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Empirical tests of forecast optimality have traditionally been conducted under the assumption of mean squared error loss or some other
known loss function. In this article we establish new testable properties that hold when the forecaster’s loss function is unknown but testable
restrictions can be imposed on the data-generating process, trading off conditions on the data-generating process against conditions on
the loss function. We propose flexible estimation of the forecaster’s loss function in situations where the loss depends not only on the
forecast error, but also on other state variables, such as the level of the target variable. We apply our results to the problem of evaluating the
Federal Reserve’s forecasts of output growth. Forecast optimality is rejected if the Fed’s loss depends only on the forecast error. However,
the empirical findings are consistent with forecast optimality provided that overpredictions of output growth are costlier to the Fed than
underpredictions, particularly during periods of low economic growth.
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1. INTRODUCTION

Forecasts are extensively used to guide the decisions of in-
dividuals, businesses, and macroeconomic policy-makers; thus
what constitutes a “good” or optimal forecast is of great practi-
cal relevance. Indeed, knowledge of the properties of an optimal
forecast has been used, inter alia, in tests of the efficient market
hypothesis in financial markets and in tests of the rationality
of decision makers in various economic applications. Almost
without exception, empirical work has relied on mean squared
error (MSE) loss,

L(Yt+h, Ŷt+h,t) = (Yt+h − Ŷt+h,t)
2, (1)

where L(·) is the loss function, t is the time at which the forecast
is computed, h is the forecast horizon, Yt+h is the predicted vari-
able, and Ŷt+h,t is the forecast based on information available at
time t. Assuming covariance stationarity, under MSE loss, the
optimal forecast and the associated forecast error satisfy a set
of standard conditions (see, e.g., Diebold and Lopez 1996):

1. The optimal forecast of Yt+h is its conditional expectation,
so the forecast is conditionally (and unconditionally) un-
biased.

2. The h-step-ahead forecast error exhibits zero serial co-
variance beyond lag (h − 1).

3. The unconditional variance of the forecast error is a non-
decreasing function of the forecast horizon.

Unfortunately, such properties often do not provide a useful
guide to empirical tests because they do not generally hold un-
der other loss functions (Patton and Timmermann 2006), and
the forecaster’s loss function is unknown in most applications.
This is particularly important because there are often good rea-
sons to believe that loss depends asymmetrically on positive
and negative forecast errors, as has been discussed by, among
others, Granger (1969), Varian (1974), Granger and Newbold
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(1986), Zellner (1986), Weiss (1996), West, Edison, and Cho
(1993), and Christoffersen and Diebold (1997).

As an important case in point, consider the one-quarter-
ahead forecasts of real output [gross domestic product (GDP)]
growth produced by the Board of Governors of the Federal
Reserve—the so-called “Greenbook” forecasts—plotted in Fig-
ure 1 against realizations of annualized real GDP growth over
the period 1968Q4–1999Q4, a total of 125 observations. The
Federal Reserve does not explain how the Greenbook forecasts
are constructed (although these forecasts are known to be based
on judgmental information as well as on formal statistical mod-
els), nor does it publish the loss function used, either explicitly
or implicitly, in constructing the forecasts. However, it is known
that considerable resources are devoted to the production of
these forecasts and that they are used by the Fed in the setting of
monetary policy. Therefore, we should reasonably expect that
these forecasts contain valuable information about future GDP
growth. In fact, due to the sensitivity of these forecasts—and
the information they contain about monetary policy—the Fed
releases them only with a 5-year delay.

Figure 2 plots realized GDP growth against the forecast in
a scatterplot. If the forecasts were optimal under MSE loss,
then it follows from property 1 that they should fall around
the 45-degree line. This property is commonly tested through
a so-called Mincer–Zarnowitz regression of realized values on
a constant and the forecast (Mincer and Zarnowitz 1969), the
implication being that the associated coefficients should be
0 and 1. Ordinary least squares (OLS) parameter estimates (and
standard errors) of this regression were

Yt+1 = 1.253
(.451)

+ .710
(.106)

Ŷt+1,t + ut+1

and

R2 = .218.

Under MSE loss, forecast optimality does not rule out het-
eroscedasticity in the residuals from this regression. The only
implication of optimality is that the forecast errors should fol-
low a martingale difference sequence with respect to the infor-
mation set used by the forecaster. Autocorrelation in the resid-
uals, ut+1, is ruled out, however, because lagged forecast errors
are generally assumed to be part of the forecaster’s information
set. This implication, and other implications, of forecast opti-
mality is not tested in the Mincer–Zarnowitz regression, which
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Figure 1. Real GDP growth (annualized) ( ) and the Federal
Reserve’s “Greenbook” forecasts of real GDP growth ( ) over the
period 1968Q4–1999Q4.

uses information only on the mean and correlation between the
forecast, Ŷt+1,t, and the realization, Yt+1, to test for unbiased-
ness. As such, this regression should be viewed as only a weak
(necessary but not sufficient) test of one implication of forecast
optimality under MSE loss. Even so, a Wald test of the joint
restriction on the intercept and the slope yields a χ2

2 statistic of
8.57 and a p value of .01. All standard errors in this article use
the heteroscedasticity and autocorrelation robust estimator of
Newey and West (1987). The test statistic and p value obtained
when the usual OLS parameter covariance matrix is used are
8.90 and .01. In both cases, we reject the null of forecast opti-
mality under MSE loss at the .05 level.

This strong rejection of optimality is surprising at first sight
given the Fed’s incentives to forecast this variable well and
the considerable resources devoted to its prediction. Keep in
mind, however, that the rejection was predicated on MSE loss,
whereas actually the Federal Reserve’s loss function is un-
known. In fact, as pointed out by Nobay and Peel (2003) and

Figure 2. Realized real GDP growth (◦) against forecast, with
45-degree line ( ) and OLS fitted line ( ).

Capistran (2006), there are strong reasons to assume that the
Fed has asymmetric loss over forecast errors rather than MSE
loss.

These empirical findings point to the need for establishing
tests of forecast optimality that apply when the loss function is
unknown. Toward this end, here we establish new results that
trade-off restrictions on the forecaster’s loss function against
restrictions on the data-generating process (DGP). For exam-
ple, in situations where the conditional higher-order moments
of the predicted variable are constant, we show that although
the optimal forecast may well be biased, optimal h-step-ahead
forecast errors display serial dependence of at most order h−1,
implying that optimal one-step-ahead forecasts generate seri-
ally uncorrelated forecast errors. These results hold irrespective
of the shape of the loss function and offer new ways of testing
forecast optimality that do not require knowledge of the spe-
cific loss function, but do require restrictions on the underlying
DGP. They will be useful in the common situation where the
shape of the loss function is unknown but the restrictions on
the DGP can be tested empirically. We present similar results
that hold when the DGP exhibits heteroscedasticity of a general
unknown form and mild restrictions are imposed on the shape
of the loss function, using a new family of quantile-based tests.
We are not aware of any existing tests of forecast optimality that
are robust to the loss function of the forecaster.

