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Abstract—Using estimators of the variation of positive and negative returns
(realized semivariances) and high-frequency data for the S&P 500 Index
and 105 individual stocks, this paper sheds new light on the predictability of
equity price volatility. We show that future volatility is more strongly related
to the volatility of past negative returns than to that of positive returns and
that the impact of a price jump on volatility depends on the sign of the jump,
with negative (positive) jumps leading to higher (lower) future volatility.
We show that models exploiting these findings lead to significantly better
out-of-sample forecast performance.

I. Introduction

THE development of estimators of volatility based on
high-frequency (intradaily) information has led to great

improvements in our ability to measure financial market
volatility. Recent work in this area has yielded estimators
that are robust to market microstructure effects, feasible in
multivariate applications, and can separate the volatility con-
tributions of jumps from continuous changes in asset prices
(see Andersen, Bollerslev, and Diebold, 2009, for a recent
survey of this growing literature).1 A key application of these
new estimators of volatility is in forecasting: better measures
of volatility enable us to better gauge the current level of
volatility and better understand its dynamics, both of which
lead to better forecasts of future volatility. Volatility fore-
casting, while long useful in risk management, has become
increasingly important as volatility is now directly tradable
using swaps and futures.2

This paper uses high-frequency data to shed light on
another key aspect of asset returns: the leverage effect and
the impact of signed returns on future volatility more gen-
erally. The observation that negative equity returns lead
to higher future volatility than positive returns is a well-
established empirical regularity in the autoregressing con-
ditional heteroskedasticity (ARCH) literature (see the review
articles by Bollerslev, Engle, and Nelson, 1994, and Andersen
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1 See Andersen et al. (2001, 2003), Barndorff-Nielsen and Shephard
(2004, 2006), Zhang, Mykland, and Aït-Sahalia (2005), Aït-Sahalia,
Mykland, and Zhang (2005), Barndorff-Nielsen et al. (2008), among others.

2 A partial list of papers on this topic includes Andersen et al. (2000, 2003),
Fleming, Kirby, and Ostdiek (2003), Corsi (2009), Liu and Maheu (2005),
Lanne (2006, 2007), Chiriac and Voev (2007), Andersen et al. (2007), Visser
(2008), and Chen and Ghysels (2011).

et al., 2006, for example).3 Recent work in this literature
has also found evidence of this relationship using high-
frequency returns (see Bollerslev, Litvinova, & Tauchen,
2006; Barndorff-Nielsen, Kinnebrock, & Shephard, 2010;
Visser, 2008; and Chen & Ghysels, 2011). We build on
these papers to exploit this relationship and obtain improved
volatility forecasts.

We use a new estimator proposed by Barndorff-Nielsen
et al. (2010), realized semivariance, which decomposes the
usual realized variance into a component that relates only to
positive high-frequency returns and a component that relates
only to negative high-frequency returns.4 Previous studies
have almost exclusively employed even functions of high-
frequency returns (e.g., squares, absolute values), which of
course eliminate any information that may be contained in the
sign of these returns. High-frequency returns are generally
small, and it might reasonably be thought that there is little
information to be gleaned from whether they happen to lie
above or below 0. Using a simple autoregressive model, as in
Corsi (2009) and Andersen, Bollerslev, and Diebold (2007),
and high-frequency data on the S&P 500 Index and 105 of
its constituent firms over the period 1997 to 2008, we show
that this is far from true.

We present several novel findings about the volatility of
equity returns. First, we find that negative realized semivari-
ance is much more important for future volatility than positive
realized semivariance, and disentangling the effects of these
two components significantly improves forecasts of future
volatility. This is true whether the measure of future volatil-
ity is realized variance, bipower variation, negative realized
semivariance, or positive realized semivariance. Moreover, it
is true for horizons ranging from one day to three months,
both in-sample and (pseudo-)out-of-sample. Second, we use
realized semivariances to obtain a measure of signed jump
variation, and we find that is important for predicting future
volatility, with volatility attributable to negative jumps lead-
ing to significantly higher future volatility and positive jumps
leading to significantly lower volatility. Thus, while jumps
of both signs are indicative of volatility, their impacts on
current returns and future volatility might lead one to label
them “good volatility” and “bad volatility.” Previous research
(Andersen et al., 2007; Forsberg & Ghysels, 2007; and Busch,

3 Common ARCH models with a leverage effect include GJR-GARCH
(Glosten, Jagannathan, & Runkle, 1993), TARCH (Zakoian, 1994), and
EGARCH (Nelson, 1991).

4 Semivariance, and the broader class of downside risk measures, has a
long history in finance. Applications of semivariance in finance include
Hogan and Warren (1974), who study semivariance in a general equilibrium
framework; Lewis (1990), who examined its role in option performance; and
Ang, Chen, and Xing (2006), who examined the role of semivariance and
covariance in asset pricing. For more on semivariance and related measures,
see Sortino and Satchell (2001).
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Christensen, & Nielsen, 2011) reported that jumps were of
only limited value for forecasting future volatility. Our find-
ing that the impact of jumps depends critically on the sign of
the jump helps explain these results: averaging across both
positive and negative jump variation, the impact on future
volatility is near 0.5

Bollerslev et al. (2006) were perhaps the first to note that
the sign of high-frequency returns contains useful informa-
tion for future volatility, even several days into the future.
They show that several standard stochastic volatility models
are unable to match this feature. Chen and Ghysels (2011)
propose a semiparametric model for aggregated volatility
(e.g., daily or monthly) as a function of individual high-
frequency returns. The coefficient on lagged high-frequency
returns is the product of a parametric function of the lag
(related to the MIDAS model of Ghysels, Santa-Clara, &
Valkanov, 2006) and a nonparametric function of the return.
With this model, the authors obtain nonparametric “news
impact curves” and document evidence that these curves
are asymmetric for returns on the S&P 500 and Dow Jones
indices. A forecasting model based on realized semivari-
ances avoids some of the difficulties of the semiparametric
MIDAS model of Chen and Ghysels (2011), such as the
fact that estimation of news impact curves requires either
a local estimator of spot volatility (a difficult empirical prob-
lem) or a method for dealing with the persistence in large
returns, which makes estimation of the curve for larger values
difficult. Realized semivariances are simple daily statistics
and require no choice of bandwidth or other smoothing
parameters and no nonlinear estimation.

We complement and extend existing work in a number
of directions. First, we look at the leverage effect and fore-
casting for a large set of assets—105 individual firms, and
the S&P 500, the FTSE 100, and the EURO STOXX 50
indexes—and verify that the usefulness of realized semivari-
ances relative to realized variances is not restricted only to
broad stock indices. Second, we show that negative semi-
variances are useful for predicting a variety of measures of
volatility: realized volatility, bipower variation, and both real-
ized semivariances. Third, we show the usefulness of simple
autoregressive models that we use, all of which can be esti-
mated using least squares, across horizons ranging from one
day to three months. We also present results on the informa-
tion in signed jump variation, a measure that does not fit into
existing frameworks and helps us reconcile our findings with
the existing literature.

The remainder of the paper is organized as follows. Section
II describes the volatility estimators that we use in our empiri-
cal analysis. Section III discusses the high-frequency data that
we study and introduces the models that we employ. Section
IV presents empirical results on the gains from using realized
semivariances for forecasting, and section V presents results
from using signed jump variation for volatility forecasting.

5 Corsi, Pirino, and Renò (2010) find that jumps have a significant and
positive impact on future volatility, when measured using a new threshold-
type estimator for the integrated variance.

Section VI presents results for a pseudo-out-of-sample fore-
casting application for the U.S. data and results for two
international stock indexes. Section VII concludes.

II. Decomposing Realized Variance Using Signed
Returns

In this section we briefly describe the estimators that are
used in our analysis, including the new estimators proposed
by Barndorff-Nielsen et al. (2010).

