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We develop an unobserved-components approach to study surveys of forecasts containing multiple fore-
cast horizons. Under the assumption that forecasters optimally update their beliefs about past, current,
and future state variables as new information arrives, we use our model to extract information on the de-
gree of predictability of the state variable and the importance of measurement errors in the observables.
Empirical estimates of the model are obtained using survey forecasts of annual GDP growth and infla-
tion in the United States with forecast horizons ranging from 1 to 24 months, and the model is found to
closely match the joint realization of forecast errors at different horizons. Our empirical results suggest
that professional forecasters face severe measurement error problems for GDP growth in real time, while
this is much less of a problem for inflation. Moreover, inflation exhibits greater persistence, and thus is
predictable at longer horizons, than GDP growth and the persistent component of both variables is well
approximated by a low-order autoregressive specification.
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1. INTRODUCTION

Much can be learned by studying how forecasters update
their beliefs about economic variables such as output growth or
inflation through time. Specifically, data on forecasts recorded
at multiple horizons reveal how persistent agents believe the
underlying variables are, the value of new information arriving
between updating points, and the importance of measurement
errors surrounding economic variables.

The econometric analysis of multi-horizon survey data is,
however, complicated by several factors. First, since forecasts
are recorded at both long and short horizons, there is consider-
able overlap in the forecasts and forecast errors. Second, the
fact that measurement errors in the underlying variables af-
fect agents’ forecasts introduces a signal extraction problem
in agents’ learning process, and causes further dependence in
forecast errors measured at different horizons. For these rea-
sons, only limited results are available using this type of “fixed
event” data; see Nordhaus (1987), Swidler and Ketcher (1990),
Davies and Lahiri (1995), Clements (1997), Isiklar, Lahiri, and
Loungani (2006), and Lahiri and Sheng (2008).

This paper develops a new approach for extracting informa-
tion on how rapidly agents learn about the state of the econ-
omy and characterizing their views about temporary and per-
sistent components in the predicted variable. Specifically, we
develop a framework for studying panels of forecasts contain-
ing numerous different forecast horizons (“large H”) recorded
for relatively few time periods (“small T”). The first contribu-
tion of this paper is to analytically reveal the rich information
available by studying how forecasts of a variable measured at
a low frequency (e.g., annual GDP growth) are updated at a
higher frequency (monthly, in our case). We do so by mod-
eling agents’ learning problem—accounting for how they si-
multaneously backcast, nowcast and forecast past, current and

future variables—in the context of a set of Kalman filter up-
dating equations. We then seek to exploit this information us-
ing method-of-moments-based estimation techniques to match
the properties of forecasts observed across different horizons
with the moments implied by our model for agents’ updat-
ing process. To conduct inference, we propose a method for
simulating standard errors of the moments that are consistent
with the underlying model. To our knowledge, this approach for
modeling learning and conducting inference has not previously
been considered in the literature. We also develop a maximum
likelihood approach for estimating the parameters of the model.

The “large H” nature of our data enables us to answer a
number of interesting questions that are intractable with fore-
casts of just one or two different horizons, such as the impor-
tance of measurement errors, the rate at which uncertainty about
macroeconomic variables is resolved as the forecast horizon
is reduced, and forecasters’ beliefs about the current state of
the economy (as measured by their “nowcasts” of GDP growth
and inflation). It is of course no surprise that uncertainty about
macroeconomic variables declines as the date the variable is re-
vealed draws nearer; the novel aspect of this paper is to propose
a model that theoretically explains both the level and the shape
of this uncertainty as a function of the forecast horizon.

The second contribution of this paper is empirical: we use
consensus forecasts of U.S. inflation and GDP growth over
1990–2004, and find many interesting results. Consistent with
our model, we find that the rate of uncertainty resolution is
faster at short and medium horizons than at long horizons, due
in part to the presence of a persistent component in the predicted
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series, in part to forecasters’ access to noisy data on current-
period realizations. Measurement error appears to be important
in forecasts of GDP growth but much less so for inflation, a
finding that is consistent with other studies of measurement er-
ror in macroeconomic variables, but using different datasets;
see, for example, Croushore and Stark (2001).

The plan of the paper is as follows. Section 2 presents our
model for how forecasters update their predictions as the fore-
cast horizon shrinks and discusses various estimation and infer-
ence methods. Section 3 presents empirical results using data
from Consensus Economics over the period 1990–2004 and
Section 4 concludes. Proofs and additional technical details are
contained in appendices.

2. MULTI–HORIZON FORECAST ERRORS

We start by developing a model for how forecasters update
their beliefs about macroeconomic variables such as output
growth and inflation. Our analysis makes use of the rich in-
formation available in high frequency revisions of forecasts of
a variable observed at a lower frequency, for example, monthly
revisions to forecasts of annual inflation. Since we shall be con-
cerned with flow variables that agents gradually learn about as
new information arrives prior to and during the period of their
measurement, the fact that part of the outcome may be known
prior to the end of the measurement period (the “event date”)
introduces additional complications, and means that the timing
of the forecasts has to be carefully considered.

Our analysis assumes that agents have a squared loss func-
tion over the forecast error, et|t−h ≡ zt − ẑt|t−h, where zt is the
predicted variable, ẑt|t−h is the forecast computed at time t − h,
t is the event date and h is the forecast horizon. Other loss func-
tions have been discussed by, for example, Patton and Timmer-
mann (2007). One advantage of assuming squared loss is that
it is easier to justify focusing on aggregate or consensus fore-
casts, as we shall be doing here, computed as an average of the
individual forecasts. Under this loss function, the optimal h—
period forecast is simply the conditional expectation of zt given
information at time t − h, Ft−h:

ẑt|t−h = E[zt|Ft−h]. (1)

To study agents’ learning process we keep the event date, t,
fixed and vary the forecast horizon, h.

2.1 A Benchmark Model

Since the predicted variable in our application is measured
less frequently than the forecasts are revised, it is convenient
to describe the target variable as a rolling sum of a higher-
frequency variable. To this end, let yt denote the single-period
variable (e.g., monthly log-first differences of GDP or a log-
price index tracking inflation), while the rolling sum of the 12
most recent single-period observations of y is denoted zt:

zt =
11∑

j=0

yt−j. (2)

Our model is based on a decomposition of yt into a persistent
(and thus predictable) first-order autoregressive component, xt,
and a temporary component, ut:

yt = xt + ut,

xt = φxt−1 + εt, −1 < φ < 1,
(3)

ut ∼ iid(0, σ 2
u ), εt ∼ iid(0, σ 2

ε ),

E[utεs] = 0 ∀t, s.

Here φ measures the persistence of xt, while ut and εt are in-
novations assumed to be both serially uncorrelated and mutu-
ally uncorrelated. Setting yt to be a combination of an AR(1)
process and an unpredictable process implies that yt follows an
ARMA(1, 1); see Granger and Newbold (1986) for example.
Without loss of generality, we assume that the unconditional
mean of xt, and thus yt and zt, is zero.

Our use of a variable tracking monthly changes in GDP
(yt) is simply a modeling device: U.S. GDP figures are cur-
rently only available quarterly. Economic forecasters, how-
ever, can almost certainly be assumed to employ higher fre-
quency data when constructing their monthly forecasts of GDP.
Giannone, Reichlin, and Small (2008) and Aruoba, Diebold,
and Scotti (2009), for example, propose methods to incorpo-
rate into macroeconomic forecasts news about the economy be-
tween formal announcement dates. When we take our model to
data we focus on those aspects of the model that have empirical
counterparts.