An important restriction required for some of these new re-
sults is that the loss function depends only on the forecast error.
However, it is quite likely that the loss also depends on such fac-
tors as the level of the predicted variable or the value of some
other state variable (cf. Garratt, Lee, Pesaran, and Shin 2003).
For example, it may be particularly costly to overpredict GDP
growth when growth is already very low. In effect, this would
amount to the Fed signaling a false recovery, which could lead
to an overly tight monetary policy at exactly the wrong point in
time. To deal with broader classes of loss functions, we present
a new method to test forecast optimality based on a flexible
model of the loss function, which is then tested using a set of
overidentifying restrictions. Indeed, empirical analysis suggests
that this broader class of loss functions is needed to maintain the
assumption of optimality for the Fed’s forecasts.

The outline of the article is as follows. Section 2 derives
testable properties of optimal forecasts when the loss function
is unknown but testable restrictions can be imposed on the DGP.
Section 3 extends our results to the case where the loss function
does not depend exclusively on the forecast error, Section 4 re-
ports size and power results from a Monte Carlo simulation ex-
periment, and Section 5 concludes. An Appendix presents tech-
nical details and proofs.

2. TESTABLE IMPLICATIONS UNDER
UNKNOWN LOSS

Suppose that a decision maker is interested in forecasting
some univariate time series, Y ≡ {Yt; t = 1,2, . . .}, h steps
ahead given information at time t, Ft. Let Z̃t be a (m × 1)

vector of predictor variables used by the forecaster (e.g., the
Federal Reserve), and let Ft be the σ -field generated by
{(Yt−k, Z̃′

t−k)
′; k ≥ 0}. We denote a generic element of Ft as Zt,

denote the conditional distribution of Yt+h given Ft as Ft+h,t,
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and denote the conditional density as ft+h,t. Point forecasts con-
ditional on Ft, denoted by Ŷt+h,t, belong to Y , a subset of R,
whereas forecast errors are given by et+h,t = Yt+h − Ŷt+h,t. In
general, the objective of the forecast is to minimize the expected
value of some loss function, L(Yt+h, Ŷt+h,t), which is a mapping
from realizations and forecasts to the real line, L : R×Y→ R.
An optimal forecast is thus defined as

Ŷ∗
t+h,t ≡ arg min

ŷ∈Y
E[L(Yt+h, ŷ)|Ft]. (2)

We use Et[·] as shorthand notation for E[·|Ft], the conditional
expectation given Ft. We also define the conditional variance,
Vt[Yt+h] = E[(Yt+h − E[Yt+h|Ft])2|Ft], and the unconditional
equivalents, E[·] and V[·]. Finally, we define μt+h,t ≡ Et[Yt+h]
and σ 2

t+h,t ≡ Vt[Yt+h].
Establishing properties of optimal forecasts that may be

tested when the loss function of the forecaster is unknown re-
quires restrictions on the DGP. We consider DGPs with dynam-
ics in the conditional mean and conditional variance, but no dy-
namics in the remainder of the conditional distribution. These
classes of DGPs are quite broad and include autoregressive
moving average (ARMA) processes and nonlinear regressions,
possibly with dynamics in the conditional variance process.

2.1 Conditional Mean Dynamics Only

First consider the class of DGPs that satisfy the following
conditional homoscedasticity condition:

Assumption D1. The DGP is such that Yt+h = μt+h,t +
εt+h, εt+h|Ft ∼ Fε,h(0, σ 2

ε,h), where Fε,h(0, σ 2
ε,h) is some distri-

bution with mean 0 and variance σ 2
ε,h, which may depend on h

but does not depend on Ft.

The restriction of dynamics only in the conditional mean im-
plies that the innovation term, εt+h, is drawn from some distri-
bution, Fε,h, that generally will depend on the forecast horizon
but is independent of Ft and so is not denoted with a subscript t.

Following the extensive literature in economics and statis-
tics, we concentrate initially on loss functions that satisfy the
following assumption:

Assumption L1. The loss function depends solely on the
forecast error, that is, L(y, ŷ) = L(y − ŷ) = L(e), ∀(y, ŷ) ∈
R ×Y .

Although Assumption L1 rules out certain loss functions,
many common loss functions are of this form, including MSE,
mean absolute error (MAE), lin–lin, and linear-exponential
(linex) loss. Cases in which the loss depends not only on the
size of the forecast error, but also on the level of the predicted
variable are ruled out, however. As we show in Section 3, such
cases arise in economics if the costs of prediction errors are not
the same in recessions and expansions. They also can occur in
meteorology, where underpredictions and overpredictions may
be equally costly under normal weather conditions but may dif-
fer under more extreme conditions. (For example, underpredict-
ing the strength of a hurricane or tornado could be particularly
costly.)

Under these two assumptions, we obtain the following
testable implications of forecast optimality.

Proposition 1. Suppose that the loss is a function solely of
the forecast error (Assumption L1), whereas the DGP has dy-
namics only in the conditional mean (Assumption D1). Then
the following results hold:

a. The optimal forecast takes the form

Ŷ∗
t+h,t = μt+h,t + α∗

h , (3)

where α∗
h is a constant that depends on the distribution Fε,h and

the loss function.
b. The forecast error associated with the optimal forecast,

e∗
t+h,t, is independent of all Zt ∈ Ft. In particular, cov(e∗

t+h,t,

e∗
t+h−j,t−j) = 0 for all j ≥ h and any h > 0.

c. The variance of the forecast error associated with the op-
timal forecast, V(e∗

t+h,t), is nondecreasing in the forecast hori-
zon, h.

All proofs are contained in the Appendix. This proposition
shows that under a testable assumption on the DGP and only
one weak assumption on the loss function, the forecast errors
associated with the optimal forecast are serially uncorrelated at
lags greater than or equal to the forecast horizon for any error-
based loss function. Thus, given a sequence of realizations and
forecasts, {(Yt+h, Ŷt+h,t)}T

t=1, we may test for forecast optimal-
ity without knowledge of the forecaster’s loss function by test-
ing, for example, the serial correlation properties of the forecast
errors. For financial applications, the assumption of constant
higher-order conditional moments is clearly too strong, but in
many economic applications the assumption that all dynamics
are driven by the conditional mean may be reasonable. In these
cases, forecast optimality can be tested with a large degree of
robustness to the loss function of the forecaster, for example,
by testing β = 0 in such regressions as

et+h,t = α + β ′Zt + ut+h. (4)

Note that no estimate of the conditional mean of Yt+h is
needed to conduct this test. This is important because μt+h,t
is generally unknown. This test exploits the result that all vari-
ables known to have been in the forecaster’s information set—
except trivially for a constant—are orthogonal to the forecast
error, which is observable without knowledge of μt+h,t.

We focus on testing for correlation, although, of course, more
generally we could test for complete independence between
et+h,t and any Zt ∈ Ft, or other implications of independence.
For example, rather than using OLS to estimate the parameters
in (4), we could use least absolute deviation or quantile regres-
sion (see Koenker and Bassett 1978).