Consider a continuous-time stochastic process for log-
prices, pt , which consists of a continuous component and
a pure jump component,

pt =
∫ t

0
μsds +

∫ t

0
σsdWs + Jt , (1)

where μ is a locally bounded predictable drift process, σ is a
strictly positive cádlág process, and J is a pure jump process.
The quadratic variation of this process is[

p, p
] =

∫ t

0
σ2

s ds +
∑

0<s≤t

(Δps)
2 , (2)

where Δps = ps − ps− captures a jump, if present.
Andersen et al. (2001) introduced a natural estimator for

the quadratic variation of a process as the sum of frequently
sampled squared returns, commonly known as realized vari-
ance (RV ). For simplicity, suppose that prices p0, . . . , pn are
observed at n + 1 times, equally spaced on [0, t]. Using these
returns, the n-sample realized variance, RV , is defined below
and can be shown to converge in probability to the quadratic
variation as the time interval between observations becomes
small (Andersen et al., 2003):

RV =
n∑

i=1

r2
i

p→ [
p, p

]
, as n → ∞, (3)

where ri = pi−pi−1. Barndorff-Nielsen and Shephard (2006)
extended the study of estimating volatility from simple esti-
mators of the quadratic variation to a broader class, which
includes bipower variation (BV ). Unlike realized variance,
the probability limit of BV includes only the component of
quadratic variation due to the continuous part of the price
process, the integrated variance,

BV = μ−2
1

n∑
i=2

|ri| |ri−1| p→
∫ t

0
σ2

s ds, as n → ∞, (4)

where μ1 = √
2/π. The difference of the above two estima-

tors of price variability can be used to consistently estimate
the variation due to jumps of quadratic variation:

RV − BV
p→

∑
0≤s≤t

Δp2
s . (5)

Barndorff-Nielsen et al. (2010) introduced estimators that
can capture the variation only due to negative or positive
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returns using the realized semivariance estimator. These
estimators are defined as

RS+ =
n∑

i=1

r2
i I{ri > 0},

(6)

RS− =
n∑

i=1

r2
i I{ri < 0}.

These estimators provide a complete decomposition of RV ,
in that RV = RS+ + RS−. This decomposition holds exactly
for any n, as well as in the limit. We use this decomposition
of realized volatility extensively in our empirical analysis
below.6

Barndorff-Nielsen et al. (2010) show that, like realized
variance, the limiting behavior of realized semivariance
includes variation due to both the continuous part of the price
process and the jump component. The use of the indicator
function allows the signed jumps to be extracted, with each
of the realized semivariances converging to one-half of the
integrated variance plus the sum of squared jumps with a
negative or positive sign:

RS+ p→1

2

∫ t

0
σ2

s ds +
∑

0≤s≤t

Δp2
s I{Δps > 0},

(7)
RS− p→1

2

∫ t

0
σ2

s ds +
∑

0≤s≤t

Δp2
s I{Δps < 0}.

Note that the first term in the limit of both RS+ and RS−
is one-half of the integrated variance. This has two impli-
cations. First, it reveals that a “complete” decomposition of
realized variance into continuous and jump components, and
positive and negative components, yields only three, not four,
terms; the continuous component of volatility is not decom-
posable into positive and negative components. Second, it
reveals that the variation due to the continuous component
can be removed by simply subtracting one RS from the other,
without the need to estimate it separately. The remaining part
is what we define as the signed jump variation:

ΔJ2 ≡ RS+ − RS−
p→

∑
0≤s≤t

Δp2
s I{Δps > 0} −

∑
0≤s≤t

Δp2
s I{Δps < 0}.

(8)

In our analysis, we use RS+, RS−, and ΔJ2 to gain new
insights into the empirical behavior of volatility as it relates
to signed returns.

6 Visser (2008) considers a similar estimator based on powers of absolute
values of returns rather than squared returns. For one-step forecasts of the
daily volatility of the S&P 500 Index, he finds that using absolute returns
(i.e., a power of 1) leads to the best in-sample fit. We leave the consider-
ation of different powers for future research and focus on simple realized
semivariances.

III. Data and Models

The data used in this paper consist of high-frequency trans-
action prices on all stocks that were ever a constituent of the
S&P 100 Index between June 23, 1997, and July 31, 2008.
The start date corresponds to the first day that U.S. equities
traded with a spread less than one-eighth of a dollar.7 We also
study the S&P 500 Index exchange traded fund (ETF), with
ticker symbol SPDR, over this same period for comparison.
Of the 154 distinct constituents of the S&P 100 Index over
this time period, we retain for our analysis the 105 that were
continuously available for at least four years.

All prices are taken from the New York Stock Exchange’s
TAQ database. Data are filtered to include only those occur-
ring between 9:30:00 and 16:00:00 (inclusive) and are
cleaned according to the rules detailed in appendix A. As we
focus on price volatility over the trade day, overnight returns
are excluded, and we avoid the need to adjust prices for splits
or dividends.

A. Business Time Sampling and Subsampling

All estimators were computed daily, using returns sampled
in business time rather than the more familiar calendar time
sampling. That is, rather than use prices that are evenly spaced
in calendar time (say, every 5 minutes), we use prices that are
evenly spaced in “event” time (say, every ten transactions).
(This implies, of course, that we sample more often during
periods with greater activity and less often in quieter peri-
ods.) Under some conditions, business-time sampling can be
shown to produce realized measures with superior statistical
properties (see Oomen, 2005), and this sampling scheme is
now common in this literature (see Barndorff-Nielsen et al.,
2008, and Bollerslev & Todorov, 2011, for example).8

We sample prices 79 times per day, which corresponds
to an average interval of 5 minutes. We use the first and last
prices of the day as our first and last observations, and sample
evenly across the intervening prices to obtain the remaining
77 observations. The choice to sample prices using an approx-
imate 5-minute window is a standard one and is motivated by
the desire to avoid bid-ask bounce-type microstructure noise.

Since price observations are available more often than our
approximate 5 minute sampling period, there are many possi-
ble grids of approximate 5-minute prices that could be used,
depending on which observation is used for the first sample.
We use ten different grids of 5-minute prices to obtain ten
different estimators, which are correlated but not identical,
and then we average these to obtain our final estimator. This
approach, subsampling, was first proposed by Zhang et al.

7 Trading volume and the magnitude of microstructure noise that affects
realized-type estimators both changed around this date (see Aït-Sahalia &
Yu, 2009), and so we start our sample after this change took place.

8 Recent work by Li et al. (2013) considers cases where trade arrivals are
strongly related to volatility and shows that bias in realized variance can
arise in such cases. That paper does not consider realized semivariance, and
we assume that our data fit into the usual framework where no such biases
arise.
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Table 1.—Data Summary Statistics

SPDR Mean Q.05 Median Q.95

Averages
RV 1.154 4.391 1.758 3.542 10.675
BV 1.131 3.821 1.540 2.999 9.521
RS+ 0.583 2.192 0.887 1.777 5.286
RS− 0.571 2.199 0.874 1.806 5.388
ΔJ2 0.012 −0.008 −0.210 0.011 0.107
ΔJ2+ 0.098 0.403 0.168 0.337 0.904
ΔJ2− −0.086 −0.411 −1.032 −0.334 −0.150

Autocorrelations
RV 0.633 0.629 0.397 0.667 0.765
BV 0.682 0.637 0.420 0.658 0.788
RS+ 0.469 0.550 0.341 0.578 0.690
RS− 0.704 0.592 0.340 0.624 0.757
ΔJ2 −0.112 −0.013 −0.148 −0.003 0.092
ΔJ2+ 0.029 0.112 0.015 0.115 0.206
ΔJ2− 0.062 0.133 0.055 0.127 0.276

RV BV RS+ RS− ΔJ2 ΔJ2+ ΔJ2−

Correlations
RV – 0.981 0.945 0.942 0.071 0.512 −0.472
BV 0.988 – 0.923 0.934 0.050 0.468 −0.452
RS+ 0.965 0.931 – 0.787 0.373 0.720 −0.217
RS− 0.943 0.962 0.824 – −0.252 0.238 −0.685
ΔJ2 0.391 0.304 0.618 0.063 – 0.777 0.696
ΔJ2+ 0.613 0.520 0.782 0.338 0.909 – 0.122
ΔJ2− −0.340 −0.353 −0.148 −0.549 0.501 0.094 –

The top panel contains the average values for realized variance (RV ), bipower variation (BV ), positive and negative semivariance (RS+ and RS−), jump variation (ΔJ2), and signed jump variation (ΔJ2+ and ΔJ2−),
scaled by 100. The left column contains values for the S&P 500 ETF (SPDR). The right four columns contain the average, 5% and 95% quantiles, and the median from the panel of 105 stocks. The second panel contains
the first autocorrelation for each of the series, and the right four columns report the average, 5% and 95% quantiles, and the median from the 105 individual stocks. The bottom panel contains the correlations for the
seven variables; entries below the diagonal are computed using the SPDR data, and entries above the diagonal are average correlations for the 105 stocks.