The assumption that the predicted variable contains a first-
order autoregressive component, while clearly an approxima-
tion, is able to capture the presence of a persistent component
in most macroeconomic data. For example, much of the dynam-
ics in the common factors extracted from large cross-sections of
macroeconomic variables by Stock and Watson (2002) is cap-
tured by low-order autoregressive terms. It is straightforward
to allow more lags or other observed variables to enter in the
forecasting model, although the latter approach is complicated
by the existence of literally hundreds of economic state vari-
ables that could be adopted in such models, (Stock and Watson
2006), “real time” revisions to such data (Diebold and Rude-
busch 1991) and uncertainty about which models agents actu-
ally use (Garratt et al. 2003).

We first present results under simple, but unrealistic, assump-
tions about the forecasters’ information set in order to reveal
some basic properties of the problem. We introduce more re-
alistic assumptions in the next section. Under the assumption
that both xt and yt are observed at time t, the simplicity of our
benchmark model allows an analytic characterization of how
the mean squared forecast error (MSE) evolves as a function of
the forecast horizon (h):

Proposition 1. Suppose that yt can be decomposed into a per-
sistent component (xt) and a temporary component (ut) satis-
fying Equation (3) and forecasters minimize the squared loss
given the information set Ft = σ([xt−j, yt−j], j = 0,1,2, . . .).
Then the mean squared forecast error as a function of the fore-



Patton and Timmermann: Multi-Horizon Survey Approach 3

cast horizon is given by

E
[
e2

t|t−h

] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

12σ 2
u + 1

(1 − φ)2

×
(

12 − 2
φ(1 − φ12)

1 − φ
+ φ2(1 − φ24)

1 − φ2

)
σ 2

ε

+ φ2(1 − φ12)2(1 − φ2h−24)

(1 − φ)3(1 + φ)
σ 2

ε ,

for h ≥ 12

hσ 2
u + 1

(1 − φ)2

×
(

h − 2
φ(1 − φh)

1 − φ
+ φ2(1 − φ2h)

1 − φ2

)
σ 2

ε ,

for h < 12.

Proposition 1 is proved in the Appendix A and is simple to in-
terpret: The first term in the expression for the mean squared er-
ror captures the unpredictable component, ut. The second term
captures uncertainty about shocks to the remaining values of
the persistent component, xt, over the measurement period. The
additional term in the expression for h ≥ 12 comes from having
to predict xt−11, the initial value of the persistent component at
the beginning of the measurement period.

To illustrate Proposition 1, Figure 1 plots the root mean
squared error (RMSE) for h = 1,2, . . . ,24 using parameters
similar to those we obtain in the empirical analysis for U.S.
GDP growth. Holding the unconditional variance of annual
GDP growth, σ 2

z , and the ratio of the transitory component
variance to the persistent component variance, σ 2

u /σ 2
x , fixed we

show the impact of varying the persistence parameter, φ. The
figure shows the large impact that this parameter has on the
shape of the RMSE function. For h < 12, the RMSE grows
as a square root of the length of the forecast horizon if y has
no persistent component (φ = 0). Conversely, the presence of a
persistent component gives rise to a more gradual decline in the
forecast error variance as the horizon is reduced. Uncertainty is

Figure 1. Root mean squared forecast errors (RMSE) as a function
of the forecast horizon (h) for various degrees of persistence (φ) in the
predictable component. The online version of this figure is in color.

resolved more gradually, the higher the value of φ. Notice also
how the change in RMSE gets smaller at the longest horizons,
irrespective of the value of φ.

2.2 Measurement Errors

Proposition 1 is helpful in establishing intuition for the
drivers of how macroeconomic uncertainty gets resolved
through time. However, it also has some significant shortcom-
ings. Most obviously, it assumes that forecasters observe both
the predicted variable, y, and its persistent component, x, with-
out error, and so uncertainty vanishes completely as h → 0.

Macroeconomic variables are, however, to varying degrees,
subject to measurement errors as reflected in data revisions and
changes in benchmark weights. Such errors are less important
for survey-based inflation measures such as the consumer price
index (CPI). Revisions are, however, very common for mea-
sures of output, such as GDP; see, for example, Croushore and
Stark (2001), Croushore (2006), and Corradi, Fernandez, and
Swanson (2009).

Measurement errors make the forecasters’ problem more dif-
ficult and introduce a signal extraction problem: the greater the
measurement error, the noisier are past observations of y and
hence the less precise the forecasters’ readings of the state of
the economy. They also mean that forecasters cannot simply
“plug in” observed values of past y’s during the measurement
period (h < 12): these quantities must also be estimated.

To account for these effects, we cast our original model in
state-space form with a state equation[

1 −1

0 1

][
yt

xt

]
=

[
0 0

0 φ

][
yt−1

xt−1

]
+

[
ut

εt

]
,

(4)[
ut

εt

]
∼ iid

(
0,

[
σ 2

u 0

0 σ 2
ε

])
.

Next assume that agents only observe yt with error, and that
xt is unobserved. This setup is far more realistic for economic
data which are often subject to measurement error and whose
persistent components are not directly observable. If, for exam-
ple, the measurement error is assumed iid then the measurement
equation for this system becomes

ỹt = yt + ηt, ηt ∼ iid(0, σ 2
η ). (5)

Faust, Rogers, and Wright (2005) find that revisions to U.S.
GDP figures are essentially unpredictable, motivating the sim-
ple iid noise structure used above.

Despite its simplicity, this model does not yield a formula
for the term structure of RMSE-values that is readily inter-
pretable. The key difficulty that arises is best illustrated by
considering “current-year” forecasts (1 ≤ h < 12). When pro-
ducing a current-year forecast at time t − h, economic agents
must use past and current information to “backcast” realiza-
tions yt−11, . . . , yt−h−1; they must also produce a “nowcast” for
the current month yt−h, and, finally, must predict future realiza-
tions, yt−h+1, . . . , yt. When the persistent component, xt, is not
observable, the resulting forecast errors will generally be seri-
ally correlated even after conditioning on all information that
is available to the agents. Handling this problem is difficult and
requires expressing past, current, and future forecast errors in
terms of the primitive shocks, ut, εt, and ηt, which are serially
uncorrelated. We show how to accomplish this for a more gen-
eral model in the next section.
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2.3 A More General Model

We now extend the state-space model introduced in the previ-
ous section in two directions. First, we allow the measurement
error facing the forecasters to be either iid or follow an MA(1)
process. These cases correspond to the measurement error oc-
curring directly in the growth rate, or in the log-level of the
series [which then becomes an MA(1) error term on the growth
rate].

Second, the definition of the “annual” rate of change in
the variable need not be the simple December-on-December
change as assumed in Equation (2) above. Rather, it may be
defined as the change in the “average” level of the series in one
year relative to that in the previous year. This is the form of the
annual variable used in our empirical analysis below. In Appen-
dix B we show that various alternative definitions of the annual
growth rate can be represented as simple weighted sums of the
most recent 24 monthly growth rates:

zt =
23∑

j=0

ωjyt−j. (6)

In the simple definition used in Equation (2) the weights equal
one for each of the most recent 12 months and zero for the rest;
in Appendix B we show that for other definitions the weights
take an “inverted V” shape as a function of the lag.

