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Technical Appendix
This appendix derives the moments used in the empirical estimation in Section 3. The state and

measurement equations underlying the model from Section 3 are used to show how the forecasters�

updating equations can be solved.

A.1. State and Measurement Equations
Our model involves unobserved variables and can be cast in state space form using notation

similar to that in Hamilton (1994). To account for the way the target variable is constructed,

zt � �11j=0yt�j , the state equation is augmented with eleven lags of yt so the target variable can be

written as a linear combination of the state variable. The state equation is26666666664
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which can be written as

�t = F�t�1 + vt: (2)

The measurement equation involves two variables: the estimate of yt incorporating both common

and idiosyncratic measurement error, and the estimate of yt�1 incorporating just common mea-

surement error. In a minor abuse of notation relative to our discussion of this model in Section 3,

the former is labeled ~y�it and the latter is labeled ~yc;t�1; so they can be stacked into a vector ~yit:
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which is written as

~yit = H
0�t +wit;

To simplify the model, we introduce the measurement error 't�1; distinct from �t but with the

same distribution, so that the vector wit remains serially uncorrelated.
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The various shocks in the state and measurement equations are distributed as:

(ut; "t; �t; 't; �1t; :::; �NT )
0 s iid N
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where diag fag is a square diagonal matrix with the vector a on the main diagonal. Then vt s

iid N (0;Q), with

Q =

26666666664
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And �nally wit s iid N (0;R), with

R =

24 �2� + �2� 0

0 �2�

35 :
Notice that by extending the state variable to include lags of yt, forecasts, nowcasts and backcasts

need not be treated separately. They can all be treated simultaneously as �forecasts�of the state

vector �t: This simpli�es the algebra considerably.

A.2. The Forecasters�Updating Process
Our empirical data provide us with estimates of forecast uncertainty at di¤erent forecast hori-

zons measured both in the form of the root mean squared forecast error (RMSE) of the �average�

or consensus forecast or in the form of the cross-sectional standard deviation of the forecasts (i.e.,

the dispersion). The analysis next characterizes how the forecasters update their beliefs and derives

the model-implied counterparts of these two measures of uncertainty and disagreement.

Let

Fit = �
�
~yit; ~yi;t�1; :::; ~yi1

�
�̂itjt�h � E

�
�tjFijt�h

�
; h � 0;

where the expectation is obtained using standard Kalman �ltering methods.

Forecasters are assumed to have used the Kalman �lter long enough that all updating matrices,

de�ned below, are at their steady-state values. This is done simply to remove any start of sample
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e¤ects that could be present in the data. Following Hamilton (1994):

Pi;t+1jt � E
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�t+1 � �̂i;t+1jt

��
�t+1 � �̂i;t+1jt

�0�
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�
F0�K0

i;t

�
+KitRK

0
it+Q

! P�1: (4)

Note that although the individual forecasters receive di¤erent signals, and thus generate di¤erent

forecasts �̂i;t+1jt; all signals have the same covariance structure and so will converge to the same

matrix, P�1: Similarly,
1

Kit � FPitjt�1
�
Pitjt�1+R

��1 ! K�;

Pitjt � E

��
�t��̂itjt

��
�t��̂itjt
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�1P�1 � P�0: (5)

To estimate the matrices P�1; P
�
0; and K

�; 100 non-overlapping years of data are simulated and

Pitjt�1; Pitjt and Kit are updated using the above equations. These matrices at the end of the

100th year are used as estimates of P�1; P
�
0; and K

�: Multi-step prediction errors use

�̂i;t+hjt = Fh�̂itjt,

so Pi;t+hjt � E

��
�t+h��̂i;t+hjt

��
�t+h��̂i;t+hjt

�0�
(6)

= FhPitjt
�
F0
�h
+

h�1X
j=0

FjQ
�
F0
�j ! P�h, for h � 1:

The matrices P�h for h = 1; 2; :::; 24 are su¢ cient to obtain the term structure of RMSE, (that is, the

RMSE-values across di¤erent horizons, h = 1; ::;H), for an individual forecaster, but the moments

included in the estimation are from the consensus forecasts, and so the RMSE term structure for

the consensus is needed.2 To this end, let

��tjt�h �
1

N

NX
i=1

�̂itjt�h (7)

1The convergence of Pitjt�1; Pitjt and Kit to their steady-state values relies on j�j < 1; see Hamilton (1994),

Proposition 13.1, and this is imposed in the estimation.
2Patton and Timmermann (2010) also consider the behavior of the consensus forecast error but do not analyze

cross-sectional dispersion in forecasts.
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be the consensus forecast of the state vector. Before deriving the term structure of RMSE for this

forecast, it is useful to derive the RMSE of the consensus �nowcast�:

�P�0 � V
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�0�
; (8)

using the assumption that all forecasters receive signals with identical distributions. It is possible

to show that the current nowcast error is the following function of the previous period�s nowcast

error and the intervening innovations:

�t��̂itjt =
�
I�P�1H

�
H0P�1H+R

��1
H0
�
F
�
�t�1��̂i;t�1jt�1

�
+
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�
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�
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��1
wit

� A
�
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�
+Bvt+Cwit; (9)

where vt and wit are de�ned above. This result is used to derive the covariance between nowcast

errors across di¤erent forecasters:

P�0ik � E

��
�t��̂itjt

��
�t��̂ktjt

�0�
(10)

= E
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�
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��
A
�
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�
+Bvt+Cwkt
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��
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��
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�
witw

0
kt

�
C0;

with all other terms in the two nowcast errors having zero covariance. Letting

E
�
witw

0
kt

�
=

24 �2� 0

0 �2�

35 � Rik;
it follows that

P�0ik= AP
�
0ikA

0+BQB0+CRikC
0;
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which exploits the stationarity of the process, and yields an implicit solution for the covariance of

nowcast errors across forecasters, P�0ik:
3 Thus the variance of the error of the consensus nowcast of

the state vector is:

�P�0 � V
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i
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N

P�0ik: (11)

The variance of the consensus forecast of the state vector for h � 1 can be similarly obtained.

Using the following expression for forecast errors as a function of a previous nowcast error and the

intervening innovations
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To evaluate this expression requires knowledge of the covariance between the individual forecast

errors measured at di¤erent horizons:

P�hik � E

��
�t��̂itjt�h

��
�t��̂ktjt�h

�0�

= E

240@Fh ��t�h��i;t�hjt�h�+ h�1X
j=0
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1A0@Fh ��t�h��k;t�hjt�h�+ h�1X
j=0
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��
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�
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, h � 1: (15)

3Like other covariance matrices that appear in more standard Kalman �ltering applications, see Hamilton (1994),

Proposition 13.1 for example, it is not possible to obtain an explicit expression for P�0ik.
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With these moment matrices in place it is simple to obtain the term structure of MSE-values

for the consensus forecast of the target variable. Let ! � [0; �012]0; where �k is a k�1 vector of ones,

so:

V
�
zt � �ztjt�h

�
= V

h
!0
�
�t���tjt�h

�i
= !0�P�h!, for h � 0: (16)

The above expression yields 24 moments (the mean squared errors for the 24 forecast horizons)

that can be used to estimate the parameters of the model governing the dynamics of GDP growth

and in�ation.
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