_t, g\left(\mathbf{X}_t; \mathbf{w}\right)\right)\right] \\ \mathbf{\hat{w}}_T^* & \equiv & \arg\min_{\mathbf{w} \in \mathcal{W}} \ \frac{1}{T} \sum_{t=1}^T L\left(Y_t, g\left(\mathbf{X}_t; \mathbf{w}\right)\right) \end{split}$$

Assumptions for the main theoretical result

• In addition to standard regularity conditions, we require:

Assumption P1: $E\left[\tilde{\theta}_t|\theta_t,\mathcal{F}_{t-1}\right]=\theta_t$, where \mathcal{F}_{t-1} is info set generated by complete path of log-price process.

Assumption P2:
$$Y_t = \sum_{j=1}^J \lambda_j \tilde{\theta}_{t+j}$$
, for $1 \leq J < \infty$, $\lambda_j \geq 0 \, \forall j$, and $\sum_{j=1}^J \lambda_j = 1$.

Assumption T1: $\theta_t = \theta_{t-1} + \eta_t$, where $E\left[\eta_t | \mathcal{F}_{t-1}\right] = 0$

- The first assumption is reasonable, if we believe squared daily returns to be noisy but unbiased estimators of QV
 - In presence of jumps some care is required to find a proxy for IV.
- The third assumption is stronger. Critical for the result is that θ_t is persistent. This can be captured either through a RW approximation (as above) or an AR approximation.

Optimal combinations of RV estimators

Proposition: Under assumptions P1, P2, T1 and regularity conditions, and if L is a member of the class of distance measures in Patton (2006), then $\tilde{\mathbf{w}}^* = \mathbf{w}^*$ and:

$$\hat{V}_{T}^{-1/2}\sqrt{T}\left(\hat{\mathbf{w}}_{T}^{*}-\mathbf{w}^{*}\right)\overset{D}{
ightarrow}N\left(0,I
ight)$$
, as $T
ightarrow\infty$

 Thus we can estimate the optimal combination parameter and overcome the fact that the target variable is latent.

Application to estimating IBM price variability

- We apply this method to estimating the variability of open-to-close returns on IBM, over Jan 1996 to July 2008, 3168 trading days.
- We consider a total of 32 individual RV estimators from 8 distinct classes of estimators
 - For each estimator we follow the implementation of the authors of the original paper as closely as possible (and in most cases exactly)
- We compare these individual estimators with 3 simple combination estimators (arithmetic mean, median, and geometric mean)
- We compare accuracy both using the previous method for estimating (in-sample) accuracy, and using an out-of-sample forecasting experiment

Description of the estimators I

- **1** Realised variance: $RV_t^{(m)} = \sum_{j=1}^m r_{t,j}^2$
 - Sampling frequency: 1sec, 5sec, 1min, 5min, 1hr and 1day
 - Sampling method: calendar time and tick time (Hansen and Lunde 2006, Oomen 2006)
 - Bandi and Russell's (2006, 2008) MSE-optimal frequency (in calendar time), with and without their bias correction
- First-order autocorrelation adjusted RV, as in French, et al. (1987), Zhou (1996), Hansen and Lunde (2006), Bandi and Russell (2008)
 - Estimated on 1min and 5min returns, in calendar time.
- Two-scale RV of Zhang, et al. (2006) and Multi-scale RV of Zhang (2006)
 - 1tick and 1min tick-time frequencies

Description of the estimators II

- Realised kernels of Barndorff-Nielsen, et al. (2008), using their optimal bandwidth for each kernel
 - Kernels: Bartlett, Cubic, modified Tukey-Hanning₂, non-flat-top Parzen
 - 1tick and 1min tick-time sampling
- Realised range-based RV of Christensen and Podolskij (2007) and Martens and van Dijk (2007)
 - Using 5min blocks, and 1min prices within each block, similar to Christensen and Podolskij.
- Bi-power variation of Barndorff-Nielsen and Shephard (2006).
 - 1min and 5min sampling, in calendar time
- **Quantile-based realised variance** of Christensen, et al. (2008)
 - Using quantiles of 0.85, 0.90, and 0.96. Number of sub-intervals=1.
 - Prices sampled every 1min in tick time
- MinRV and MedRV of Andersen, et al. (2008):
 - Using 1min tick time sampling

Summary statistics on a sub-set of the estimators

		Standard			
	Mean	Deviation	Skewness	Kurtosis	Minimum
RV ^{1 sec}	3.158	3.005	2.940	22.270	0.168
RV ^{1 min}	2.438	2.387	3.647	34.193	0.116
RV^{1day}	2.403	6.228	10.638	193.816	0.000
$RV^{AC1,1min}$	2.440	2.392	3.592	32.743	0.117
$TSRV^{tick}$	2.177	2.202	3.994	39.384	0.081
MSRV ^{tick}	2.181	2.287	5.572	85.553	0.081
RK ^{TH2}	2.381	2.784	7.761	158.827	0.109
RRV	2.310	2.537	4.647	52.061	0.123
BPV^{1min}	2.105	2.075	2.632	12.867	0.077
QRV	2.441	2.273	2.430	11.563	0.104
MedRV	2.260	2.157	2.600	13.216	0.109