The last part of the proposition reveals that optimality tests
based on the variance of the forecast error being weakly in-
creasing in the forecast horizon require restrictive assumptions
on either the loss function (namely, that MSE loss applies) or
the DGP (i.e., dynamics in the conditional mean only).

2.2 Conditional Mean and Variance Dynamics

We next provide results for a more general class of con-
ditional scale-location processes that satisfy the following as-
sumption:

Assumption D2. The DGP is such that Yt+h = μt+h,t +
σt+h,tηt+h, ηt+h|Ft ∼ Fη,h(0,1), where Fη,h(0,1) is some dis-
tribution with mean 0 and unit variance that may depend on h,
but does not depend on Ft.
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This class of DGPs is very broad and includes most com-
mon volatility processes, including autoregressive conditional
heteroscedasticity (ARCH) and stochastic volatility (see Engle
1982; Taylor 1982). It nests those of Assumption D1 at the cost
of being more restrictive on the class of loss functions that we
consider herein. Specifically, we assume that the loss function
is homogeneous in the forecast error:

Assumption L2. The loss function is a homogeneous func-
tion solely of the forecast error.

This assumption implies that L(ae) = g(a)L(e) for some pos-
itive function g. Commonly used loss functions, such as MSE,
MAE, lin–lin, and asymmetric quadratic loss, are all of this
form. This requirement is needed to ensure that the units of
the forecast (e.g., cents versus dollars) do not affect the opti-
mal forecast beyond a scale adjustment. Although this holds
for many loss functions encountered in economics and finance,
the requirement does exclude such cases as linear-exponential
loss.

With these two assumptions, we obtain the following testable
implications of forecast optimality.

Proposition 2. Suppose that the loss function is homoge-
neous in the forecast error (Assumption L2), whereas the DGP
can have conditional mean and variance dynamics (Assump-
tion D2). Define the standardized forecast error associated with
the optimal forecast as d∗

t+h,t = e∗
t+h,t/σt+h,t. Then the follow-

ing results hold:

a. The optimal forecast takes the form

Ŷ∗
t+h,t = μt+h,t + σt+h,t · γ ∗

h , (5)

where γ ∗
h is a constant that depends only on the distribution

Fη,h and the loss function.
b. d∗

t+h,t is independent of any element Zt ∈ Ft. In particular,
cov(d∗r

t+h,t,d∗s
t+h−j,t−j) = 0 for all j ≥ h and any h > 0 and all r

and s for which the covariance exists.

Although the forecast error associated with the optimal fore-
cast generally will not be unbiased, serially uncorrelated, or ho-
moscedastic, the forecast error scaled by the conditional stan-
dard deviation will be independent of any Zt ∈ Ft. This implies
that d∗

t+h,t will be serially uncorrelated at lags j ≥ h and ho-
moscedastic. Therefore, forecast optimality could be tested by
estimating nonparametric or flexible parametric models for the
conditional mean and variance,

dt+h,t = α0 + g1(Zt; θ1) + ut+h,

ut+h = σu,t+hvt+h, vt+h ∼ (0,1), (6)

σ 2
u,t+h = ω0 + g2(Zt; θ2).

If g1 and g2 are defined such that g1(z;0) = g2(z;0) = 0 for
all z, then a test of optimality may be obtained by testing
H0 :ω0 = 1 ∩ θ1 = θ2 = 0 so that the conditional mean of dt+h,t

is time-invariant and its conditional variance equals unity.
The foregoing test is easily computed and does not require an

estimate of μt+h,t, although it does require that an estimate of
σ 2

t+h,t be available. Under certain conditions, a consistent es-
timate of this conditional variance can be obtained from the
observed Yt process by either parametric methods [e.g., using

a generalized ARCH (GARCH)-type model] or nonparametric
methods, using a realized volatility estimator (see, e.g., Ander-
sen, Bollerslev, Diebold, and Labys 2001, 2003).

Researchers will not always have a reliable estimate of σ 2
t+h,t

available, and so it would be particularly useful to establish un-
der which conditions an optimality test can be based only on
observables. Suppose that we restrict the first and second mo-
ment dynamics to be linked in a manner consistent with the
widely used “constant coefficient of variation” model:

Assumption D2′. The DGP is such that Yt+h = βσt+h,t +
σt+h,tηt+h, ηt+h|Ft ∼ Fη,h(0,1), where β ∈ R and Fη,h is some
distribution with mean 0 and unit variance that may depend on
h but does not depend on Ft.

This “ARCH-in-mean” model is used extensively in financial
applications, such as when the target variable is returns and ex-
pected returns are proportional to the level of risk as measured
by the conditional standard deviation (see Engle, Lilien, and
Robins 1987). Using this assumption, we obtain the following
result.

Corollary 1. Suppose that the loss function is homoge-
neous in the forecast error (Assumption L2), whereas the
DGP satisfies Assumption D2′ for β �= −γ ∗

h . Define d̂∗
t+h,t ≡

(Yt+h − Ŷ∗
t+h,t)/Ŷ∗

t+h,t. Then d̂∗
t+h,t is independent of any ele-

ment Zt ∈Ft. In particular, cov(d̂∗r
t+h,t, d̂∗s

t+h−j,t−j) = 0 for all
j ≥ h and any h > 0 and all r and s for which the covariance
exists.

Note that the assumption that β �= −γ ∗
h is easily checked; if

it is true, then the optimal forecast is identically zero for all t.
Under the conditions of Corollary 1, we may test forecast op-
timality without specific knowledge of the loss function or any
of the moments of the DGP, by testing that there is no serial
correlation beyond lag h − 1 in d̂t+h,t = (Yt+h − Ŷt+h,t)/Ŷt+h,t,
and/or that the d̂t+h,t series is homoscedastic conditional on any
Zt ∈ Ft. This can be done simply through a regression of pow-
ers of d̂t+h,t on a constant and lags, of order greater than or
equal to h, of various powers of d̂t+h,t, or as in (6).

2.3 Quantile Tests

Under the conditions of Propositions 1 or 2, it is possible to
show that the optimal forecast can be expressed as a conditional
quantile of the variable of interest. The usefulness of this result
lies in the surprising finding that the optimal forecast is the same
quantile at all points in time, though the quantile may change
with the forecast horizon and is typically unknown, because it
depends on the loss function. With such a representation, we
can obtain an alternative test of forecast optimality using tests
of quantile forecasts, eliminating the need to estimate the con-
ditional variance of the variable of interest.

Proposition 3. Suppose that either (a) the loss is a function
solely of the forecast error (Assumption L1), and the DGP has
dynamics only in the conditional mean (Assumption D1), or
(b) the loss function is homogeneous in the forecast error (As-
sumption L2) and the DGP has dynamics in the conditional
mean and variance (Assumption D2). Then the following re-
sults hold:
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a. The optimal forecast is such that, for all t,

Ft+h,t(Ŷ
∗
t+h,t) = q∗

h, (7)

where q∗
h ∈ (0,1) depends only on the distribution Fη,h and

the loss function. If Ft+h,t is continuous and strictly increasing,
then we can alternatively express this as

Ŷ∗
t+h,t = F−1

t+h,t(q
∗
h). (8)

b. Let

I∗
t+h,t ≡ 1(Yt+h ≤ Ŷ∗

t+h,t),

where 1(A) equals 1 if A is true and 0 otherwise. Then I∗
t+h,t is

independent of all Zt ∈ Ft. In particular, I∗
t+h,t − q∗

h is a martin-
gale difference sequence with respect to Ft.