Given the above considerations, and to more easily han-
dle the backcasting, nowcasting, and forecasting aspects of the
forecasters’ problem, it is convenient to extend the state vari-
able to include an additional error term and its lag (vt and vt−1),
as well as 28 lags of the monthly growth rate, yt. (Strictly, we
only need 23 lags for the derivations in this section, but the addi-
tional 5 lags are required in Section 2.5 and create no additional
complexity.) The state equation is then

ξ t = Fξ t−1 + νt, where

ξ t ≡ [ xt vt vt−1 yt · · · yt−28 ]′ ,

νt ≡ [ εt vt 0 εt + ut 01×28 ]′ ,
(7)

F =

⎡⎢⎢⎢⎢⎢⎣
φ 0 0

0 0 0
04×29

0 1 0

φ 0 0
028×3 I28 028×1

⎤⎥⎥⎥⎥⎥⎦ , and

νt ∼ iid(0,Q), where

Q =

⎡⎢⎢⎢⎢⎢⎢⎣
σ 2

ε 0 0 σ 2
ε

0 σ 2
v 0 0

04×28
0 0 0 0

σ 2
ε 0 0 σ 2

ε + σ 2
u

028×4 028×28

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where 0m×n is a (m × n) matrix of zeros, and Ik is a k-
dimensional identity matrix.

While more complicated in appearance, the data-generating
process for the key variables (xt, yt) is unchanged from the pre-
vious section. The measurement equation is generalized to al-

low for the possibility of an MA(1) measurement error:

ỹt = H′ξ t + wt, where

H ≡ [ 0 1 λ 1 01×28 ]′ ,
(8)

wt ∼ iidN(0,R), and

E[νtw′
s] = 0 ∀s, t.

In our application the measurement variable is a scalar (and
wt = ηt) but we will present our theoretical framework for the
general case where ỹt is a vector. Further, in our application the
error term wt is not strictly needed, as it is nested in the MA(1)
error in Equation (8), but we include it for ease of comparison
with the above model and with other state-space models. The
simple iid noise structure is obtained by setting λ = 0. (In this
case one should set either σ 2

ν = 0 or σ 2
η = 0, as these parameters

are not separately identified when λ = 0.) Alternatively, if the
measurement errors faced by forecasters were iid in the levels
of the series, this would suggest an MA(1) error structure in the
growth rates, in which case we would set λ = −1 and σ 2

η = 0.

The annual target variable, zt, is defined as a weighted sum
of the most recent 24 values of the monthly growth rates:

zt =
23∑

j=0

ωjyt−j = γ ′
0ξ t,

where

γ 0 = [ 01×3 ω′ 01×5 ]′ ,
ω = [ω0 ω1 · · · ω23 ]′ .

Different choices for the weight vector ω, corresponding to dif-
ferent definitions of the annual variable, are discussed in Ap-
pendix B.

In generating their forecasts, we assume that our forecasters
know the form and parameters of the data-generating process,
presented in Equations (7) and (8), and we further assume that
they use the Kalman filter to optimally predict (forecast, now-
cast and backcast) the values of yt needed for the forecast of the
annual variable, zt. Thus the learning problem faced by the fore-
casters in our model relates to the latent state of the economy
(measured by xt and yt), but not to the parameters of the model.
This simplification is necessitated by our short time series of
data. We also assume that the forecaster has been using the
Kalman filter long enough that all updating matrices are at their
steady-state values. This is done simply to remove any “start of
sample” effects that may or may not be present in the data. Let

F̃t = σ(ỹt, ỹt−1, . . . , ỹ1),

ξ̂ t|t−1 ≡ E[ξ t|F̃t−1] ≡ Et−1[ξ t],
ŷt|t−1 ≡ E[ỹt|F̃t−1] ≡ Et−1[ỹt].

Following Hamilton (1994), define the following matrices:

Pt+1|t ≡ E
[(

ξ t+1 − ξ̂ t+1|t
)(

ξ t+1 − ξ̂ t+1|t
)′]

= (F − KtH′)Pt|t−1(F′ − HK′
t) + KtRK′

t + Q → P1,

Kt ≡ FPt|t−1H(H′Pt|t−1H + R)−1 → K,
(9)

Pt|t ≡ E
[(

ξ t − ξ̂ t|t
)(

ξ t − ξ̂ t|t
)′]

= Pt|t−1 − Pt|t−1H
(
H′Pt|t−1H + R

)−1H′Pt|t−1

→ P1 − P1H(H′P1H + R)−1H′P1 ≡ P0.
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The convergence of Pt|t−1, Pt|t, and Kt to their steady-state val-
ues relies on |φ| < 1, and we impose this in the estimation. To
initialize these matrices we use their unconditional equivalents,
P1|0 ≡ E[(ξ t − E[ξ t])(ξ t − E[ξ t])′] and ξ̂1|0 = E[ξ t]. Estimates
of the state variables are updated via

ξ̂ t|t = ξ̂ t|t−1 +Pt|t−1H
(
H′Pt|t−1H+R

)−1(ỹt −H′ξ̂ t|t−1
)
, (10)

while the multi-step prediction error uses

ξ̂ t+h|t = Fhξ̂ t|t,

Pt+h|t ≡ E
[(

ξ t+h − ξ̂ t+h|t
)(

ξ t+h − ξ̂ t+h|t
)′] (11)

= FhPt|t(F′)h +
h−1∑
j=0

FjQ(F′)j → Ph for h ≥ 1.

The full set of MSE-values across different horizons can now
be extracted from Ph:

ẑt|t−h ≡ E[zt|F̃t−h] = γ ′
0ξ̂ t|t−h yielding

(12)
MSEh ≡ E[(zt − ẑt|t−h)

2] = γ ′
0Phγ 0, for h ≥ 0.

Note that for h < 12 the optimal forecast ẑt|t−h involves a
combination of forecasts, E[yt−h+j|F̃t−h] for j > 0, nowcasts,
E[yt−h|F̃t−h], and backcasts, E[yt−h−k|F̃t−h] for k > 0. Our
use of an extended state equation means that these terms are
all captured in the above expressions without having to handle
them separately.

Figure 2 uses these equations to illustrate the impact of mea-
surement error on the RMSE-values at different horizons. For
this illustration, we set λ = σν = 0 and vary ση as a function
of σu, so the measurement error variance is expressed in terms
of the innovation variance for y. In the absence of measurement
errors the RMSE will converge to zero as h → 0, whereas in
the presence of measurement error the RMSE will converge to
some positive quantity. As the horizon, h, shrinks towards zero,

Figure 2. Root mean squared forecast errors (RMSE) as a function
of the forecast horizon (h) for various levels of measurement error in
the predicted variable (larger k implies greater meas. error). The online
version of this figure is in color.

the relative importance of measurement errors grows. More-
over, the RMSE function gets flatter as the size of the mea-
surement error increases. Note, however, that measurement er-
ror plays no part for long-horizon forecasts, since its impact
on overall uncertainty is small relative to other sources of un-
certainty, and so Figure 2 resembles Figure 1 for long horizon
forecasts. This also shows that the persistence (φ) and measure-
ment error (σ 2

η ) parameters are separately identified by jointly
considering long and short horizon forecast errors, and illus-
trates the rich information contained in survey forecasts cover-
ing multiple forecast horizons.

The analytical results in this section show that a simple
model of the forecasting environment faced by macroeconomic
forecasters in practice can accommodate a rich set of empirical
phenomena: with just four free parameters a variety of RMSE
patterns is obtained. Further, by studying such a model in de-
tail we gain some quantitative insight into the key drivers of
macroeconomic forecast errors. We next move on to matching
the parameters of our model to data.