(2005). This procedure should produce a mild increase in
precision relative to using a single estimator.

B. Volatility Estimator Implementation

Denote the observed log-prices on a given trade day as
p0, p1, . . . , pn where n+1 is the number of unique time stamps
between 9:30:00 and 16:00:00 that have prices. Setting the
number of price samples to 79 (which corresponds to sam-
pling every 5 minutes on average), RV computed uniformly
in business time starting from the jth observation equals

RV ( j) =
78∑

i=1

(
p�ik+jδ� − p�(i−1)k+jδ�

)2
, (9)

where k = n/78, δ = n/78 × 1/10, and �·� rounds down
to the next integer. Prices outside of the trading day are set
to the close price. The subsampled version is computed by
averaging over ten uniformly spaced windows,

RV = 1

10

9∑
j=0

RV ( j). (10)

Realized semivariances, RS+ and RS−, are constructed in an
analogous manner.

In addition to subsampling, the estimator for bipower vari-
ation was computed by averaging multiple “skip” versions.
Skip versions of other estimators, particularly those of higher-
order moments (such as fourth moments, or “integrated

quarticity”), were found to possess statistical properties supe-
rior to returns computed using adjacent returns in Andersen
et al. (2007). The “skip-q” bipower variation estimator is
defined as

BVq = μ−2
1

78∑
i=q+2

∣∣p�ik� − p�(i−1)k�
∣∣

× ∣∣p�(i−1−q)k� − p�(i−2−q)k�
∣∣ , (11)

where μ1 = √
2/π. The usual BV estimator is obtained when

q = 0. We construct our estimator of bipower variation by
averaging the skip-0 through skip-4 estimators, which repre-
sents a trade-off between locality (skip-0) and robustness to
both market microstructure noise and jumps that are not con-
tained in a single sample (skip-4).9 Using a skip estimator
was advocated in Huang and Tauchen (2005) as an impor-
tant correction to bipower, which may be substantially biased
in small samples, although to our knowledge the use of an
average over multiple skip-q estimators is novel.10

Table 1 presents some summary statistics for the vari-
ous volatility measures used in this paper. The upper panel

9 Events that are often identified as jumps in U.S. equity data correspond
to periods of rapid price movement, although these jumps are usually char-
acterized by multiple trades during the movement due to price continuity
rules faced by market makers.

10 We also conducted our empirical analysis using the MedRV estima-
tor of Andersen, Dobrev, and Schaumburg (2012), which is an alternative
jump-robust estimator of integrated variance. The resulting estimates and
conclusions were almost identical to using BV , and we omit them in the
interest of brevity.



GOOD VOLATILITY, BAD VOLATILITY 687

presents average values for realized variance, bipower varia-
tion, positive and negative realized semivariances, and the
signed jump variation measures. We see that the average
value of daily RV for the SPDR was 1.154, implying 17.1%
annualized volatility. The corresponding value for individ-
ual firms was 33.2%, indicating the higher average volatility
of individual stock returns compared with the market. These
figures reveal that variation due to jumps represents around
2% of total quadratic variation for the SPDR and around
13% for the average individual firm in our collection of
105 firms. (These proportions are ratios of averages of BV
and RV across days. If we instead take the average of these
ratios, we also get 2% and 13% as the proportion of qua-
dratic variation due to jumps.) In the middle panel of this
table, we observe that the first-order autocorrelation of the
SPDR volatility series (RV , BV , RS+, and RS−) ranges from
0.47 to 0.70. The autocorrelations of the signed jump vari-
ation series for the SPDR are lower, ranging from −0.11 to
0.06. The corresponding figures for the individual firms are
similar. The lower panel presents correlations between the
various volatility measures where the continuous component
of volatility produces large correlations in RV , BV , RS+, and
RS−. The correlation between RS+ and RS−, at around 80%,
is markedly lower than the correlation between these and
either RV or BV , indicating that there is novel information in
this decomposition.

C. Model Estimation and Inference

We analyze the empirical features of these new measures
of volatility using the popular heterogeneous autoregression
(HAR) model (see Corsi, 2009, and Müller et al., 1997).
HARs are parsimonious restricted versions of high-order
autoregressions. The standard HAR in the realized variance
literature regresses realized variance on three terms: the past
1-day, 5-day, and 22-day average realized variances. To ease
interpretation, we use a numerically identical reparameteri-
zation where the second term consists of only the realized
variances between lags 2 and 5, and the third term consists
of only the realized variances between lag 6 and 22,

ȳh,t+h = μ + φdyt + φw

(
1

4

4∑
i=1

yt−i

)
+ φm

(
1

17

21∑
i=5

yt−i

)
+ εt+h (12)

where y denotes the volatility measure (e.g., RV , BV ), and
ȳh,t+h = 1

h

∑h
i=1 yt+i is the h-day average cumulative volatil-

ity.11 Throughout the paper, we use ȳw,t to indicate the average
value over lags 2 to 5 and ȳm,t to denote the average value
between lags 6 and 22. We estimate the model above for
forecast horizons ranging from h = 1 to 66 days.

11 In the online appendix, we present results where the h-day ahead daily
volatility measure, yt+h, rather than the cumulative volatility, is used as the
dependent variable.

Because the dependent variable in all of our regressions
is a volatility measure, estimation by OLS has the unfortu-
nate feature that the resulting estimates focus primarily on
fitting periods of high variance and place little weight on
more tranquil periods. This is an important drawback in our
applications, as the level of variance changes substantially
across our sample period and the level of the variance and
the volatility in the error are known to have a positive rela-
tionship. To overcome this, we estimate our models using
simple weighted least squares (WLS). To implement this, we
first estimate the model using OLS and then construct weights
as the inverse of the fitted value from that model.12

The left-hand-side variable includes leads of multiple days,
and so we use a Newey and West (1987) HAC to make
inference on estimated parameters. The bandwidth used was
2(h − 1), where h is the lead length of the left-hand-side
variable.

D. A Panel HAR for Volatility Modeling

Separate estimation of the models on the individual firms’
realized variance is feasible, but does not provide a direct
method to assess the significance of the average effect, and
so we estimate a pooled unbalanced panel HAR with a fixed
effect to facilitate inference on the average value of param-
eters. To illustrate, in the simplest specification, the panel
HAR is given by

yh,i,t+h = μi + φdyi,t + φwyw,i,t + φmym,i,t + εi,t+h,

i = 1, . . . , nt , t = 1, . . . , T ,

where μi is a fixed effect that allows each firm to have differ-
ent levels of long-run volatility. Let Yi,t = [yi,t , ȳw,i,t , ȳm,i,t]′;
then the model for each firm’s realized variance can be
compactly expressed as

yh,i,t+h = μi + φ′Yi,t + εi,t+h, i = 1, . . . , nt , t = 1, . . . , T .

Next, define ỹh,i,t+h = yh,i,t+h −υ̂h,i and Ỹi,t = Yi,t −Υ̂i, where
υ̂h,i and Υ̂i are the WLS estimates of the mean of yh,i and Yi,
respectively. The pooled parameters are then estimated by

φ̂ =
(

T−1
T∑

t=1

(
n−1

t

nt∑
i=1

wi,t Ỹi,t Ỹ
′
i,t

))−1

×
(

T−1
T∑

t=1

(
n−1

t

nt∑
i=1

wi,t Ỹi,t ỹh,i,t+h

))
, (13)

12 This implementation of WLS is motivated by considering the residuals
of the above regression to have heteroskedasticity related to the level of the
process. This is related to standard asymptotic theory for realized measures
(see Andersen et al., 2003). An alternative approach is to use OLS on log
volatility, however, this leads to predictions of log volatility rather than
volatility in levels, and the latter are usually of primary interest in economic
applications. For comparison, tables 2, 3, and 4 in the online appendix
present results from analyses based on log volatility and show that all of
our conclusions hold using this alternative specification.
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where wi,t are the weights and nt are the number of firms in
the cross section at date t.13

Inference can be conducted using the asymptotic distribu-
tion

√
T

(
φ̂ − φ0

) d→ N
(
0, Σ−1ΩΣ−1

)
as T → ∞, (14)

where Σ = plimT→∞T−1
T∑

t=1

(
n−1

t

nt∑
i=1

wi,t Ỹi,t Ỹ
′
i,t

)
,

Ω = avar

(
T−1/2

T∑
t=1

zt+h

)
,

zt+h = n−1
t

nt∑
i=1

wi,t Ỹi,tεi,t+h.