Note how assumptions on the loss function can be traded off
against assumptions on the DGP. This proposition gives rise to a
new test that is applicable even though q∗

h is unknown. The test
simply projects the indicator function on elements in Ft and an
intercept and tests that β = 0,

It+h,t = α + β ′Zt + ut+h. (9)

Alternatively, a logit model could be used to better reflect the
binary nature of the dependent variable, or the likelihood ratio
test of independence of Christoffersen (1998) could be used to
test for serial dependence in It+h,t . If q∗

h is known, then it can
be further tested that α = q∗

h . Even in the common case where
q∗

h is unknown, the key point to note is that the quantile test
does not require knowledge of the true values of either μt+h,t
or σt+h,t. The test also does not require knowledge of the time-
varying conditional distribution, Ft+h,t, which is unknown in
practice. This can be compared with tests based on the probabil-
ity integral transform of the data, Ft+h,t(Yt+h), which should be
uniform(0,1) under the null that the forecasting model is spec-
ified correctly. Such tests can be difficult to implement given
only a sequence of point forecasts, and without knowledge of
the forecaster’s loss function or information set, which gener-
ally is unobservable to the forecast evaluator. Due to this robust-
ness property and the minimal information required for their
implementation, we believe that this new class of quantile tests
of forecast optimality is likely to find widespread use in empir-
ical work.

Of the existing tests of forecast optimality in the literature,
the one that allows for the greatest flexibility with respect to
the loss function is due to Elliott, Komunjer, and Timmermann
(2005). These authors derived tests of forecast optimality when
the loss function is assumed to belong to the two-parameter
family,

L(et+1;α,p) ≡ [α + (1 − 2α)1(et+1 < 0)]|et+1|p, (10)

with a positive exponent p and an asymmetry parameter α,
0 < α < 1. This is very different from the approach proposed
in this section, which does not constrain the loss function to
belong to a prespecified parametric family of loss functions. In
Section 3 we suggest an extension of the approach of Elliott
et al. (2005) for applications where Assumption L1 or L2 does
not hold.

Although Proposition 3 holds quite generally, it of course
only applies to point forecasts. One possible extension of our
work includes establishing results for density forecasting, an

area recently considered by Garratt et al. (2003) and Campbell
and Diebold (2005), although applications of such results to
empirical data will be limited, because currently the vast ma-
jority of published forecasts are point forecasts.

2.4 Nonhomogeneous Loss or Dynamics in
Higher-Order Moments

The foregoing results under unknown loss constitute an ex-
haustive set of testable properties in the following sense. First,
suppose that the loss function is not homogeneous (Assump-
tion L2). Allowing for conditional variance dynamics (as in As-
sumption D2) then makes it difficult to obtain testable implica-
tions of forecast optimality that are robust to the loss function.
Further, when there are dynamics in third-order or higher-order
moments and Assumption D2 fails to hold, it is generally dif-
ficult to obtain easily tested results even if homogeneity is im-
posed on the loss function. To see this, consider the following,
more general DGP:

Assumption D3. The DGP is such that Yt+h = μt+h,t +
σt+h,tηt+h, ηt+h|Ft ∼ Fη,t+h,t(0,1), where Fη,t+h,t(0,1) is
some time-varying distribution, with mean 0 and unit variance,
that depends on Ft and possibly also on h.

This class of DGPs nests those of Assumption D2, because
we allow for a time-varying conditional mean, conditional vari-
ance, and other properties of the distribution (e.g., time-varying
conditional skew or kurtosis). We obtain the following “impos-
sibility” result.

Proposition 4. a. Suppose that the DGP has conditional
mean and variance dynamics (Assumption D2), the loss is
solely a function of the forecast error (Assumption L1), but that
the loss function is not homogeneous in the forecast error (As-
sumption L2 is violated). Then

Ŷ∗
t+h,t = μt+h,t + α∗

t+h,t, (11)

where α∗
t+h,t is a scalar that depends on the loss function, σt+h,t,

and Fη,h.
b. Suppose the loss function is homogeneous in the forecast

error (Assumption L2) and that the DGP has dynamics beyond
the conditional mean and variance (Assumption D3). Then

Ŷ∗
t+h,t = μt+h,t + σt+h,t · γ ∗

t+h,t, (12)

where γ ∗
t+h,t is a scalar that depends on the loss function and

Fη,t+h,t.

Under the conditions for part a or b of the foregoing propo-
sition, the forecast error associated with the optimal loss,
e∗

t+h,t ≡ Yt+h − Ŷ∗
t+h,t; its standardized equivalent, d∗

t+h,t =
e∗

t+h,t/σt+h,t; and the indicator variable, I∗
t+h,t ≡ 1(Yt+h ≤

Ŷ∗
t+h,t), will all generally be correlated with some Zt ∈ Ft in

a way that depends on the unknown loss function. Thus if the
loss function is not homogeneous, or if there are higher-order
dynamics in the DGP, then these objects generally will not be
useful for testing forecast optimality. In these cases it is diffi-
cult to obtain testable restrictions on the forecast error that do
not require knowledge of the shape of the loss function, even if
σt+h,t is known (or, more generally, even if Ft+h,t is known).



Patton and Timmermann: Forecast Optimality Under Unknown Loss 1177

Of course, if the loss function and the DGP are known, opti-
mality properties of the forecast can be derived directly. For ex-
ample, assuming linex loss and a first-order Markov Gaussian
mixture model, Patton and Timmermann (2006) derived the
properties of the optimal forecast and forecast errors.

2.5 Empirical Results

We next return to the Federal Reserve Greenbook forecasts of
output growth to demonstrate the theoretical results. These are
the data shown in Figure 1. These forecasts are all one-quarter-
ahead forecasts, so h = 1.

Our realized values of GDP are taken as the 2006Q1 “vin-
tage” of the real GDP growth figures over the sample period,
obtained from the Federal Reserve Bank of Philadelphia’s web
page. This data were studied in depth by Croushore and Stark
(2001). The data and a detailed description of its construction
are available at http://www.phil.frb.org/econ/forecast/reaindex.
html. In Section 2.5.1 we discuss the results obtained using an
earlier vintage of real GDP growth data and show that they are
similar to those obtained using the most recent vintage.

Under the joint assumption that the Fed’s forecasts are
optimal, its loss is solely a function of the forecast error
(Assumption L1), and there are no dynamics beyond the con-
ditional mean (Assumption D1) of real GDP growth, Propo-
sition 1 shows that the Greenbook forecast errors would
be conditionally homoscedastic. We test for conditional het-
eroscedasticity in the Greenbook forecast errors using Engle’s
(1982) test, which is based on the null that αi = 0 for all i ≥ 1
in the regression,

e2
t+1,t = α0 + α1e2

t,t−1 + · · · + αLe2
t−L+1,t−L + ut+1.