Correlation between a sub-set of the estimators

	RV ^{1 sec}	RV ^{5 min}	RV ^{1day}	RV ^{AC1 min}	RK ^{TH2,1 min}	QRV
1						
RV^{1sec}	1	0.855	0.431	0.939	0.839	0.906
RV ^{1 min}	0.938	0.948	0.517	0.997	0.939	0.956
RV^{1day}	0.431	0.570	1	0.514	0.593	0.483
RV^{AC1min}	0.939	0.947	0.514	1	0.939	0.955
$TSRV^{tick}$	0.913	0.938	0.507	0.983	0.931	0.935
MSRV ^{tick}	0.904	0.952	0.519	0.980	0.945	0.913
RK ^{TH2}	0.874	0.975	0.550	0.967	0.974	0.885
RRV	0.902	0.984	0.550	0.982	0.974	0.933
BPV^{1min}	0.912	0.878	0.478	0.960	0.871	0.974
QRV	0.906	0.872	0.483	0.955	0.867	1
MedRV	0.919	0.882	0.487	0.961	0.874	0.980

In-sample performance of the estimators

The data-based ranking method of Patton (2008) requires some choices:

- We use a one-period lead of RV^{5 min} as our instrument for the latent quadratic variation
 - Using a lower frequency (eg RV^{1day}) reduces the power of tests
 - Using a higher frequency risks violating the unbiasedness assumption
- We will present results using QLIKE; results using MSE are in a web appendix.
 - Results are broadly similar, though power is lower using MSE than using QLIKE
- We use the RW approximation rather than an AR approximation to the dynamics in QV
 - This was found to be satisfactory in Patton (2008) on the same data
 - AR approximation leads to similar results, though with less precision

In-sample performance of a sub-set of the estimators

	Avg ΔQLIKE	Rank				In MCS?
	Full	Full	96-99	00-03	04-08	Full
RV^{1sec}	-0.013	14	6	28	21	_
RV ^{1 min}	-0.040	2	3	3	1	\checkmark
RV^{1day}	29.191	35	35	35	35	_
$RV^{AC1,1min}$	-0.040	1	2	2	2	\checkmark
TSRV ^{tick}	-0.001	22	27	15	20	_
$MSRV^{tick}$	-0.003	21	26	17	19	_
RK ^{TH2}	-0.014	12	16	11	9	_
RRV	-0.016	9	15	8	16	_
BPV ^{1 min}	0.029	28	31	12	8	_
QRV	-0.035	4	4	5	4	_
MedRV	-0.024	6	9	6	10	_
RV ^{Mean}	-0.030	5	8	4	3	_
$RV^{\mathit{Geo-mean}}$	-0.015	10	12	13	18	_
RV^{Median}	-0.020	8	11	7	6	_

In-sample Romano-Wolf tests

Benchmark:	RV ^{1day}	RV ^{5 min}	RV ^{Mean}
Sample period	Full	Full	Full
RV^{1sec}	\checkmark	_	×
RV ^{1 min}	\checkmark	\checkmark	\checkmark
RV^{1day}	*	×	×
$RV^{AC1,1min}$	\checkmark	\checkmark	\checkmark
TSRV ^{tick}	\checkmark	_	×
MSRV ^{tick}	\checkmark	_	×
RK ^{TH2}	\checkmark	\checkmark	×
RRV	\checkmark	\checkmark	×
BPV ^{1 min}	\checkmark	×	×
QRV	\checkmark	\checkmark	_
MedRV	\checkmark	\checkmark	×
RV ^{Mean}	√	√	*
$RV^{\mathit{Geo-mean}}$	\checkmark	\checkmark	×
RV ^{Median}	\checkmark	\checkmark	×

Optimal combinations of RV estimators

- In the paper we present estimated optimal linear combination weights across the 32 individual estimators, but no clear patterns emerge (unsurprising given multicollinearity)
- The estimated optimal combinations can also be used to test the optimality of the equally-weighted average:

$$H_0$$
 : $w_0^* = 0 \cap w_1^* = ... = w_n^* = 1/n$
vs. H_a : $w_0^* \neq 0 \cup w_i^* \neq 1/n$ for some $i=1,2,...,n$

- \Rightarrow This null is rejected with a p-value of less than 0.001
 - Thus while a simple mean does well, it is possible to construct more accurate combination estimators.