In addition to the results from the panel estimation, we also
fit the models to each series individually and summarize the
results as aggregates in the tables that follow.

IV. Predicting Volatility Using Realized Semivariances

Before moving into models that decompose realized
volatility into signed components, it is useful to establish
a set of reference results. We fit a reference specification, the
standard HAR model,

RV h,t+h = μ + φdRVt + φwRV w,t + φmRV m,t + εt+h,
(15)

to both the S&P 500 ETF and the panel where RV w,t is
the average between lags 2 and 5 and RV m,t is the average
value using lags 6 through 22. This model is identical to the
specification studied in Andersen et al. (2007). The panel
version of the model is identical to equation (15) except for
the inclusion fixed effects to permit different long-run vari-
ances for each asset. Tables 2A and 2B each contain four
panels—one for each horizon 1, 5, 22, and 66. The first
line of each panel contains the estimated parameters and
t-statistics for this specification. These results are in line
with those previously documented in the literature: substan-
tial persistence, with φd +φw +φm close to 1, and the role of
recent information, captured by φd , diminishing as the hori-
zon increases.14 The results for both the SPDR and the panel
are similar, although the SPDR has somewhat larger coeffi-
cients on recent information. The final column reports the R2,

13 Our analysis takes the cross-section size, nt , as finite while the
time series length diverges. In our application we have nt ∈ [71, 100]
and T = 2,795. If an approximate factor structure holds in the
returns we study, which is empirically plausible, then the same inference
approach could be applied even if nt → ∞, as in that case, we would
find plimnt→∞V[n−1

t

∑nt

i=1 wi,t Ỹi,tεi,t] → τ2 > 0. A similar result was found
in the context of composite likelihood estimation, and this asymptotic dis-
tribution can be seem as a special case of Engle, Shephard, and Sheppard
(2008).

14 Tables A.6a and A.6b in the online appendix contain corresponding
results when the dependent variable is the h-day ahead daily volatility. These
tables reveal that, as expected, much, but not all, of the predictive power in
the model for cumulative realized variance occurs at short horizons.

which is computed using the WLS parameter estimates and
the original, unmodified data.

A. Decomposing Recent Quadratic Variation

Given the exact decomposition of RV into RS+ and RS−,
we extend equation (15) to obtain a direct test of whether
signed realized variance is informative for future volatility.
Here, we decompose only the most recent volatility (RVt),
and in the online appendix, we present results and analysis
when all three volatility terms are decomposed. Applying this
decomposition produces the specification

RV h,t+h = μ + φ+
d RS+

t + φ−
d RS−

t + φwRV w,t

+ φmRV m,t + εt+h. (16)

The panel specification of the above model includes fixed
effects but is otherwise identical. Note that if the decompo-
sition of RV into RS+ and RS− added no information, we
would expect to find φ+

d = φ−
d = φd .

Our first new empirical results using realized semivari-
ances are presented in the second row of each panel of tables
2A and 2B. In the models for the SPDR (table 2A), we find
that the coefficient on negative semivariance is larger and
more significant than that on positive semivariance for all
horizons. In fact, the coefficient on positive semivariance
is not significantly different from 0 for h = 1, 5 and 22,
while it is small and significantly negative for h = 66. The
semivariance model explains 10% to 20% more of the vari-
ation in future volatility than the model that contains only
realized variance. The effect of lagged RV implied by this
specification is (φ+

d + φ−
d )/2, and we see that it is similar in

magnitude to the coefficient found in the reference specifi-
cation, where we include only lagged RV , which indicates
that models that use only RV are essentially averaging the
vastly different effects of positive and negative returns. The
results for the panel of individual volatility series also reveal
that negative semivariance has a larger and more significant
impact on future volatility, although in these results, we also
find that positive semivariance has significant coefficients.
The difference in the results for the index and for the panel
points to differences in the impact of idiosyncratic jumps in
the individual firms’ volatility, which we explore in the next
section.15

Figure 1 contains the point estimates of φ+
d and φ−

d from
equation (16) for all horizons between 1 and 66 along with
pointwise confidence intervals. For the SPDR, positive semi-
variance plays essentially no role at any horizon. The effect
of negative semivariance is significant and positive, and it

15 While the coefficients on negative semivariances are positive for both
the SPDR and the panel of individual stocks, one difference between the
two sets of results is that the coefficients on positive semivariances are
generally insignificant or negative for the SPDR and positive for the panel
of individual stocks. This may be due to the presence of idiosyncratic jumps
in individual stocks, while these are averaged out in the SPDR market index
and only systematic jump behavior is captured. We leave detailed analysis
of idiosyncratic and systematic jumps for future research.
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Table 2.—HAR Estimation Results

A. Estimation Results for the SPDR, Cumulative Volatility

RV h,t+h = μ + φdRVt + φ+
d RS+

t + φ−
d RS−

t + γRVtI[rt<0] + φwRV w,t + φmRV m,t + εt+h

φd φ+
d φ−

d γ φw φm R2

h = 1 0.607
(17.0)

0.268
(8.1)

0.120
(4.9)

0.532

−0.024
(−0.3)

1.182
(13.0)

0.291
(9.3)

0.120
(4.9)

0.611

0.037
(0.4)

1.064
(7.4)

0.050
(1.4)

0.293
(9.3)

0.121
(5.0)

0.611

h = 5 0.425
(14.7)

0.409
(8.6)

0.158
(4.0)

0.563

−0.030
(−0.7)

0.862
(13.4)

0.421
(8.8)

0.155
(4.0)

0.620

0.073
(1.1)

0.650
(6.6)

0.092
(2.5)

0.424
(8.8)

0.157
(4.0)

0.619

h = 22 0.305
(11.8)

0.357
(7.7)

0.265
(4.8)

0.468

−0.009
(−0.3)

0.628
(9.9)

0.359
(7.5)

0.261
(4.8)

0.508

−0.012
(−0.2)

0.635
(5.8)

−0.003
(−0.1)

0.359
(7.6)

0.261
(4.8)

0.508

h = 66 0.203
(8.4)

0.256
(7.4)

0.299
(5.3)

0.282

−0.067
(−2.2)

0.501
(7.3)

0.253
(6.8)

0.294
(5.3)

0.313

−0.121
(−1.8)

0.622
(4.1)

−0.054
(−1.3)

0.251
(6.8)

0.292
(5.2)

0.315

B. HAR Estimation Results for the Panel of 105 Individual Stocks, Cumulative Volatility

RV h,i,t+h = μi + φdRVi,t + φ+
d RS+

i,t + φ−
d RS−

i,t + γRVi,t I{ri,t < 0} + φwRV w,i,t + φmRV m,i,t + εi,t+h

φd φ+
d φ−

d γ φw φm R2

h = 1 0.488
(39.7)

0.315
(28.1)

0.172
(16.2)

0.395

0.268
(15.6)

0.704
(24.5)

0.317
(28.7)

0.172
(16.4)

0.398

0.316
(17.1)

0.607
(18.9)

0.046
(6.8)

0.317
(28.7)

0.172
(16.5)

0.398

h = 5 0.357
(23.2)

0.357
(16.3)

0.247
(10.2)

0.525

0.158
(11.4)

0.551
(19.0)

0.359
(16.4)

0.247
(10.3)

0.529

0.210
(14.5)

0.444
(19.6)

0.052
(7.7)

0.359
(16.5)

0.248
(10.3)

0.529

h = 22 0.241
(14.8)

0.312
(11.9)

0.360
(10.3)

0.511

0.091
(7.3)

0.388
(12.8)

0.314
(11.9)

0.360
(10.4)

0.513

0.126
(9.4)

0.314
(13.8)

0.036
(5.1)

0.314
(11.9)

0.360
(10.4)

0.514

h = 66 0.161
(12.2)

0.236
(10.7)

0.431
(12.0)

0.450

0.044
(3.9)

0.275
(8.8)

0.238
(10.6)

0.431
(12.1)

0.452

0.062
(5.9)

0.235
(8.5)

0.020
(3.8)

0.238
(10.6)

0.432
(12.1)

0.452

Each of the four panels contains results for the forecast horizon indicated in the left-most column. Each panel contains three models. The first model corresponds to the reference model using only realized variance,
the second decomposes realized variance into positive and negative realized semivariance at the first lag, and the third specification adds an asymmetric term where the sign of the most recent daily return is used. In all
cases in panel A, the R2 measure is constructed using the WLS parameter estimates and the original, unmodified data. In all cases in panel B, the final column reports the average of the 105 R2s for the individual assets
constructed using the WLS parameter estimates and the original, unmodified data. Robust t-statistics are reported in parentheses.

declines as the horizon increases. In the panel, both positive
and negative semivariances are significant, although the coef-
ficients differ substantially in magnitude for all horizons. The
effect of positive semivariance is economically small from
horizon 15. The smoothness indicated in both curves is a
feature of the estimated parameters, no additional smoothing
was used to produce these figures.