A test with four lags generated a p value of .03, indicating the
presence of conditional heteroscedasticity. This suggests either
that the Fed’s forecasts are suboptimal or that Assumption D1
or L1 is violated.

Testing Assumption D1 directly requires modeling the condi-
tional mean of output growth. We used an ARMA(1,1) model
for the conditional mean, which was found to remove all signif-
icant serial correlation, and then tested for serial correlation in
the squared residuals from this model. The p values from this
test were .65 for lag 1, .09 for lag 4, and .01 for lag 8. These re-
sults indicate the presence of conditional heteroscedasticity and
hence suggest that Assumption D1 is an inappropriate assump-
tion for quarterly output growth.

The previous results suggest that we need to allow for more
general dynamics in the DGP for real GDP growth. For this pur-
pose, we tested Assumption D2 directly on the real GDP growth
series by estimating an ARMA(1,1) model for the conditional
mean and a GARCH(1,1) model for the conditional variance
(cf. Bollerslev 1986). Simple, parsimonious GARCH models
have been shown to work well in numerous other studies of
macroeconomic and financial time series. We tested for serial
correlation in the first four powers of the standardized residu-
als and found no evidence of any serial correlation out to eight
lags, suggesting that Assumption D2 may be an appropriate as-
sumption for this data. We also could have used the generalized
tests of Hong (1999) to test Assumption D2.

To test the joint hypothesis that forecasts are optimal, the
loss function is homogeneous in the forecast error, and the

Table 1. Summary statistics

Forecast
Realization Forecast error

Mean 3.10 2.59 .50
Standard deviation 3.54 2.33 3.20
Skewness −.22 −.41 .08
Kurtosis 4.46 4.03 3.87
Minimum −8.16 −4.70 −7.01
Maximum 15.46 8.50 10.86

Autocorrelation 1 .26∗ .73∗ .01
Autocorrelation 2 .20∗ .55∗ .10
Autocorrelation 3 .08 .45∗ −.02
Autocorrelation 4 .05 .34∗ .07

Jarque–Bera statistic 12.04∗ 9.06∗ 3.53
Jarque–Bera p value .002 .011 .171

NOTE: This table presents basic summary statistics on the realized real GDP growth, the
Federal Reserve’s “Greenbook” forecasts of GDP growth, and the corresponding forecast
errors over the period 1968Q4–1999Q4. The rows labeled “Autocorrelation j” report the
jth-order autocorrelation of the series. Autocorrelations that are significant at the .05 level
are marked with an asterisk. The last two rows present the Jarque–Bera test statistic and
p value (Jarque and Bera 1987), testing the null hypothesis that the forecast errors are
normally distributed.

more general Assumption D2 (which allows for conditional het-
eroscedasticity) holds for our GDP data, we use the result from
Proposition 2 that under these assumptions, the forecast error
associated with the optimal forecast will be of the following
form:

et+1,t = γ1σt+1,t + σt+1,tηt+1,
(13)

ηt+1,t|Ft ∼ Fη,1(0,1).

Under the assumption of Corollary 1, the forecast Ŷt+1,t al-
ready incorporates information on the conditional mean of
Yt+1, and so an independent estimate of μt+1,t is not required
in this test. If we knew σt+1,t then we could construct dt+1,t ≡
et+1,t/σt+1,t, which, under the conditions for Proposition 2,
will be serially uncorrelated, be conditionally homoscedastic,
and have constant conditional higher-order moments. To im-
plement a test, we model the conditional variance as a simple
GARCH(1,1) process, allowing for the GARCH-in-mean ef-
fects implied by Proposition 2. Of course, the possibility re-
mains that this model is misspecified and that this affects our
conclusions. The GARCH-in-mean parameter, γ1, was signifi-
cant (with a p value <.01), presenting further evidence against
the optimality of these forecasts under MSE loss. Simple tests
for serial correlation in the third and fourth powers of the fore-
cast errors standardized by the GARCH estimates of condi-
tional variance revealed no evidence against Assumption D2,
conditional on the forecasts being optimal and Assumption L2
being satisfied.

If we could further assume that Assumption D2′ holds for
real GDP growth, then we could apply Corollary 1 and use the
Greenbook forecasts to standardize the forecast errors. Under
the joint assumption that Assumptions D2′ and L2 hold and
forecasts are optimal, d̂t+1,t = (Yt+1 − Ŷt+1,t)/Ŷt+1,t should be
independent of any element in the forecaster’s information set,
including past (standardized) forecast errors and any transfor-
mation of these. Therefore, we tested for serial correlation in
d̂t+1,t and d̂2

t+1,t. We found no evidence of serial correlation in

http://www.phil.frb.org/econ/forecast/reaindex.html
http://www.phil.frb.org/econ/forecast/reaindex.html
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d̂t+1,t at any lag up to 8, but found significant evidence of serial
correlation in d̂2

t+1,t: The p values from a Ljung–Box test with
four lags was .01, indicating significant serial correlation. This
indicates that the joint hypothesis that Assumption D2′ holds,
loss is homogeneous in the forecast error (Assumption L2), and
the Greenbook forecasts are optimal can be rejected.

Given the plausibility of Assumption D2 for real GDP
growth, and the violation of Assumption D2′, we now use the
test of forecast optimality based on Proposition 3. Rather than
rely on a (possibly misspecified) parametric estimator of the
conditional variance of the real GDP growth series, we imple-
ment the test of forecast optimality under unknown loss using
the indicator variable It+1,t ≡ 1(Yt+1 ≤ Ŷt+1,t). This variable
should be independent of all elements of Ft under the null of
forecast optimality and requires no specification of the mean or
variance. We consider two parsimonious tests of this restriction,
both obtained via OLS regression,

It+1,t = .346
(.071)

+ .036
(.016)

Ŷt+1,t + ut+1

and

It+1,t = .334
(.095)

+ .039
(.015)

Ŷt+1,t + .036
(.108)

It,t−1 + ut+1.

The first regression reveals significant evidence of correlation
between the indicator variable and the forecast; the t statistic
is 2.27, which is significant at the .05 level. In the second regres-
sion, when we include both the lagged indicator variable and the
forecast, we find that the coefficient on the lagged indicator is
not significantly different from 0, whereas the coefficient on the
forecast is significant at the .05 level. A joint test that both co-
efficients are equal to 0 yields a p value of .06, meaning that the
null is not rejected at the .05 level but is rejected at the .10 level.

Because our tests revealed no evidence against Assump-
tion D2, these results constitute evidence against the optimal-
ity of the Greenbook forecasts under any loss function that is
homogeneous in the forecast error. But if the Fed’s loss func-
tion does not satisfy this restriction, then these forecasts may
yet be optimal under a more general loss function. Overall, we
take these regressions and the earlier results as evidence against
the optimality of the Greenbook forecasts under unknown loss
functions that are homogeneous in the forecast error.