2.4 GMM Estimation

Our initial strategy for estimation is to choose the parame-
ters that enable the model to match the observed forecast errors
as closely as possible. To this end, we estimate the parameters
using the Generalized Methods of Moments (GMM) based on
the moment conditions obtained by matching the sample MSE,
T−1 ∑T

t=1 e2
t|t−h at various forecast horizons to the population

mean squared errors, MSEh(θ), implied by our model. Our pa-
rameter estimates are obtained from

θ̂T ≡ arg min
θ

gT(θ)′WT gT(θ), (13)

gT(θ) ≡ 1

T

T∑
t=1

⎡⎢⎢⎢⎣
e2

t|t−1 − MSE1(θ)

e2
t|t−2 − MSE2(θ)

...

e2
t|t−H − MSEH(θ)

⎤⎥⎥⎥⎦ , (14)

where θ ≡ [σ 2
u , σ 2

ε , φ,σ 2
v , λ]′ and MSEh(θ) is obtained using

Proposition 1 or the updating equations leading to (12).
In situations with large H there are several over-identifying

restrictions, and so the choice of weighting matrix, WT , in the
GMM estimation is important. In our initial estimates we use
the identity matrix as the weighting matrix so that all hori-
zons get equal weight in the estimation procedure; this is not
fully efficient, but is justified by our focus on modeling the en-
tire term structure of forecast errors. For comparison, we also
present efficient GMM estimates, using the inverse covariance
matrix of the moment conditions as the weighting matrix. The
covariance matrix of the sample moments is also used to com-
pute standard errors and test the over-identifying conditions. In
our application the sample is only T = 14 years long while we
have H = 24 forecast horizons and so it is not feasible to esti-
mate this matrix directly from the data since this would require
controlling for the correlation between the sample moments in-
duced by overlaps across the 24 horizons. Fortunately, given
the simple structure of our model, for a given parameter value
we can compute a model-implied covariance matrix of the sam-
ple moments. Under the assumption that the model is correctly
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specified, this matrix captures the correlation between sample
moments induced by overlaps and serial persistence.

To obtain P1, P0, and K we simulate 100 nonoverlapping
years of data and update Pt|t−1, Pt|t, and Kt following Hamil-
ton (1994). We use these matrices at the end of the 100th year
as estimates of P1, P0, and K. To obtain the covariance ma-
trix of the moments, used to compute standard errors and the
test of over-identifying restrictions, we use the model-implied
covariance matrix of the moments, based on the parameter es-
timate from the first-stage GMM. This matrix is not available
in closed-form and so we simulate 1000 nonoverlapping years
of data to estimate it, imposing that the innovations to these
processes (νt and wt) are normally distributed, and using the
expressions given above to obtain the Kalman filter forecasts.

We use only six forecast horizons (h = 1,3,6,12,18,24) in
the estimation, rather than the full set of 24, in response to
studies of the finite-sample properties of GMM estimates (e.g.,
Tauchen 1986) which find that using many more moment con-
ditions than required for identification leads to poor approxi-
mations from the asymptotic theory, particularly when the mo-
ments are highly correlated, as in our application. We have also
estimated the models presented in this paper using the full set
of 24 moment conditions and the results were qualitatively sim-
ilar.

2.5 Maximum Likelihood Estimation

With the analytical formulas for the model-implied mean
squared forecast errors given in the previous section, obtaining
GMM estimates of the unknown model parameters is straight-
forward. Normality is sufficient but not necessary for the GMM
estimates: under nonnormality, our approach is still applicable
if we assume that forecasters construct their predictions as op-
timal linear projections rather than expectations. However, in
this case the Kalman filter is no longer optimal, and another fil-
ter based on different distributional assumptions may perform
better.

Under normality, however, GMM suffers from the usual
drawback that it is less efficient than fully specified maximum
likelihood (ML). In this section we describe the steps required
to estimate the model by ML. This approach is complicated by
the fact that forecasts of varying horizons appear in the sur-
vey across different months. We address this by extending the
econometrician’s measurement variable (i.e., the variable ob-
servable to us) to include a hypothetical full set of forecasts,
with horizons from h = 1 to h = 24, at each month. This sim-
plifies the algebra, but introduces the problem that not all of
these variables are actually observable at each point in time.
We use the approach presented in Aruoba, Diebold, and Scotti
(2009) to address this problem.

2.5.1 The Econometrician’s State and Measurement Vari-
ables. Recall from Section 2.3 that the forecasters’ state and
measurement variables are ξ t and ỹt, respectively. In turn, the
econometrician’s state and measurement variables are

�t
(65×1)

≡ [ ξ ′
t

(32×1)

, ξ̂ ′
t|t

(32×1)

, ỹ′
t

(1×1)

],
(15)

�t
(30×1)

≡ [ẑt+24,t, ẑt+23,t, . . . , ẑt+1,t, zt, zt−1, . . . , zt−5]′.

Hence ỹt, which is observed by forecasters but not by the
econometrician, can be interpreted as a summary statistic for all
the information forecasters observe that helps them predict the
actual target variable. These variables give rise to a two-layered
Kalman filter, as we will use the Kalman filter to handle the
inference problem faced by the econometrician on top of the
Kalman filter assumed to be employed by the forecasters in our
sample.

We first show that we can write the econometrician’s state
variable as following a VAR(1). The forecaster’s nowcast of the
state variable is given by (see Hamilton 1994):

ξ̂ t|t = Fξ̂ t−1|t−1 + P1H(H′P1H + R)−1(ỹt − H′Fξ̂ t−1|t−1
)

= (I − Ā1H′)Fξ̂ t−1|t−1 + Ā1ỹt, where (16)

Ā1 ≡ P1H(H′P1H + R)−1.

Next, we note that

ỹt = H′ξ t + ηt

= H′Fξ t−1 + H′νt + ηt, and so
(17)

ξ̂ t|t = (I − Ā1H′)Fξ̂ t−1|t−1 + Ā1(H′Fξ t−1 + H′νt + ηt)

= (I − Ā1H′)Fξ̂ t−1|t−1 + Ā1H′Fξ t−1 + Ā1H′νt + Ā1ηt.

Pulling these together, we find that the econometrician’s state
variable follows a VAR(1):

�t =
⎡⎢⎣

ξ t

ξ̂ t|t
Ỹt

⎤⎥⎦

=
⎡⎢⎣ F 032×32 032×1

Ā1H′F (I − Ā1H′)F 032×1

H′F 01×32 0

⎤⎥⎦
⎡⎢⎣

ξ t−1

ξ̂ t−1|t−1

Ỹt−1

⎤⎥⎦

+
⎡⎣ νt

Ā1H′νt + Ā1ηt

H′νt + ηt

⎤⎦ or

(18)
�t = F∗�t−1 + ν∗

t , where

V[ν∗
t ] ≡ Q∗ =

⎡⎢⎣ 
ν 
νH′
1Ā

Ā′
1H
ν Ā1H′
νHĀ′

1 + Ā1RĀ′
1

H′
ν H′
νHĀ′
1 + R′Ā′

1


νH

Ā1H′
νH + Ā1R

H′
νH + R

⎤⎥⎦ .

(Starred objects refer to the econometrician’s inference prob-
lem.) Next we show that the econometrician’s measurement
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variables are linear functions of his state variables:

�t =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẑt+24|t
...

ẑt+1|t
zt
...

zt−5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ ′
0F24

024×32
... 024×1

γ ′
0F

γ ′
0

γ ′−1 06×33...

γ ′−5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎣
ξ t

ξ̂ t|t
Ỹt

⎤⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w∗
24|t
...

w∗
1|t

w∗
0|t
...

w∗−5|t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

�t = H∗′�t + w∗
t , where (19)

w∗
t ∼ iid(0,R∗) and

γ −j ≡ [
01×(3+j) ω′ 01×(5−j)

]′ for j = 0,1, . . . ,5.

The vectors γ −j generate the lagged annual variable zt−j from
the elements of the variable ξ t. The error term in the econome-
trician’s measurement equation, w∗

t , is included to accommo-
date the possibility of errors in the survey of forecasters’ pre-
dictions. In the absence of such errors this variable can be set to
zero (i.e., set R∗ = 0).

With the expressions in Equations (18) and (19) we have thus
shown that the econometrician’s problem fits into a standard
state-space framework. We next discuss how we handle the fact
that �t is not completely observed by the econometrician.