Encompassing of RV estimators

 We can also test whether a single estimator "encompasses" all others, in the same spirit as Chong and Hendry (1986) and Fair and Shiller (1990):

$$H_0^j$$
 : $w_i^*=1\cap w_j^*=0\ orall\ j
eq i$ vs. H_a^i : $w_i^*
eq 1\cup w_j^*
eq 0$ for some $j
eq i$

 \Rightarrow This null is rejected for every single estimator, with p-values all less than 0.001.

 This is very strong evidence for considering combination RV estimators: no single estimator dominates all others.

Out-of-sample comparisons of RV estimators

- We next consider comparing each of these estimators via a standard forecast experiment.
- We use the HAR model of Corsi (2004):

$$\tilde{\theta}_{t} = \beta_{0i} + \beta_{Di} X_{it-1} + \beta_{Wi} \frac{1}{5} \sum_{j=1}^{5} X_{i,t-j} + \beta_{Mi} \frac{1}{22} \sum_{j=1}^{22} X_{i,t-j} + \varepsilon_{it}$$

- We use Jan 1996 Dec 1999 as the initial estimation period, and then re-estimate each day using a rolling window of 1011 days.
 - We again use RV^{5 min} as the volatility proxy
- This is then a standard volatility forecasting problem, and we can compare the forecasts using existing methods.

Out-of-sample performance of a sub-set of the estimators

			Rank	In MCS?	
	Avg. ΔQLIKE	Full	00-03	04-08	Full
RV^{1sec}	0.006	33	29	33	_
RV ^{1 min}	-0.012	3	5	6	\checkmark
$RV^{AC1,1min}$	-0.013	1	3	9	\checkmark
TSRV ^{tick}	-0.002	17	19	13	_
MSRV ^{tick}	0.001	23	31	14	_
RK ^{TH2}	0.003	30	33	25	_
RRV	-0.011	7	9	7	\checkmark
BPV ^{1 min}	-0.007	10	6	15	_
QRV	-0.007	13	1	31	_
MedRV	-0.007	12	2	28	_
RV ^{Mean}	-0.012	4	10	2	✓
RV ^{Geo-mean}	-0.013	2	11	1	\checkmark
RV^{Median}	-0.011	6	12	4	_
$FCAST^{Mean}$	-0.006	15	15	10	_
$FCAST^{\mathit{Geo-mean}}$	-0.007	14	14	8	_
$FCAST^{Median}$	-0.005	16	16	11	_

◆ロト ◆部ト ◆恵ト 恵 り900

Out-of-sample Romano-Wolf tests

Benchmark:	RV^{1day}	RV ^{5 min}	RV ^{Mean}	FCAST ^{Mean}
Sample:	Full	Full	Full	Full
RV ^{1 sec}	√	_	×	×
RV ^{1 min}	\checkmark	\checkmark	_	\checkmark
RV ^{AC1,1 min}	\checkmark	\checkmark	_	\checkmark
TSRV ^{tick}	\checkmark	-	×	_
MSRV ^{tick}	\checkmark	_	×	×
RK ^{TH2}	\checkmark	_	×	×
RRV	\checkmark	\checkmark	_	\checkmark
BPV ^{1 min}	\checkmark	_	_	_
QRV	\checkmark	_	-	_
MedRV	\checkmark	_	_	_
RV ^{Mean}	√	√	*	√
RV ^{Geo-mean}	\checkmark	\checkmark	_	\checkmark
RV^{Median}	\checkmark	\checkmark	_	\checkmark
$FCAST^{Mean}$	\checkmark	\checkmark	×	*
FCAST ^{Geo-mean}	\checkmark	\checkmark	×	\checkmark
FCAST ^{Median}	\checkmark	\checkmark	×	_

Combine estimators or combine forecasts?

- An interesting question arises on whether it is better to use a combination RV estimator in the HAR model and then forecast, or to estimate HAR models on individual RV estimators and then combine the forecasts.
- We compare HAR forecasts using RV^{Mean} , $RV^{Geo-mean}$ and RV^{Median} with combination forecasts FCAST^{Mean}, FCAST^{Geo-mean}, and FCAST^{Median} using a simple Diebold-Mariano (1995) test

```
Mean DM t-stat = 7.66
Geo-mean DM t-stat = 7.10
Median DM t-stat = 6.49
```

 Thus we find strong evidence that estimating a single HAR model on a combination RV estimator dominates using a forecast combination based on many individual forecasts.

Conclusion and summary of results

- This paper's main question: Do combinations of RV estimators offer gains in accuracy relative to individual estimators?

 Yes!
- Using a new method for comparing RV estimator accuracy and a standard out-of-sample forecast experiment, we find that combination RV estimators significantly outperform individual estimators.
 - In-sample, only two estimators (RV^{1 min} and RV^{AC1 min}) significantly out-perform a simple equally-weighted average RV estimator.
 - Out-of-sample, no estimator significantly out-performs a simple equally-weighted average RV estimator.
- Further, no single RV estimator encompassed the information available in all other estimators, providing additional support for combination realised measures.