2.5.1 Real-Time Data. In addition to the 2006Q1 “vintage”
of real GDP growth figures, we also consider using “real-time”
GDP figures, that is, the figures that historically would have
been available to forecasters at each point in time. Diebold
and Rudebusch (1991) and Croushore and Stark (2001) dis-
cussed the differences between using revised data versus real-
time data. These data take into account the possible effect of
measurement errors on the forecasting performance as mea-
sured historically and use the fact that the Fed may have as its
forecast target the initial release of GDP figures, rather than
the underlying true GDP figures, as proxied by the latest vin-
tage data. Following studies such as those of Romer and Romer
(2000) and Capistran (2006), we use the second revision of the
real GDP growth figures.

The results that we obtain are consistent with those reported
earlier for the final revision. For example, we find evidence

against optimality under MSE loss using these data from the
following regression:

et+1,t = 1.046
(.985)

− .300
(.253)

Ŷt+1,t + .072
(.111)

et,t−1 + ut+1.

Although none of the coefficients in this model are individually
significant at the .05 level, a joint test that all parameters equal
0 yields a χ2

3 statistic (p value) of 8.56 (.04), implying rejection
of this restriction at the .05 level. We also find significant serial
correlation in the real-time forecast errors, indicating either that
Assumptions D1 and L1 do not hold or that the forecasts are
suboptimal. Furthermore, using the real-time data, the indicator
variable regressions yielded

It+1,t = .362
(.067)

+ .027
(.019)

Ŷt+1,t + ut+1

and

It+1,t = .255
(.076)

+ .028
(.019)

Ŷt+1,t + .250
(.087)

It,t−1 + ut+1.

Thus for the real-time data, the coefficient on the forecast is not
significant, whereas the coefficient on the lagged indicator is
now highly significant. The χ2

2 statistic and p value from the
second regression are 10.07 and .01, and so again we strongly
reject optimality in conjunction with Assumptions D2 and L2.

2.5.2 The “Great Moderation.” A factor that may affect
our results is the presence of a structural break in the variance of
U.S. GDP growth, known as the “great moderation,” generally
considered to have occurred around 1984Q1 (see McConnell
and Perez-Quiros 2000; Stock and Watson 2002). Breaks such
as these are widely considered a key source of forecast failure
(cf. Clements and Hendry 1998, 2006). To explore this possi-
bility, we carried out separate tests using data up to 1983Q4
(61 observations) and from 1984Q1 onward (64 observations).
The subsample results were very similar to those obtained from
the full sample; Mincer–Zarnowitz tests of forecast optimality
under MSE loss yielded the following results:

Pre-1984 sample: Yt+1 = .953
(.655)

+ .692
(.118)

Ŷt+1,t + ut+1,

R2 = .225

and

Post-1984 sample: Yt+1 = 1.347
(1.127)

+ .782
(.381)

Ŷt+1,t + ut+1,

R2 = .144.

The χ2
2 statistics (p values) that the intercepts equal 0 and the

slope coefficients equal 1 were 7.19 (.03) in the first subsample
and 7.66 (.02) in the second subsample. Thus optimality under
MSE loss is rejected in both subsamples, as well as in the full
sample.

The quantile-based test for optimality under unknown, ho-
mogeneous loss yielded the following results for the two sub-
samples:

Pre-1984 sample:

It+1,t = .556
(.108)

+ .025
(.020)

Ŷt+1,t − .246
(.127)

It,t−1 + ut+1
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and

Post-1984 sample:

It+1,t = .059
(.171)

+ .085
(.058)

Ŷt+1,t + .288
(.121)

It,t−1 + ut+1.

The χ2
2 statistics (p values) that the both slope coefficients equal

0 in each regression were 6.09 (.05) and 7.41 (.02) in the first
and second subsamples. Again, forecast optimality in conjunc-
tion with Assumptions L2 and D2 is rejected in both subsam-
ples, as in the full sample. The similarity between the results
in the two subsamples and the results from the full data sam-
ple, under both MSE and unknown loss, provides some assur-
ance that a structural break in U.S. GDP growth volatility is not
driving our findings.

3. TESTABLE IMPLICATIONS UNDER GENERAL
DATA–GENERATING PROCESSES

The rejection of optimality for the Greenbook forecasts re-
ported in the previous section is surprising; the null hypothesis
is very general and covers a large class of loss functions. One
might expect that allowing for such a wide range of different
loss functions would erode the power of our tests, particularly
when applied to a sequence of forecasts that we expect ex ante
to be “good,” such as those from the Federal Reserve. As shown
in our simulation study, presented in Section 4, this turns out to
not be the case.

However, it might realistically be the case that the Fed-
eral Reserve’s loss function cannot be assumed to be solely a
function of the forecast error. To a conservative policy maker,
overpredictions of economic growth are likely not only to be
more costly than underpredictions but also to be disproportion-
ately more costly in periods of low growth, because it may
incorrectly signal a recovery from a recession. This in turn is
likely to lead to wrong choices in how monetary policy is set.
This points to a need to consider forecast optimality in sit-
uations where not only the forecast error, but also the level
of the predicted variable matter. For such cases, it is possible
to construct a test based on a flexible parametric estimate of
the first derivative of the loss function with respect to ŷ. The
first-order condition Et[∂L(Yt+h, Ŷ∗

t+h,t)/∂ ŷ] = 0 implies that

E[∂L(Yt+h, Ŷ∗
t+h,t)/∂ ŷ · Zt] = 0 for any Zt ∈ Ft. For notational

simplicity, let

λ(y, ŷ) ≡ ∂L(y, ŷ)

∂ ŷ
. (14)

For example, we may obtain a flexible parametric estimate of
λ(y, ŷ), denoted by λ(y, ŷ; θ), based on a linear spline model. To
see how a linear spline could be used to approximate the func-
tion λ(y, ŷ), assume initially that λ = ∂L(e)/∂e, let (ζ1, . . . , ζK)

be the nodes of the spline, and impose that one of the nodes
is 0. We impose that the spline is continuous, although not nec-
essarily differentiable, except possibly at 0. We could allow dis-
continuities in λ at the cost of introducing more parameters to
estimate.

With just a few nodes, this class of loss functions is very
flexible, nesting both MSE and MAE as special cases, as well
as lin–lin, the symmetric nonconvex loss function of Granger
(1969), and the class of loss functions used by Elliott et al.
(2005). If we further impose that the spline is continuous at 0,

then MSE loss is nested in the interior of the parameter space, at
the cost of the MAE and lin–lin loss functions not being nested.
In this case the resulting estimated loss function is a piecewise
quadratic spline with piecewise linear derivative, λ(e; θ), which
is continuous and differentiable everywhere (except at the K
nodes),

∂λ(e; θ)

∂e
=

{
γ1, for e ≤ ζ1
γi, for ζi−1 < e ≤ ζi, i = 2, . . . ,K
γK+1, for e > ζK ,

(15)

where θ = [γ1, γ2, . . . , γK+1]′. Here λ(e; θ) and L(e; θ) are
constructed from the foregoing specification by imposing that
λ(0; θ) = L(0; θ) = 0 and that both λ(e; θ) and L(e; θ) are con-
tinuous in e. Because λ(e; θ) is identified only up to a multi-
plicative constant, some normalization is needed to identify the
parameters; for example, we could impose that

∑K+1
i=1 γi = 1.