2.5.2 Dealing With “Missing” Forecasts. Now we ad-
dress the fact that in our dataset the econometrician does not
get to observe a full set of 24 forecasts at each point in time.
Rather, we only observe two forecasts, and possibly a realiza-
tion of the annual target variable. For example, if date t is Jan-
uary, then the observed variable is �̈t = [ẑt+24|t, ẑt+12|t]′. If we
were in April, then the measurement variable contains two fore-
casts and the value for the actual in the year ended in December,
and so �̈t = [ẑt+21|t, ẑt+9|t, zt−3]′.

To handle these “missing” forecasts, we follow the approach
of Aruoba, Diebold, and Scotti (2009). Let Jt be a 30×1 vector
of ones and zeros indicating which elements of �t are observ-
able at time t, and let nt = ι′Jt be the number of ones in the
vector Jt. Define the “selection matrix” St as a (nt × 30) matrix
containing the rows of I30 that correspond to the elements of Jt

that equal one. This allows us to write the nt × 1 subvector of
�t, �̈t:

�̈t = St�t. (20)

As Aruoba, Diebold, and Scotti (2009) explain, the Kalman fil-
ter can be applied to problems with missing data by exploiting
the above mapping from �t to �̈t.

Let F̈t = σ(�̈t, �̈t−1, . . . , �̈1) denote the information set
available to the econometrician at time t. In a minor abuse
of notation we denote the econometrician’s expectations with

“hats,” even though these expectations are based on a different
(smaller) information set to that of the forecasters:̂̈�t|t−1 ≡ E[�̈t|F̈t−1], �̂t|t−1 ≡ E[�t|F̈t−1],

(21)
�̂t|t−1 ≡ E[�t|F̈t−1].

To obtain the likelihood for this model, we need to obtain the
residuals and their covariance matrix at each point in time. The
residuals in the standard case with no “missing” forecasts are

et ≡ �t − �̂t|t−1 = (H∗′�t + w∗
t ) − H∗′�̂t|t−1

= H∗′(�t − �̂t|t−1
) + w∗

t and
(22)

V[et] = H∗′P∗
t|t−1H∗ + R∗ ≡ Qt|t−1, where

P∗
t|t−1 ≡ E

[(
�t − �̂t|t−1

)(
�t − �̂t|t−1

)′]
.

The corresponding expressions for the residuals when we ac-
count for the fact that some of the forecasts are not observed at
each point in time are

ët ≡ �̈t − ̂̈�t|t−1 = St
(
�t − �̂t|t−1

)
and

(23)
V[ët] = StQt|t−1S′

t ≡ Q̈t|t−1.

Finally, we need expressions for obtaining the forecasts of the
measurement and state variables, and for updating the variance
matriceŝ̈�t|t−1 ≡ St�̂t|t−1 = StH∗′�̂t|t−1 and

�̂t|t−1 = F∗�̂t−1|t−1,

�̂t|t = �̂t|t−1 + P∗
t|t−1H∗Q̈−1

t|t−1ët, (24)

P∗
t|t = P∗

t|t−1 − P∗
t|t−1H∗S′

tQ̈
−1
t|t−1StH∗′P∗

t|t−1,

P∗
t+1|t = F∗P∗

t|tF∗ + Q∗.

With this in hand, we can now write down the log-likelihood
for this problem, where at each point in time we “zero out”
the impact of the unobserved measurement variables, and only
compute the log-likelihood for those elements of �t that we
observe. Thus our log-likelihood is

log L(θ) = −1

2

T∑
t=1

{
nt log(2π) + log

∣∣Q̈t|t−1(θ)
∣∣

+ ë′
t(θ)Q̈−1

t|t−1(θ)ët(θ)
}
, (25)

where we have made the dependence of Q̈t|t−1 and ët on the un-
known parameter vector explicit. As usual, we initialize the ex-
pectations and covariance matrices at their unconditional equiv-
alents.

3. EMPIRICAL RESULTS

3.1 Data

Our data is taken from the Consensus Economics (CE) Inc.
forecasts which comprise polls of private sector forecasters and
are widely considered by organizations such as the IMF and the
U.S. Federal Reserve. Each month participants are asked about
their views of a range of variables for the major economies
and the consensus (average) forecast is recorded. Our analysis
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focuses on U.S. real GDP growth and Consumer Price Index
(CPI) inflation for the current and subsequent year. This gives
us 24 monthly next-year and current-year forecasts over the pe-
riod January 1990 to December 2004 or a total of 24×14 = 336
monthly observations. Naturally our observations are not inde-
pendent draws but are subject to a set of tight restrictions across
horizons, as revealed by the analysis in the previous section.

The CE database tracks the views of professional forecasters.
Economic interest in professional forecasts arises from the fact
that these forecasts are used as inputs to the decisions of eco-
nomic agents such as firms and consumers; see Granger and
Machina (2006) for discussion, and that consensus forecasts
from professional forecasters have been found to out-perform
consensus forecasts from households in terms of forecast accu-
racy; see Ang, Bekaert, and Wei (2007). Further, the size and
breadth of the professional forecasting industry makes this an
interesting sector in its own right. For example, the CE sur-
vey we use draws on forecasts from over 70 unique institu-
tions, including banks, nonfinancial corporations, and govern-
ment agencies.

Our assumption that the forecasters efficiently update their
forecasts on a monthly basis as new information becomes avail-
able is likely to be a better characterization of professional fore-
casters’ behavior than households’ behavior, as the latter have
been found to update their forecasts rather less frequently (Car-
roll 2003). Our analysis also assumes that forecasters have a
squared error loss function. Under this loss function, the objec-
tive of professional forecasters is to report an unbiased forecast
for the eventual forecast user. Of course, if the objectives of
the professional forecasters and the forecast users differ, then
there could be principal-agent issues related to how profes-
sional forecasters generate their forecasts (see, e.g., Ottaviani
and Sorensen 2006). This could also lead to distortions from
using a consensus estimate rather than basing the analysis on
individual forecasters’ predictions or considering the dispersion
in beliefs as done by Patton and Timmermann (2010). These is-
sues are not addressed in our analysis.

As a prelude to our analysis of the RMSE function, we ini-
tially undertook a range of statistical tests that check for biases
and serial correlation in the forecast errors. We tested for bi-
ases in the forecasts by testing whether the forecast errors were
mean zero and by estimating “Mincer–Zarnowitz” (1969) (MZ)
regressions and autocorrelation regressions

yt = βh
0 + βh

1 ŷt|t−h + εt|t−h,
(26)

et|t−h = γ h
0 + γ h

1 et−12j|t−12j−h + υt|t−h.