As noted above, if the decomposition of RV into RS+ and
RS− added no new information, then we would expect to see
φ+

d = φ−
d = φd . We reject this restriction at the 0.05 level for

all but 3 of 66 horizons (h = 36,43,48) for the SPDR, and in
the panel this null is rejected for all horizons.16 We interpret
these findings as strong evidence that decomposing RV into

16 Detailed test results for each horizon are omitted in the interests of
brevity, but are available from the authors on request.

its signed components significantly improves the explanatory
power of this model.

Realized variance can be decomposed not only at the first
lag but at higher lags as well. A full decomposition allows
for a refined view of the sources of persistence of these two
components of realized variance, and leads to a natural vector
HAR (VHAR) specification for RS+ and RS−. We estimated
this model using both RV and two semivariances as depen-
dent variables, and present the results in appendix B. We find
that negative realized semivariance is much more important
for both negative and positive realized semivariance, and dis-
entangling the effects of these two components significantly
improves forecasts of both measures of future volatility.
This holds for horizons ranging from one day to three
months.
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Figure 1.—Estimated Coefficients from a Model That Decomposes

Realized Variance into Its Signed Components,

RV h,i,t+h = μi + φdRVi,t + φ+
d RS+

i,t + φ−
d RS−

i,t + φwRV w,i,t + φmRV m,i,t + εt+h

Ninety-five precent confidence intervals are indicated using dotted lines, and the estimated coefficient
from a standard HAR model, φd , is presented in a light solid line. The top panel contains results for the
S&P 500 SPDR, and the bottom panel contains results for the panel of individual firm–realized variances.

B. Comparison with a Simple Leverage Effect Variable

The classic leverage effect, whether due to varying firm
leverage as in Black (1976) and Christie (1982) or volatil-
ity feedback in Campbell and Hentschel (1992), is usually
modeled using a lagged squared return interacted with an
indicator for negative returns, as in Glosten et al. (1993). In
this section, we determine whether our approach using infor-
mation from realized semivariances adds anything beyond
this simple approach. To do so, we augment the regressions
from the previous section with a term that interacts the lagged
realized variance with an indicator for negative lagged daily
returns, RVtI{rt < 0}:17

RV h,t+h = μ + φ+
d RS+

t + φ−
d RS−

t + γRVtI{rt<0}

+ φwRV w,t + φmRV m,t + εt+h. (17)

If realized semivariance added no new information beyond
the interaction variable, then we would expect φ+

d = φ−
d and

γ to be significant.
The final row in each panel of tables 2A and 2B contains the

parameter estimates from this model. In all cases, the mag-
nitude of the coefficient on the interaction term is small, and
we again find that the coefficient on negative realized semi-
variance is much larger than that on positive semivariance.
In models based on the SPDR, the interaction term has the
opposite sign to what is commonly found at h = 22 and 66
and is insignificant at the 1-day horizon. This coefficient in
the panel model is significantly positive but small—generally

17 We interact the indicator variable with the lagged realized variance
rather than the lagged squared return as the latter is a noisier measure
of volatility than the former. The results using the usual version of this
interaction variable, r2

t I{rt<0} are even weaker than those discussed here.

only 10% of the magnitude the coefficient on negative real-
ized semivariance—and in all cases, the gain in R2 from
including this interaction variable is just 0.001.18

The results in this section show that negative semivariance
captures the asymmetric impact of negative and positive past
returns on future volatility better than the usual method of
using an indicator for the sign of the lagged daily return.
This is true across all horizons considered (1, 5, 22, and 66
days). Thus, there is more information about future volatility
in the high-frequency negative variation of returns than in the
direction of the price over a whole day.

V. Signed Jump Information

All of the models estimated thus far examine the role that
decomposing realized variances into positive and negative
realized semivariance can play in explaining future volatil-
ity. These results consistently suggest that the information
content of negative realized semivariance is substantially
larger than that of positive realized semivariance. While the
theory of Barndorff-Nielsen (2010) shows that the difference
in these two can be attributed to differences in jump variation,
the direct effect of jumps is diluted since realized semivari-
ances also contain one-half of the integrated variance; see
equation (7).

In this section, we use signed jump variation, ΔJ2
t ≡

RS+
t − RS−

t , as a simple method to isolate the information
from signed jumps. This difference eliminates the common
integrated variance term and produces a measure that is posi-
tive when a day is dominated by an upward jump and negative
when a day is dominated by a downward jump. This measure
has the advantage that a jump-robust estimator of integrated
variance, such as BV or MedRV, is not needed; we obtain
the measure simply as the difference between RS+

t and RS−
t .

If jumps are rare, as often found in the stochastic volatility
literature, then this measure should broadly correspond to
the jump variation when a jump occurs and to mean 0 noise
otherwise.

To explore the role that signed jumps play in future vari-
ance, we formulate a model that contains signed jump vari-
ation and an estimator of the variation due to the continuous
part (bipower variation):

RV h,t+h = μ + φJΔJ2
t + φCBVt + φwRV w,t

+ φmRV m,t + εt+h. (18)

The panel specification includes fixed effects but is otherwise
identical.19

18 We also considered a specification that includes the indicator variable
I{rt<0} in addition to the interaction variable; see Tables A.2a and A.2b
in the online appendix. This table shows that our main results continue
to hold in this more general specification: the coefficients on positive and
negative semivariances are each qualitatively similar in size and are strongly
significantly different from each other, regardless of the inclusion of the
indicator and interaction variable.

19 It is worth noting that while this specification is similar to our baseline
model, equation (16), it is not nested by it, as it is not possible to construct
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Table 3.—Impact of Signed Jump Variation on Future Volatility

A. Results for the SPDR

RMh,t+h = μ + φJΔJ2
t + φJ+ΔJ2+

t + φJ−ΔJ2−
t + φCBVt + φwRV w,t + φmRV m,t + εt+h

RM φJ φJ+ φJ− φC φw φm R2

h = 1 RV 0.645
(17.5)

0.255
(7.8)

0.119
(4.9)

0.561

RV −0.572
(−7.7)

0.610
(18.4)

0.282
(9.0)

0.120
(5.0)

0.613

RV −0.190
(−2.1)

−0.964
(−5.5)

0.545
(16.8)

0.289
(9.4)

0.120
(5.0)

0.621

BV −0.549
(−9.5)

0.596
(20.4)

0.278
(10.2)

0.098
(5.0)

0.663

h = 5 RV 0.466
(14.0)

0.389
(8.2)

0.156
(3.9)

0.584

RV −0.408
(−9.0)

0.449
(13.6)

0.406
(8.5)

0.154
(4.0)

0.622

RV −0.284
(−3.9)

−0.544
(−6.1)

0.426
(11.9)

0.409
(8.6)

0.154
(4.0)

0.622

BV −0.392
(−9.2)

0.440
(15.0)

0.389
(8.6)

0.137
(3.9)

0.633

h = 22 RV 0.346
(11.7)

0.334
(7.1)

0.262
(4.8)

0.485

RV −0.276
(−7.3)

0.342
(11.2)

0.342
(7.1)

0.260
(4.8)

0.512

RV −0.299
(−3.8)

−0.248
(−2.3)

0.346
(10.0)

0.341
(7.0)

0.260
(4.8)

0.513

BV −0.264
(−7.0)