Furthermore, it is important to impose constraints on θ so that
the resulting estimate of λ satisfies the assumptions required for
it to be the first derivative of some valid loss function, for exam-
ple, that the loss function is weakly increasing in the absolute
value of the forecast error.

In applications where we have reason to assume that the loss
from a forecast is solely a function of the forecast error (i.e., As-
sumption L1 is satisfied), the problem simplifies to approximat-
ing the function λ(y − ŷ) = λ(e). In other applications, such a
restriction may not be well-founded, and so no such simplifica-
tion is available. In this case we must use a more flexible spec-
ification to approximate the function λ(y, ŷ) or, equivalently,
λ(e, y). Treating λ(e, y) rather than λ(y, ŷ) makes it simpler to
impose the required conditions on λ. We propose the following
specification, which is structured so that MSE loss is obtained
when all parameters are set equal to 0:

∂λ(e, y; θ)

∂e

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1(y) ≡ �(ϕ01 + ϕ11y − ln K)

for e ≤ ζ1

γi(y) ≡
(

1 −
i−1∑
j=1

γj

)
· �(ϕ0i + ϕ1iy − ln K)

for ζi−1 < e ≤ ζi, i = 2, . . . ,K

γK+1(y) = 1 −
K∑

j=1

γj

for e > ζK,

(16)

where �(x) ≡ (1 + exp(−x))−1 is the logistic transformation.
This specification allows y to affect the slopes of λ, guarantees
that all slopes are weakly positive, and that the sum of the slopes
equals 1. Of course, alternative ways of restricting the γi’s to be
nonnegative are possible by, for example, using a probit instead
of the logistic function or by including additional powers of y
at the cost of having to estimate more parameters. These issues
can be addressed in empirical work by means of a sensitivity
analysis with regard to the assumed form of ∂λ/∂e.

Under standard regularity conditions, the parameter vector of
the approximating function can be estimated through the gener-
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alized method of moments (GMM),

θ̂T ≡ arg min
θ∈�

gT(θ)′WgT(θ),

(17)

gT(θ) ≡ 1

T

T∑
t=1

λ(et+h,t, Ŷt+h,t; θ) · Zt,

where W is a weighting matrix and � is a compact set. A test
of forecast optimality can be obtained from a test of overiden-
tifying restrictions if we ensure that we have more moment re-
strictions, k, than parameters, p,

TgT(θ̂T)′Ŵ∗
T gT(θ̂T) ⇒ χ2

k−p, as T → ∞. (18)

Here Ŵ∗
T is a consistent estimate of the optimal weight matrix

(cf. Newey and McFadden 1994). This test of forecast optimal-
ity does not rely on any restrictions on the DGP other than stan-
dard conditions required for GMM estimators to be consistent
and asymptotically normal. It does, however, rely on the linear
spline being sufficiently flexible to approximate the unknown
loss function. Thus a rejection of forecast optimality may be
due either to a true failure of forecast optimality or to a failure
of the approximation of the forecaster’s loss function.

In contrast to the analysis of Elliott et al. (2005), our tests do
not assume that the loss function belongs to a two-parameter
family, nor do we need to restrict the loss function to depend
only on the forecast error. Indeed, when the latter restriction
holds, we recommend using the quantile-based test presented
in Proposition 3.

3.1 Empirical Results

We now apply the spline-based tests of forecast optimal-
ity to the Greenbook forecasts. As outlined earlier, we use a
quadratic spline for the loss function. Initially, we assume that
the loss function is a function solely of the forecast error. We
use three nodes, [−2,0,2], which correspond to the .17, .44,
and .70 quantiles of the empirical distribution of the forecast
errors. With just three nodes, we require that γi ≥ 0 for all i for
λ to correspond to the first derivative of a valid loss function.
When the number of nodes exceeds three, nonnegative loss and
continuity of the derivatives does not rule out that some of the γi

values associated with the middle segments are negative. How-
ever, the central (adjacent to 0) and outermost segments must
have nonnegative γi values so as not to violate these restric-
tions. In the estimation procedure, we normalize the function
by imposing

∑4
i=1 γi = 1.

As instruments for the moment conditions, we use a constant,
the contemporaneous value of the forecast, and one lag each of
the forecast error, realized GDP growth, and the loss function
derivative, λ(y, ŷ). Thus we have five moment conditions and
three free parameters. The estimated loss function is presented
in Figure 3. This figure reveals that the estimated loss func-
tion is asymmetric, penalizing negative forecast errors (overpre-
dictions) more than positive forecast errors (underpredictions).
The average ratio of the loss from a negative forecast error to a
positive error of the same magnitude [i.e., L(−e)/L(e)] for er-
rors in the empirically relevant range [0,10] is 1.44, with mini-
mum and maximum values of .52 and 2.76.

The test of forecast optimality under the estimated loss func-
tion, obtained by using the two overidentifying moment con-

Figure 3. Estimated loss function of the Federal Reserve for
real GDP growth forecasts, based on a quadratic spline with nodes
[−2,0,2], imposing that the loss function is solely a function of the
forecast error ( ), and MSE loss ( ).

ditions, yields a χ2
2 statistic (p value) of 5.57 (.06). A rejec-

tion of optimality using this test is consistent with the results in
the previous section, which held for all loss functions that are
homogeneous in the forecast error. The spline-based loss func-
tions considered here are generally not homogeneous, and so
they relax that restriction, but they are still constrained to be
functions solely of the forecast error. Nevertheless, the empiri-
cal results are conditional on our choice of a specific number of
nodes (three) used in the spline function.

To test the sensitivity of these results to the assumption of a
logit specification as in (16), we also implemented a probit-type
specification and obtained very similar results. For example, the
p value from the J test for the probit specification of the spline
model was .05, compared with .06 for the logit specification.