In the latter regression we set j = 1 for h ≤ 12 and j = 2 for
h > 12 to account for the fact that even perfectly optimal fore-
casts can generate forecast errors that are serially correlated
at lags shorter than the forecast horizon. We test optimality
by testing that βh

0 = 0, βh
1 = 1 in the MZ regression, and by

testing that γ h
0 = γ h

1 = 0 in the forecast error regression, for
h = 1, . . . ,24. The results are presented in Table 1. For GDP
growth, there was no evidence of significant forecast bias and
only limited evidence against rationality in the MZ or forecast
error regressions. For inflation, these tests revealed some evi-
dence against forecast rationality at horizons beyond one year.
The modeling framework described in the previous section as-
sumes that forecasts at all horizons are rational, but does not
require that we include the full set of horizons in the estima-

Table 1. Rationality tests for consensus forecasts of
U.S. GDP growth and Inflation

GDP growth Inflation

Horizon Bias MZ Autocorr Bias MZ Autocorr

1 0.85 0.95 0.23 0.76 0.60 0.30
2 0.78 0.96 0.26 0.84 0.79 0.64
3 0.47 0.72 0.13 0.25 0.34 0.34
4 0.50 0.28 0.42 0.13 0.30 0.28
5 0.42 0.23 0.42 0.11 0.26 0.27
6 0.67 0.05 0.59 0.14 0.27 0.25
7 0.80 0.30 0.70 0.10 0.11 0.28
8 0.83 0.45 0.75 0.42 0.06 0.82
9 0.34 0.48 0.48 0.92 0.18 0.97

10 0.15 0.30 0.04 0.62 0.11 0.74
11 0.06 0.17 0.00 0.58 0.16 0.35
12 0.08 0.21 0.08 0.95 0.04 0.44
13 0.13 0.32 0.02 0.51 0.00 0.68
14 0.16 0.34 0.00 0.33 0.00 0.23
15 0.25 0.50 0.04 0.16 0.00 0.03
16 0.49 0.79 0.09 0.09 0.00 0.00
17 0.61 0.87 0.08 0.13 0.04 0.00
18 0.67 0.87 0.24 0.09 0.03 0.00
19 0.68 0.63 0.28 0.06 0.04 0.00
20 0.69 0.32 0.27 0.04 0.01 0.00
21 0.66 0.28 0.22 0.05 0.01 0.00
22 0.68 0.25 0.20 0.06 0.03 0.00
23 0.69 0.20 0.25 0.04 0.01 0.00
24 0.62 0.84 0.21 0.04 0.02 0.00

NOTE: For horizons ranging from one to 24 months, this table presents p-values from
three tests of forecast rationality for the consensus forecasts of GDP growth (columns 1–3)
and inflation (columns 4–6). For each variable, the first column presents the results of a
test for bias in the forecasts; the second column presents the p-values from a joint test that,
for each horizon, h, βh

0 = 0 ∩ βh
1 = 1 in the Mincer–Zarnowitz regression of the realized

value of the target variable on the forecast: yt = βh
0 + βh

1 ŷt|t−h + εt|t−h ; the third column
in each panel presents the p-values from a test for zero mean and zero autocorrelation in
the forecast errors, based on a regression of the forecast error on its corresponding monthly
lag during the previous year (for horizons up to 12 months) or the year prior to that (for
horizons greater than 12 months).

tion, and so it is possible to drop the forecasts that fail one or
more of these tests of rationality and estimate the model only
using the remaining forecasts. In what follows we include all
forecasts in the analysis for simplicity, and proceed to estimate
the parameters of our model under the assumption that forecast-
ers use information efficiently.

The CE survey defines the annual target variable as a rate
of growth in an average of the level of the GDP or CPI series,
rather than as a simple December-on-December change in the
log-levels of these series. We discuss the exact form of the CE
definition in Appendix B. In our analysis, we use the measure
of the target variable published by Consensus Economics in the
year after the measurement period, and in Appendix B we show
that this variable can be represented as a weighted sum of (the
unobserved) monthly changes in the log-level of these series.

3.2 Parameter Estimates and Tests

The simple benchmark model contains just three free para-
meters, namely the variance of the innovations in the tempo-
rary (σ 2

u ) and persistent (σ 2
ε ) components, and the persistence

parameter, φ, for the predictable component. The expressions
for the MSE as a function of h, stated in Proposition 1 for the
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benchmark model and in Equation (12) for the model that al-
lows for measurement error, enable us to use GMM to estimate
the unknown parameters given a panel of forecast errors mea-
sured at various horizons. These parameters are not separately
identifiable if forecasts for a single horizon are all that is avail-
able so access to multi-horizon forecasts is crucial to our analy-
sis. Since the variance of the h-period forecast error grows lin-
early in σ 2

u while σ 2
ε and φ generally affect the MSE in a nonlin-

ear fashion, these parameters can be identified from a sequence
of MSE-values corresponding to different forecast horizons, h,
provided at least three different horizons are available.

Figure 3 plots the RMSE-values for output growth and infla-
tion at the 24 different horizons. (Note that we plot RMSE and
not MSE, for ease of interpretation, and so these plots would
not be linear in the case of φ = 0.) In the case of output growth
the RMSE shrinks from about 1.5% at the 24-month horizon to
1% at the 12-month horizon and 0.3% at the one-month hori-
zon. For inflation it ranges from 0.7% at the two-year horizon to
0.5% at the 12-month horizon and less than 0.06% at the one-
month horizon. Forecast precision improves systematically as
the forecast horizon is reduced, as expected. Moreover, consis-
tent with Proposition 1, the rate at which the RMSE declines is
smaller in the next-year forecasts (h ≥ 12) than in current-year
forecasts (h < 12).

Figure 3. Root mean squared forecast errors (RMSE) for U.S. GDP
growth and Inflation as a function of the forecast horizon, for three
different models. The online version of this figure is in color.

The fitted values from the model without measurement er-
ror (where we impose σ 2

v = λ = 0), also shown in Figure 3,
clearly illustrate the limitation of this specification. This model
assumes that forecasters get a very precise reading of the out-
come towards the end of the current year and hence forces the
fitted estimate of the RMSE to decline sharply at short fore-
cast horizons. This property is clearly at odds with the GDP
growth data and means that the benchmark model without mea-
surement error does not succeed in simultaneously capturing
the behavior of the RMSE at both the short and long horizons.
For inflation forecasts the assumption of zero measurement er-
ror appears broadly consistent with the data. This is consistent
with Croushore and Stark (2001) who report that revisions in
reported GDP figures tend to be larger than those in reported in-
flation figures, and with Giannone, Reichlin, and Small (2008)
who note that “nowcasting” GDP in real time is a difficult statis-
tical task, whereas it is less so for inflation as reliable estimates
of inflation are available at a monthly frequency.

Table 2 presents estimates of the unknown parameters ob-
tained by GMM using the identity weight matrix, efficient
GMM and maximum likelihood. First consider Panel A of Ta-
ble 2 which presents parameter estimates and provides a for-
mal test of the “no noise” model. Unsurprisingly, in view of
Figure 3, this model is strongly rejected for GDP growth, and
it is also rejected for inflation, indicating the need for a small
but nonzero measurement error component. Notice that the esti-
mate of φ is positive for GMM, but negative for efficient GMM.
While this at first seems odd, it can be explained by considering
the structure of the annual target variable and the weights used
in efficient GMM. As shown in Appendix B, the annual target
variable used by Consensus Economics can be expressed as a
weighted sum of monthly changes, which induces a substan-
tial amount of autocorrelation in the annual series, independent
of the value of φ. For example, keeping the other parameters
fixed at their values for GDP growth, the first-order autocorre-
lations in, the annual target variable when φ = −0.9, 0, or 0.9
are 0.15, 0.22, and 0.55. Using the same parameters and the
weighting scheme underlying the annual inflation variable we
obtain first-order autocorrelations of 0.25, 0.25, and 0.57. Thus
apparently large differences in this parameter do not translate
to correspondingly large differences in the predicted behavior
of the target variable.

Panel B of Table 2 presents parameter estimates for the model
extended to allow for iid measurement errors which introduces
an extra parameter, σ 2

υ , reflecting the magnitude of measure-
ment errors. This model passes the specification tests for both
GDP growth and inflation and thus there is little statistical ev-
idence against our simple specification, once measurement er-
rors are considered. Of course, this does not mean that these
simple specifications would be preferred with a longer time se-
ries of data, which might help identify richer dynamics in GDP
growth or inflation. Panel B also reveals that the predictable
component of inflation is more persistent than that in output
growth, according to all three estimation methods.