0.333
(10.9)

0.330
(6.8)

0.243
(4.7)

0.505

h = 66 RV 0.237
(9.3)

0.237
(6.6)

0.296
(5.4)

0.290

RV −0.244
(−5.4)

0.240
(9.6)

0.240
(6.3)

0.293
(5.3)

0.312

RV −0.246
(−3.1)

−0.242
(−1.9)

0.240
(8.3)

0.240
(6.0)

0.293
(5.3)

0.312

BV −0.233
(−5.1)

0.232
(9.2)

0.231
(6.1)

0.279
(5.3)

0.304

B. Results for the Panel of 105 Individual Stocks

RMh,i,t+h = μi + φJΔJ2
i,t + φJ+ΔJ2+

i,t + φJ−ΔJ2−
i,t + φCBVi,t + φwRV w,i,t + φmRV m,i,t + εi,t+h

RM φJ φJ+ φJ− φC φw φm R2

h = 1 RV 0.566
(38.6)

0.325
(28.6)

0.181
(17.0)

0.394

RV −0.215
(−10.5)

0.563
(40.0)

0.327
(29.1)

0.182
(17.2)

0.397

RV 0.048
(2.5)

−0.492
(−12.2)

0.502
(38.1)

0.330
(29.5)

0.182
(17.3)

0.399

BV −0.178
(−10.9)

0.488
(41.9)

0.258
(28.3)

0.136
(16.2)

0.427

h = 5 RV 0.414
(22.8)

0.364
(16.4)

0.255
(10.4)

0.524

RV −0.195
(−11.5)

0.411
(23.0)

0.366
(16.5)

0.255
(10.5)

0.527

RV −0.116
(−5.2)

−0.277
(−12.2)

0.392
(20.9)

0.367
(16.6)

0.255
(10.5)

0.527

BV −0.161
(−11.6)

0.358
(23.6)

0.293
(16.0)

0.196
(10.1)

0.538

h = 22 RV 0.281
(13.7)

0.316
(12.1)

0.366
(10.3)

0.510

RV −0.146
(−8.7)

0.279
(13.9)

0.318
(12.1)

0.366
(10.4)

0.512

RV −0.122
(−5.3)

−0.172
(−7.8)

0.273
(13.0)

0.319
(12.1)

0.366
(10.4)

0.512

BV −0.120
(−8.6)

0.244
(13.8)

0.256
(11.4)

0.287
(10.0)

0.505

h = 66 RV 0.182
(11.2)

0.242
(10.8)

0.437
(12.1)

0.448

RV −0.114
(−5.6)

0.180
(11.5)

0.244
(10.7)

0.437
(12.1)

0.450

RV −0.080
(−4.3)

−0.149
(−4.9)

0.171
(11.5)

0.245
(10.6)

0.437
(12.1)

0.450

BV −0.092
(−5.4)

0.158
(11.4)

0.194
(10.0)

0.348
(12.4)

0.439

Models that include signed jump information where quadratic variation has been decomposed into signed jump variation, ΔJ2, and its continuous component using bipower variation, BV (robust t-statistics in
parentheses). Each of the four panels contains results for the forecast horizon indicated at the left. RM indicates the dependent variable, realized variance (RV ) or bipower variation (BV ). ΔJ2+

t and ΔJ2−
t decompose

ΔJ2
t using an indicator variable for the sign of the difference where ΔJ2+

t = ΔJ2
t I[RS+

t −RS−
t >0] . In all cases in panel A, the R2 measure is constructed using the WLS parameter estimates and the original, unmodified

data. In all cases in panel B, the final column reports the average of the 105 R2s for the individual assets constructed using the WLS parameter estimates and the original, unmodified data.

Results from the model with signed jumps are presented
in the second row of each of the four panels in Tables
3A and 3B. Signed jump variation, ΔJ2

t , has a uniformly

a measure of the continuous component of variation from the two realized
semivariances alone.

negative sign and is significant for all forecast horizons. This
reveals that days dominated by negative jumps lead to higher
future volatility, while days with positive jumps lead to lower
future volatility. This result is quite different from that of
Andersen et al. (2007), who found that (unsigned) jumps
lead to only a slight decrease in future variance in the S&P
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500.20 By including information about the sign of the jump,
we find that the jump variable does indeed help predict future
volatility.

We next modify this model to use BV as the dependent
variable in order to see whether signed jump variation is
useful for predicting future continuous variation. The results
from this model are presented in the bottom row of tables
3A and 3B and reveal that using BV as the dependent vari-
able resulted in virtually identical estimates to those obtained
using RV . Thus, signed jump variation is indeed useful
for predicting the continuous part of volatility. This is a
novel finding and one that cannot be detected without draw-
ing on information about the sign of the high-frequency
returns.

To determine whether the coefficient on positive jump vari-
ation differs from that of negative jump variation, and thus
whether the impact of jumps is driven more by positive or
negative jump variation, we extend this model to include∑

Δp2
s I{Δps > 0} and

∑
Δp2

s I{Δps < 0} separately. One
option would be to subtract one-half of a consistent estimator
of the IV, for example, to use RS+

t − 1
2 BVt . We opt instead

for a simpler specification, which uses an indicator for which
realized semivariance was larger. This model is

RV h,t+h = μ + φJ+ΔJ2+
t + φJ−ΔJ2−

t + φCBVt

+ φwRV w,t + φmRV m,t + εt+h (19)

where ΔJ2+
t = (

RS+
t − RS−

t

)
I{(RS+

t − RS−
t ) > 0} and

ΔJ2−
t = (

RS+
t − RS−

t

)
I{(RS+

t − RS−
t ) < 0}.

If the two signed jump components have equal predictive
power, then we expect to find φJ+ = φJ− = φJ .

The penultimate row of each panel in table 3A contains
estimates for this extended jump specification. For the SPDR,
we find that both signed jump components have a negative
sign, and for the longest two horizons (h = 22 and h = 66),
the coefficients are almost equal. For the shorter two hori-
zons (h = 1 and h = 5), the coefficient on the negative jump
component is larger in magnitude than on the positive jump
component, indicating that the increase in future volatility
is larger in magnitude following a negative jump than the
decrease in future volatility following a positive jump. We test
the null H0 : φJ+ = φJ− and reject only at the one-step-ahead
horizon. In the panel, both types of jumps lead to higher future
volatility for the h = 1 horizon, although the magnitude of the
coefficient differs by a factor of 10 and negative jumps have a
larger effect. At longer horizons, “good” jumps lead to lower
volatility while “bad” jumps lead to higher volatility.21 Figure
2 contains a plot of the coefficients for all 66 leads for both

20 It should be noted, however, that Andersen et al. (2007) pretest for
jumps, and so on days where no jump component is detected, their jump
measure is exactly 0. Since we do not pretest, we may have a noisier jump
measure, although it remains consistent for the object of interest.

21 We note that this sign change in the reaction of future volatility to
current price moves is consistent with the original “leverage” explana-
tion offered by Black (1976), which focuses on the degree of financial
leverage of a firm, although that explanation does not distinguish between

Figure 2.—Estimated Coefficients from a Model with Signed Jump

Variation and Bipower Variation:

RV h,i,t+h = μi +φJ+ΔJ2++φJ−ΔJ2−+φCBV−
i,t +φwRV w,i,t +φmRV m,i,t +εi,t+h

The top panel contains the estimated parameters for the S&P 500 SPDR, and the bottom panel contains
the estimated parameters in the panel of individual firms. Dashed lines indicate 95% confidence intervals.

the SPDR and the panel. Aside from some mixed evidence
for very short-term effects, both sets of coefficients are neg-
ative and significant. The significance of the variation due to
positive jumps contrasts with the weaker evidence of signif-
icance for positive realized semivariance. These results may
be reconciled by noting that positive realized semivariance
contains, in the limit, both the variation due to positive jumps
and one-half of integrated variance, the latter also appear-
ing in negative semivariance. By stripping out the integrated
variance component and focusing only on the jump compo-
nent, we find that positive jumps have an important (negative)
impact on future volatility. This model was also fit to the
individual firm series, and figure 3 shows the magnitude and
statistical significance of the coefficient, which was signifi-
cantly negative in 83 series at the 1-day horizon and 89 at the
5-day horizon, indicating a strong directional effect of jumps
on future volatility.