Finally, we estimate a third model, which allows for an iid
measurement error in the forecasters’ observation of the log-
level of these series, inducing an MA(1) error in their obser-
vation of its growth rate, with MA coefficient of −1. (With a
longer sample of data it is possible to estimate the MA para-
meter freely, allowing the data to decide whether it equals 0,
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Table 2. GMM parameter estimates of the consensus forecast model

GDP growth Inflation

GMM GMMeff MLE GMM GMMeff MLE

Panel A: No measurement error
σ 2

u 0.000 0.000 0.186 0.037 0.000 0.017
(–) (–) (0.081) (0.035) (–) (0.106)

σ 2
ε 0.048 1.759 0.001 0.000 0.4259 0.000

(0.043) (1.249) (0.000) (0.001) (0.132) (0.001)

φ 0.586 −0.853 0.996 0.993 −0.999 0.999
(0.249) (0.185) (0.002) (0.275) (0.383) (0.001)

σ 2
v × 10 0.000 0.000 0.000 0.000 0.000 0.000

(–) (–) (–) (–) (–) (–)

λ 0.000 0.000 0.000 0.000 0.000 0.000
(–) (–) (–) (–) (–) (–)

J p-value 0.000 0.000 (–) 0.000 0.000 (–)
QGMM × 103 36.743 16,504 7630.7 0.032 377.91 41.035
log L −2518.5 −1214.1 −211.3 −244.6 −2621.3 −64.95

Panel B: iid measurement error
σ 2

u 0.000 0.000 0.494 0.035 0.038 1.235
(–) (–) (0.208) (0.011) (0.002) (0.838)

σ 2
ε 0.033 0.029 0.002 0.000 0.000 0.005

(0.041) (0.010) (0.000) (0.001) (0.000) (0.001)

φ 0.663 0.671 0.997 0.974 0.999 0.999
(0.292) (0.077) (0.002) (0.223) (0.105) (0.001)

σ 2
v × 10 0.116 0.142 0.074 0.004 0.004 0.031

(0.117) (0.080) (0.055) (0.012) (0.002) (0.080)

λ 0.000 0.000 0.000 0.000 0.000 0.000
(–) (–) (–) (–) (–) (–)

J p-value 0.698 0.895 (–) 0.990 1.000 (–)
QGMM × 103 13.409 55.396 155,952 0.001 0.015 1,327,033
log L −2417.6 −2416.5 −192.4 −684.26 −110.6 −60.304

Panel C: MA(1) measurement error
σ 2

u 0.000 0.000 0.499 0.026 0.023 0.238
(–) (–) (0.208) (0.011) (0.002) (0.838)

σ 2
ε 0.017 0.471 0.002 0.000 0.001 0.001

(0.033) (0.091) (0.000) (0.002) (0.001) (0.001)

φ 0.771 −0.976 0.996 0.928 0.915 0.999
(0.320) (0.061) (0.002) (0.262) (0.107) (0.001)

σ 2
v × 10 1.421 2.753 0.247 0.158 0.187 16.45

(2.098) (1.807) (0.093) (0.266) (0.036) (0.080)

λ −1.00 −1.00 −1.00 −1.00 −1.00 −1.00
(–) (–) (–) (–) (–) (–)

J p-value 0.000 0.519 (–) 0.981 1.000 (–)
QGMM × 103 29.766 2040.50 170,186 0.001 0.004 45,425
log L −2317.0 −1319.4 −200.4 −1464.8 −1608.4 −57.826

NOTE: The table reports estimates of the parameters of the Kalman filter model fitted to the Consensus Economics forecasts with standard errors in parentheses. Three estimation

methods are considered: GMM using the identity weight matrix, efficient GMM (GMMeff), and maximum likelihood (MLE). The p-values from the J-tests of over-identifying restrictions
for the two GMM estimates are given in the third-last row. The final two rows presents the values of the GMM objective function, with identity weight matrix, and the log-likelihoods,
at the estimated parameters. Panel A presents results when the model is estimated imposing that there is no measurement error (i.e., σ2

v = λ = 0), Panel B presents results when an iid
measurement error (i.e., setting λ = 0) is considered, and Panel C presents results when a MA(1) measurement error is considered, imposing that λ = −1.
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corresponding to iid noise, −1, corresponding to iid noise on
the level, or some other value. In our short sample of data we
found that this parameter was not well identified, and so we
do not attempt to estimate it here.) The parameter estimates for
this model are presented in Panel C of Table 2. For both GDP
growth and inflation, we find quite similar results to the iid er-
ror case presented in Panel B: the MA(1) model is not rejected
using the test of over-identifying restrictions, and the parameter
estimates are similar. Note that the model for inflation is poorly
estimated under ML. From both the value of the GMM objec-
tive function and the log-likelihood, we see that the iid mea-
surement error is preferred for GDP growth, while the MA(1)
error specification is preferred for inflation.

4. CONCLUSION

This paper considered survey forecasts of macroeconomic
variables which hold the “event” date constant, while varying
the length of the forecast horizon. We proposed a simple, par-
simonious unobserved components model and developed tools
for estimation and inference based on simulation methods that
account for the forecasters’ learning problem. Our methods can
be used to estimate the size of measurement errors in the under-
lying variables and the degree of persistence in the data gener-
ating process.

Empirically, our analysis confirms several findings in the ex-
isting literature that were obtained using very different datasets:
(1) Professional forecasters face severe measurement error
problems for GDP growth in real time, while this is much less of
an issue for inflation; (2) inflation exhibits greater persistence,
and thus is predictable at longer horizons, than GDP growth;
and (3) the persistent component of these variables is well ap-
proximated by a low-order autoregressive specification.

APPENDIX A

Proof of Proposition 1

Since zt = ∑11
j=0 yt−j and yt = xt + ut, where xt is the per-

sistent component, forecasting zt given information h months
prior to the end of the measurement period, Ft−h = {xt−h, yt−h,

xt−h−1, yt−h−1, . . .}, requires accounting for the persistence in
x. Note that

xt−h+1 = φxt−h + εt−h+1,

xt−h+2 = φ2xt−h + φεt−h+1 + εt−h+2,

...

xt = φhxt−h +
h−1∑
j=0

φjεt−j.

Adding up these terms we find that, for h ≥ 12,

zt =
11∑

j=0

xt−j +
11∑

j=0

ut−j

= φ(1 − φ12)

1 − φ
xt−12 + 1

1 − φ

11∑
j=0

(1 − φ12−j)εt−12+1+j

+
11∑

j=0

ut−j.

Thus the optimal forecast for h ≥ 12 is

ẑt|t−h ≡ E[zt|Ft−h] =
11∑

j=0

E[yt−j|Ft−h] =
11∑

j=0

φh−jxt−h,

so

ẑt|t−h = φh−11(1 − φ12)

1 − φ
xt−h for h ≥ 12.

For the current-year forecasts (h < 12) the optimal forecast of
zt makes use of those realizations of y that have already been
observed. Thus the optimal forecast is

ẑt|t−h =
11∑

j=0

E[yt−j|Ft−h] =
11∑

j=h

yt−j +
h−1∑
j=0

E[xt−j|Ft−h]

=
11∑

j=h

yt−j +
h−1∑
j=0

φh−jxt−h,

so

ẑt|t−h =
11∑

j=h

yt−j + φ(1 − φh)

1 − φ
xt−h for h < 12.

Using these expressions for the optimal forecasts, we can de-
rive the forecast error, et|t−h ≡ zt − ẑt|t−h, as a function of the
forecast horizon. For h ≥ 12,

et|t−h =
11∑

j=0

ut−j +
11∑

j=0

xt−j − φh−11(1 − φ12)

1 − φ
xt−h

=
11∑

j=0

ut−j +
11∑

j=0

1 − φj+1

1 − φ
εt−j

+
h−1∑
j=12

φj−11(1 − φ12)

1 − φ
εt−j.

In computing the variance of et|t−h we exploit the fact that u
and ε are independent of each other at all lags. For h ≥12,

E
[
e2

t|t−h

] =
11∑

j=0

E[u2
t−j] +

11∑
j=0

(1 − φj+1)2

(1 − φ)2
E[ε2

t−j]

+
h−1∑
j=12

φ2j−22(1 − φ12)2

(1 − φ)2
E[ε2

t−j]

= 12σ 2
u + σ 2

ε

(1 − φ)2

(
12 − 2

φ(1 − φ12)

1 − φ

+ φ2(1 − φ24)

(1 − φ2)

)
+ φ2(1 − φ12)2(1 − φ2h−24)

(1 − φ)3(1 + φ)
σ 2

ε ,

as presented in the proposition. For h < 12 we have

et|t−h =
11∑

j=0

yt−j −
11∑

j=h

yt−j − φ(1 − φh)

1 − φ
xt−h

=
h−1∑
j=0

ut−j +
h−1∑
j=0

1 − φj+1

1 − φ
εt−j,
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so

E
[
e2

t|t−h

] =
h−1∑
j=0

E[u2
t−j] +

h−1∑
j=0

(1 − φj+1)2

(1 − φ)2
E[ε2

t−j]

= hσ 2
u + σ 2

ε

(1 − φ)2

(
h − 2

φ(1 − φh)

1 − φ

+ φ2(1 − φ2h)

1 − φ2

)
.

APPENDIX B: REPRESENTATION OF THE ANNUAL
TARGET VARIABLE

In this appendix we show that the yearly growth rates used by
Consensus Economics (CE) as the target variables for their sur-
veys can be represented as a weighted sum of monthly rates
of growth. When the yearly variable is a simple December-
on-December growth rate this representation is perfect; when
the yearly variable is a growth rate involving averages of the
level of the series within a calendar year (as in CE’s definition)
this representation is only an approximation, but one that is ex-
tremely accurate for realistic parameter values.

Let pt be the level of a series (e.g., inflation or GDP growth)
measured in month t. The CE yearly variables for inflation and
GDP growth are defined as

zINF
t ≡ p̄t

p̄t−12
− 1 and zGDP

t ≡ p̃t

p̃t−12
− 1,

where

p̄t ≡ 1

12

11∑
k=0

pt−k and p̃t ≡ 1

4

3∑
k=0

pt−3k.

We now show that we can represent zINF
t and zGDP

t as weighted
sums of log-differences of pt, yt ≡ log(pt/pt−1). First, take the
inflation definition. We obtain an expression for p̄t as a nonlin-
ear function of the monthly growth rates:

pt−k = pt−24 exp

{
23∑

j=k

yt−j

}
,

p̄t ≡ 1

12

11∑
k=0

pt−k = pt−24
1

12

11∑
k=0

exp

{
23∑

j=k

yt−j

}

= exp

{
23∑

j=12

yt−j

}
pt−24

1

12

11∑
k=0

exp

{
11∑

j=k

yt−j

}
,

and

p̄t−12 = pt−24
1

12

23∑
k=12

exp

{
23∑

j=k

yt−j

}
,

so

p̄t

p̄t−12
= exp{∑23

j=12 yt−j}pt−24(1/12)
∑11

k=0 exp{∑11
j=k yt−j}

pt−24(1/12)
∑23

k=12 exp{∑23
j=k yt−j}

= exp{∑23
j=12 yt−j}∑11

k=0 exp{∑11
j=k yt−j}∑23

k=12 exp{∑23
j=k yt−j}

.

Note that we have not employed any approximations so far.
Next we use the approximation exp{a} ≈ 1 + a when a ≈ 0.
So

zINF
t ≡ p̄t

p̄t−12
− 1 ≈ log

(
p̄t

p̄t−12

)

= log

(exp{∑23
j=12 yt−j}∑11

k=0 exp{∑11
j=k yt−j}∑23

k=12 exp{∑23
j=k yt−j}

)

=
23∑

j=12

yt−j + log

(
11∑

k=0

exp

{
11∑

j=k

yt−j

})

− log

(
23∑

k=12

exp

{
23∑

j=k

yt−j

})

≈
23∑

j=12

yt−j + log

(
11∑

k=0

(
1 +

11∑
j=k

yt−j

))

− log

(
23∑

k=12

(
1 +

23∑
j=k

yt−j

))

=
23∑

j=12

yt−j + log

(
12 +

11∑
k=0

11∑
j=k

yt−j

)

− log

(
12 +

23∑
k=12

23∑
j=k

yt−j

)

=
23∑

j=12

yt−j + log

(
12 +

11∑
k=0

(k + 1)yt−k

)

− log

(
12 +

23∑
k=12

(k − 11)yt−k

)
.

Then we apply this approximation again, to obtain log(12 +
a) ≈ log(12) + a/12 when a ≈ 0. This allows

zINF
t ≈

23∑
j=12

yt−j + log(12) + 1

12

11∑
k=0

(k + 1)yt−k

− log(12) − 1

12

23∑
k=12

(k − 11)yt−k

=
23∑

j=12

yt−j + 1

12

11∑
k=0

(k + 1)yt−k − 1

12

23∑
k=12

(k − 11)yt−k

=
11∑

k=0

k + 1

12
yt−k +

23∑
k=12

23 − k

12
yt−k

≡
23∑

k=0

ωINF
k yt−k,

where

ωINF
k ≡

{
1 − |k − 11|/12, 0 ≤ k < 24

0, k ≥ 24.
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Figure B.1. Weights on monthly growth rates to obtain the annual target variables used by Consensus Economics via analytical approximation
or by OLS estimation. The online version of this figure is in color.

A similar set of computations for the GDP target variable
(details available upon request) yields the following weights:

zGDP
t ≡ p̃t

p̃t−12
− 1 ≈

23∑
k=0

ωGDP
k yt−k,

where

ωGDP
k =

{
1 − |�k/3
 − 3|/4 0 ≤ k < 24

0, k ≥ 24,

and �a
 rounds a down to the nearest integer.
To confirm that the approximations used above are reason-

able in practice, we ran the following simulation study. We
generated 10,000 samples of 24 “months” of log-changes in
the variable, yt. We assume that the monthly growth rates are
iid uniformly distributed in the range [−5%,+5%]. (Note that
this degree of volatility is rather high, which works against
the accuracy of our approximation.) We then computed the ex-
act annual target variable (either inflation or GDP) using each
of these 24 months of log-changes, and labeled this zX

i , for
X ∈ {INF,GDP}. Finally, we compute the R2 of the analyti-
cal approximation for the true annual growth rates, across the
10,000 replications. These R2-values were 0.9950 and 0.9949
respectively.

To compare the analytical weights with the optimal linear ap-
proximation to the annual variable using these monthly growth
rates, we regress the exact annual target variable on the 24
monthly log-growth rates across the 10,000 replications:

zINF
i =

23∑
j=0

βjy
(i)
24−j + ui, i = 1,2, . . . ,10,000,

zGDP
i =

23∑
j=0

γjy
(i)
24−j + ei.

The R2 from these regressions were 0.9951 and 0.9949 respec-
tively. The estimated coefficients, along with the analytical ap-
proximate weights derived above, are presented in Figure B.1.

This figure shows that the analytical approximation is essen-
tially identical to the optimal linear approximation. To see how
volatility in this variable affects the approximation, we also
considered monthly growth rates as distributed in the ranges
[−10%,10%] and [−2.5%,2.5%]. The R2-values both slightly
fell to 0.98 in the first case, and both rose to 0.999 in the second
case.
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