Finally, in the top row of each panel of table 3A, we con-
sider a model with no jump variation measures; we include
just BV at the 1-day lag, along with RV w,t and RV m,t . Con-
sistent with the significance of the signed jump variation
measures in the specifications discussed above, we observe a
substantial drop in R2, particularly at short horizons. For the
SPDR, R2 falls from 0.61 to 0.56 for h = 1 and from 0.62 to
0.58 for h = 5.

small and large price moves (corresponding to continuous and jump vari-
ation, in our framework). It may also be related to differences between
the economic sources (e.g., news announcements, of positive and negative
jumps; see Bajgrowicz, Scaillet, and Treccani, 2012, for related work).
We do not attempt to identify individual jumps, and so the effects we
report may be interpreted as average effects for positive and negative
news.
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Figure 3.—Effects of Signed Jump Variation on Individual Firm

Volatilities, Sorted by Size

The magnitude of the coefficient on ΔJ2 is indicated as distance from the horizontal axis. Solid bars
indicate significance at the 5% level.

VI. Out-of-Sample Evidence

This section presents two out-of-sample checks on the
conclusions from the previous section on the importance
of signed measures of variation. The first is an analysis of
two international stock indexes, the FTSE 100 index of U.K.
stocks and the EURO STOXX 50 index of stocks from twelve
European countries. The second is an analysis of the pseudo-
out-of-sample forecasting performance of models based on
those above.

A. International Evidence

The previous sections presented results for the SPDR,
an exchange-traded fund tracking the S&P 500 Index of
U.S. firms and for 105 individual U.S. firms. In this section
we present results for the two international equity indexes
noted above. Data on both indexes is taken from Thomson
Reuters Tick History and covers the same period as the main
results.22 Both indexes are computed from the underlying
basket of 100 and 50 stocks, respectively, and prices were
cleaned using rules 1, 2, 5, and 6 from appendix A using the
local market trading times in place of U.S. open hours and
daily tick history verified high-low range data. These data are
much cleaner than TAQ data, and only six (high-frequency)
observations were removed.

Table 4 presents results for the FTSE and the STOXX. The
top row of each panel presents results for a standard HAR,
corresponding to the top row of each panel in table 2A for
the SPDR. The second row presents results for a HAR model
with the one-day lag of realized variance decomposed into
positive and negative semivariance, equation (16), and can be

22 The first date available for the EURO STOXX 50 is February 26, 1998,
and so we use that as the start date for that series. For the FTSE 100 Index,
we start on June 23, 1997.

compared with the second row of each panel in table 2A. In
common with the results for the SPDR, we find that negative
realized semivariance is much more important for predicting
future volatility than positive semivariance. For the FTSE
index, positive semivariance is significant for only the two
shorter horizons. For the STOXX index, it is significant at
all four horizons, but has coefficients that are less than one-
half of those on negative semivariance in all cases. For both
indexes and all four forecast horizons, we can reject, at the
0.05 level, the null that φ+

d = φ−
d , and thus we conclude that

realized semivariances yield significant explanatory gains for
both of these indexes.

The third row of each panel in table 4 presents results for a
model that includes a measure of continuous and signed jump
variation, equation (18), and can be compared with the results
presented in the top row of each panel of table 3A. For both
indexes and all four forecast horizons, we find that φJ is nega-
tive, consistent with the results for the SPDR. This parameter
is significantly negative for all four horizons for the FTSE and
for all but the longest horizon for the STOXX. This suggests
that negative jumps lead to higher future volatility, while pos-
itive jumps lead to lower future volatility, further motivating
the monikers “bad volatility” and “good volatility.”

B. Pseudo-Out-of-Sample Forecast Performance

We now consider a pseudo-out-of-sample forecasting
application to see whether the in-sample gains documented
in sections IV and V lead to better forecasts out of sam-
ple. We consider three classes of models, each with two or
three variations. All models include RV w,t and RV m,t , and
they differ in what previous-day information is used. The first
model, denoted R̂V

HAR
, is the standard RV-HAR containing

lags 1, 5, and 22 of RV , equation (15). The second, denoted
R̂V

GJR
, augments the standard HAR with an interaction term

that allows for asymmetry in persistence when the previous
daily return was negative, RVtI{rt<0}, equation (17). The
second class of models uses information in positive and neg-
ative semivariance: R̂V

RS
is a specification that decomposes

recent realized variance into positive and negative semivari-

ance, equation (16), and R̂V
RS−

, is a restricted version of
R̂V

RS
where positive realized semivariance is excluded from

the model, motivated by the relative magnitude of the coef-
ficient and limited significance of this variable in tables 2A
and 2B. The third class of models considers the informa-
tion in jump variation: R̂V

BV
is a model that excludes jump

information and includes only bipower variation; R̂V
ΔJ2

is a
specification that includes BVt and ΔJ2

t , equation (18), and

R̂V
ΔJ2±

is a specification that breaks ΔJ2
t into its positive and

negative components, equation (19).
All forecasts are generated using rolling WLS regressions

based on 1,004 observations (4 years), and parameter esti-
mates are updated daily. Only series that contain at least 500
out-of-sample data points are included, reducing the number
of individual firms from 105 to 95. No restrictions on the
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Table 4.—Models Fit on International Equity Market Realized Variance and Semivariance

RV h,t+h = μ + φdRVt + φ+
d RS+

t + φ−
d RS−

t + φJΔJ2
t + φCBVt + φwRV w,t + φmRV m,t + εt+h

φd φ+
d φ−

d φJ φC φw φm R2

FTSE 100
h = 1 0.489

(8.4)
0.341
(6.9)

0.169
(4.6)

0.362

0.183
(2.2)

0.708
(8.0)

0.361
(7.2)

0.180
(5.0)

0.386

−0.248
(−3.7)

0.579
(7.8)

0.344
(6.9)

0.184
(5.0)

0.412

h = 5 0.373
(7.7)

0.450
(10.2)

0.175
(3.8)

0.449

0.138
(2.9)

0.541
(7.2)

0.466
(10.3)

0.184
(4.0)

0.472

−0.186
(−4.4)

0.466
(6.8)

0.441
(10.2)

0.183
(3.9)

0.496

h = 22 0.250
(8.0)

0.366
(5.6)

0.333
(4.5)

0.369

0.034
(0.8)

0.406
(6.3)

0.380
(5.7)

0.340
(4.7)

0.392

−0.180
(−3.6)

0.299
(7.1)

0.367
(5.4)

0.341
(4.7)

0.401

h = 66 0.171
(6.5)

0.308
(5.7)

0.292
(3.9)

0.245

0.029
(0.7)

0.277
(4.4)

0.317
(5.6)

0.296
(4.0)

0.260

−0.124
(−2.7)

0.198
(4.4)

0.313
(5.6)

0.298
(3.9)

0.268

EURO STOXX 50
h = 1 0.515

(12.9)
0.334
(10.4)

0.110
(4.3)

0.625

0.209
(3.7)

0.727
(12.6)

0.361
(11.1)

0.119
(4.7)

0.640

−0.227
(−5.5)

0.633
(12.6)

0.332
(10.2)

0.105
(4.2)

0.639

h = 5 0.448
(6.7)

0.392
(8.5)

0.109
(2.8)

0.637

0.243
(3.6)

0.582
(7.0)

0.412
(8.8)

0.116
(3.0)

0.645

−0.148
(−3.9)

0.558
(6.4)

0.383
(7.6)

0.105
(2.8)

0.638

h = 22 0.299
(6.5)

0.365
(5.0)

0.232
(3.7)

0.508

0.165
(3.2)

0.386
(5.5)

0.379
(5.1)

0.236
(3.8)

0.513

−0.101
(−2.2)

0.366
(7.8)

0.362
(4.7)

0.230
(3.7)

0.505

h = 66 0.221
(4.6)

0.304
(3.9)

0.210
(3.3)

0.383

0.122
(2.4)

0.284
(3.5)

0.315
(3.8)

0.213
(3.3)

0.388

−0.071
(−1.2)

0.278
(5.5)

0.298
(3.5)

0.207
(3.2)

0.379

The top panel contains models estimated on the realized variance of the FTSE 100 and the bottom contains results from the EURO STOXX 50. Models were fit to 1-day, 1-week, 1-month, and 1-quarter-ahead
cumulative realized variance. Each subpanel contains three models. The first is a reference HAR, which includes only realized variance. The second decomposes realized variance into positive and negative realized
semivariance. The third splits recent volatility into a signed-jump measure, ΔJ2, and bipower variation (BV ), an estimate of the continuous component of variance.

parameters are imposed and forecasts are occasionally neg-
ative (approximately .004%), so an “insanity filter” is used
to ensure that the forecasts were no smaller than the smallest
realization observed in the estimation window.

Forecast performance is evaluated using unconditional
Diebold and Mariano (1995) and Giacomini and White
(2006) tests, using the negative of the gaussian quasi-
likelihood as the loss function,

L
(
R̂V h,t+h|t , RV h,t+h

) = ln
(
R̂V h,t+h|t

) + RV h,t+h

R̂V h,t+h|t
.

This “QLIKE” loss function has been shown to be robust to
noise in the proxy for volatility in Patton (2011) and to have
good power properties in Patton and Sheppard (2009).

Table 5 contains results from the forecasting analysis. Each
of the three panels contains results from comparing one pair
of forecasting models. Within each panel, the left-most col-
umn contains the value of the DM test statistic for the S&P
500 ETF, and the two right columns contain the percentage

of the 95 individual series that favor each of the competing
models using a two-sided 5% test.

The top-left panel compares the standard HAR with a
semivariance-based model that decomposes the first lag.
The DM test statistic is positive across all forecast hori-
zons, indicating the superior out-of-sample performance of
the semivariance model for the S&P 500 ETF, and rejects
the null of equal performance in favor of the semivariance-
based model in 22% to 30% of individual series. The middle
panel of the top row compares the standard HAR to a
model that includes only negative semivariance at the first
lag. This is our preferred realized semivariance specifica-
tion in light of the weak evidence of significant positive
semivariance, and this model has the same number of param-
eters as the standard HAR. The restricted semivariance
model outperforms the standard HAR at all horizons for
the S&P 500 and provides better performance for individual
stocks than the less parsimonious specification. The top-
right panel compares the parsimonious realized semivariance
specification to the realized variance HAR, which includes
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Table 5.—Out-of-Sample Forecast Comparison of Models for Volatility Forecasting

R̂V
HAR

– R̂V
RS

R̂V
HAR

– R̂V
RS−

R̂V
GJR

– R̂V
RS−

SPDR Other Assets SPDR Other Assets SPDR Other Assets

DM Favor HAR Favor RS DM Favor HAR Favor RS− DM Favor GJR Favor RS−

h = 1 1.48 2.1 22.1 2.69 3.2 12.6 0.02 9.5 2.1
h = 5 3.16 2.1 29.5 4.29 5.3 33.7 1.25 3.2 10.5
h = 22 3.96 2.1 26.3 4.41 1.1 33.7 3.07 2.1 16.8
h = 66 3.64 1.1 23.2 5.23 1.1 36.8 4.27 3.2 16.8

R̂V
BV

– R̂V
RS−

R̂V
BV

– R̂V
ΔJ2

R̂V
BV

– R̂V
ΔJ2±

SPDR Other Assets SPDR Other Assets SPDR Other Assets

DM Favor BV Favor RS− DM Favor BV Favor ΔJ2 DM Favor BV Favor ΔJ2±

h = 1 2.21 7.4 8.4 −0.08 2.1 16.8 1.53 1.1 15.8
h = 5 3.37 7.4 25.3 2.15 2.1 25.3 3.27 1.1 25.3
h = 22 3.33 3.2 30.5 3.10 3.2 18.9 3.22 1.1 12.6
h = 66 4.13 1.1 45.3 1.41 1.1 17.9 3.59 2.1 16.8

Each of the panels contains results for tests of equal predictive accuracy. The left-most column contains the Diebold-Mariano-Giacomini-White test statistic for the S&P 500 SPDR, where a positive test statistic
indicates that the realized semivariance model (or model using jump variation) outperformed the realized variance (or bipower variation) model. The remaining two columns report the percentage of the 95 individual
loss differentials that reject the null and the direction of the rejection using a 5% two-sided test.

the interaction variable using the sign of the lagged return.
The interaction variable appears to help at short horizons,
with the performance of that model being not significantly
different from our preferred semivariance specification; how-
ever, the asymmetry-augmented HAR is significantly out-
performed at longer horizons by the semivariance-based
forecast.

The lower-left panel compares models that differ in the
one-day lag information. The first model uses BV , while
the second model uses negative semivariance (RS−). We
observe that negative semivariance outperforms BV for the
SPDR at all four horizons. For individual series, the out-
performance is significant for all but the shortest horizon,
where the two models perform comparably well. The mid-
dle panel of the bottom row of table 5 compares a forecasting
model that excludes jump information (from the one-day lag)
with a model that includes it through the variable ΔJ2

t . We
see that the model that incorporates signed jump informa-
tion significantly outperforms, for the SPDR, the one that
does not for two out of the four horizons (h = 5 and
h = 22). For individual stocks, ΔJ2

t significantly outper-
forms BV for between 17% and 25% of series. Finally, the
lower-right panel compares the model based on BV with
one that breaks jump variation into its positive and nega-
tive components. We again find that information from signed
jumps significantly improves out-of-sample forecast perfor-
mance, although generally less than a simple model with only
negative semivariance.

Table 6 reports the out-of-sample R2 values for the seven
forecasting models considered in table 5. Relative to a base-
line HAR specification, the best semivariance-based alterna-
tive generates gains in out-of-sample R2 of between 1.1%
(h = 66) and 3.0% for the SPDR (h = 22), and between
0.5% (h = 66) and 13.5% (h = 1) for the individual stocks.
Thus, statistically significant gains documented in table 6 also
correspond to economically meaningful improvements.

Table 6.—Out-of-Sample R2
for the Alternative Models Used in the

Forecast Evaluation

R̂V
HAR

R̂V
GJR

R̂V
RS

R̂V
RS−

R̂V
BV

R̂V
ΔJ2

R̂V
ΔJ2±

SPDR
h = 1 66.7 69.0 67.8 68.8 68.0 68.9 69.3
h = 5 64.8 67.8 67.8 67.6 65.6 67.7 67.8
h = 22 52.4 53.0 54.1 53.9 53.0 54.1 54.1
h = 66 42.8 43.0 43.8 43.7 43.1 43.7 43.9

Individual
h = 1 40.4 51.5 50.2 50.5 46.8 53.9 53.0
h = 5 59.1 61.1 61.6 61.8 60.7 62.6 61.3
h = 22 55.1 55.4 55.8 56.0 55.5 56.0 55.8
h = 66 51.7 51.0 51.8 52.2 51.7 51.8 51.3

The OOS R2 is computed as 1 minus the ratio of out-of-sample model-based MSE to the out-of-sample
MSE from a forecast that includes only a constant. The largest value in each row is in bold.

VII. Conclusion

This paper shows the sizable and significant gains for
predicting equity volatility by incorporating signed high-
frequency volatility information. Our analysis is based on
the realized semivariance estimators recently proposed by
Barndorff-Nielsen et al. (2010). These simple estimators
allow us to decompose realized volatility into a part com-
ing from positive high-frequency returns and a part coming
from negative high-frequency returns. For three equity mar-
ket indexes and a set of 105 individual stocks, we find that
negative realized semivariance is much more important for
future volatility than positive realized semivariance, and dis-
entangling the effects of these two components significantly
improves forecasts of future volatility. This is true whether
the measure of future volatility is realized variance, bipower
variation, negative realized semivariance, or positive realized
semivariance, and it holds for horizons ranging from 1 day to
3 months. We also find that jump variation is important for
predicting future volatility, with volatility attributable to neg-
ative jumps leading to significantly higher future volatility,
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while positive jumps lead to significantly lower volatility.
This may explain earlier results in this literature (see Ander-
sen et al., 2007, and Busch et al., 2011, for example), which
found that jumps are of limited use for forecasting future
volatility; only by including the jump size and sign are the
gains from jumps realized. Assessing the usefulness of real-
ized semivariances and signed jump variation in concrete
financial applications, such as portfolio management, den-
sity forecasting, and derivatives pricing, as in Fleming et al.
(2003), Maheu and McCurdy (2011), and Christoffersen and
Jacobs (2004), for example, represents an interesting area for
future research.
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