Finally, we estimate a more flexible specification of the Fed’s
loss function, allowing the loss function to depend on the fore-
cast and the realization separately, rather than solely through the
forecast error. As discussed earlier, we model λ as a function of
(e, y) rather than (y, ŷ), because it is simpler to impose the re-
quired constraints on the former than on the latter. With three
nodes, this model has a total of six free parameters, namely the
intercept and slope parameters (ϕ01, ϕ02, ϕ03, ϕ11, ϕ12, ϕ13) in
the logistic specification in (16), compared with three in the
simpler case (ϕ01, ϕ02, ϕ03). We used as additional instruments
one extra lag of the forecast error, realized GDP growth, and
the derivative λ(e, ŷ). We plot the estimated loss function in
Figure 4. To show the impact of realized GDP growth on the
loss, we plot the loss as a function of the forecast error when
realized GDP growth is fixed at its unconditional .25, .5, and
.75 quantiles, corresponding to periods of low, average, or high
economic growth. This figure shows that the level of realized
GDP growth has substantial impact on the degree of asymmetry
in the loss function. During periods of high economic growth,
the loss function is approximately symmetric, whereas when re-
alized GDP growth is at a lower level, the asymmetry becomes
more pronounced, and, as in the simpler model, overpredictions
are penalized more heavily than underpredictions. The average
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Figure 4. Estimated loss function of the Federal Reserve for
real GDP growth forecasts, based on quadratic splines with nodes
[−2,0,2]. This model allows the level of GDP growth to also affect the
loss function; the estimated loss function is evaluated for GDP growth
equal to its .25, .5, and .75 quantiles ( , Qy = .25; , Qy = .5;

, Qy = .75) and MSE loss ( ).

ratio of the loss from a negative forecast error to a positive er-
ror of the same magnitude [i.e., L(−e, y)/L(e, y)] for errors in
the range [0,10] and for real GDP growth equal to its .25, .5,
and .75 quantiles is 3.48, 1.97, and 1.26. Thus negative errors
(overpredictions) are more than three times as costly to the Fed
as positive errors (underpredictions) when GDP growth is low,
whereas negative errors are only about 25% more costly than
positive errors when GDP growth is high.

Using the two overidentifying moment conditions to test the
optimality of the Greenbook forecasts based on this more flex-
ible model yields a χ2

2 statistic (p value) of .02 (.99). To check
the robustness of this result, we extended the flexible spline
model to allow not only y, but also y2 to affect the slopes of λ.
We implemented this model using an extra four lags of the fore-
cast errors as additional moment conditions, and found an es-
timated loss function very similar to those shown in Figure 4.
The p value from the J test of the overidentifying restrictions
for this more flexible model was .56, compared with .99 for the
benchmark case.

These large p values imply that we have no evidence against
the optimality of the Fed’s real GDP forecasts under this flexi-
ble loss function. This finding suggests that adequate modeling
of the Fed’s loss function requires allowing both the forecast
and the realization of real GDP growth to enter separately into
the loss function, rather than just through their difference. This
is an important result for future researchers studying the Fed’s
forecast performance and objectives.

Our most flexible estimated loss function is consistent with
a scenario in which the Fed seeks to issue “conservative” esti-
mates of future economic growth; underestimates are penalized
less heavily than overestimates. This conservatism is particu-
larly important when economic growth is moderate or low. Issu-
ing conservative forecasts means that actual economic growth
comes in above the forecast more often than not (actual GDP
growth was greater than the predicted value in 56% of the quar-
ters in our sample), leading to a positive “surprise.”

Sorting on the predictions, ŷ, we found that for the lowest
25% of predicted values, there was a 65% probability that the
actual value is higher than the predicted value. In comparison,
for the top 75% of predicted values, only 45% of the actual val-
ues are above the predicted values. This is again consistent with
the forecaster attempting to avoid overpredicting output growth
in low-growth states of the world (as reflected in a current low
estimate of ŷ).

4. SIMULATION RESULTS

To shed light on the finite-sample properties of the tests con-
sidered so far, we present the results of a small simulation study
tailored to capture properties of our data. Spline models of the
loss function are new to the literature, and GMM estimation is
known to sometimes have problems in finite samples (see Hall
2005); thus a study of these tests in finite samples is of potential
value. We use a simple but representative AR(1)–GARCH(1,1)

model as the DGP for the simulation,

Yt = .5Yt−1 + σtεt, t = 1,2, . . . ,T;
σ 2

t = .1 + .8σ 2
t−1 + .1σ 2

t−1ε
2
t−1; (19)

εt ∼ iid N(0,1).

We consider three sample sizes (T = 100,250, 1,000) and two
loss functions, MSE loss and an asymmetric quadratic loss
function,

L(e;a) =
{

ae2, e > 0
e2, e ≤ 0,

(20)

where we set a = 1.84. Both of these loss functions are homo-
geneous in the forecast error, and so, by Proposition 2, we know
that the optimal one-step-ahead forecast will take the form

Ŷ∗
t+1,t = μt+1,t + σt+1,tγ

∗
1 . (21)

Under MSE loss, we have γ ∗
1 = 0, whereas under asymmetric

quadratic loss, we have γ ∗
1 = .25. To gauge the power of the

tests, we need to construct a forecast that is suboptimal under
all loss functions, not just under MSE or some other given loss
function. One such set of suboptimal forecasts is obtained by
simply adding independent noise to the optimal forecast,

Ŷt+1,t = Ŷ∗
t+1,t + ξεt+1,

(22)
εt+1 ∼ iid N(0,1).

This specification is representative of a number of sources of
suboptimality. For example, the noise could come from includ-
ing irrelevant variables in a prediction model or from random
“judgmental adjustments” of a statistical forecasting model. We
consider five values for the standard deviation of the noise:
ξ = 0, .25, .5, .75, and 1. Of course, the case where ξ = 0 corre-
sponds to the forecast being optimal under MSE or asymmetric
quadratic loss and thus can be used to examine the finite-sample
size of the tests.

We study five tests of forecast optimality. The first test is the
standard Mincer–Zarnowitz (1969) test, based on the regression

Yt+1 = β0 + β1Ŷt+1,t + ut+1,

with the null hypothesis being β0 = 0 ∩ β1 = 1. This test is ap-
propriate for testing optimality under MSE loss but may over-
reject forecasts that are optimal under other loss functions. For
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this test, and the other two regression-based tests, we used the
robust standard errors of Newey and West (1987).

The second test is another test of optimality under MSE loss
but based on the forecast errors, et+1,t ≡ Yt+1 − Ŷt+1,t,

et+1,t = β0 + β1Ŷt+1,t + β2et,t−1 + ut+1.

In this case the null hypothesis is that β0 = β1 = β2 = 0.
The third test is our new test based on the indicator variable
It+1,t ≡ 1(Yt+1 ≤ Ŷt+1,t). This is used to test optimality under
some unknown homogeneous loss function and is based on the
regression

It+1,t = β0 + β1Ŷt+1,t + β2It,t−1 + ut+1.

As shown in Proposition 2, the indicator variable It+1,t should
be independent of all Zt ∈ Ft, although it has unknown mean.
Thus the null hypothesis for this test is that β1 = β2 = 0.

The final two tests are based on spline-based estimation of
the unknown loss function. The first test assumes that L(y, ŷ) =
L(e) and approximates L with a quadratic spline using three
nodes, so there are three free parameters. The nodes used in
the simulation are {M̂edian[et|et < 0], 0, M̂edian[et|et > 0]},
where M̂edian is the sample median. The instruments used in
the moment conditions are a constant, the current value of the
forecast, and the lagged values of the forecast error, the pre-
dicted variable, and the derivative of the loss function, λ (yield-
ing a total of five moment conditions).

The second spline-based test allows L to depend on both y
and ŷ and approximates L with a quadratic spline using three
nodes and the specification given in (16), implying six free pa-
rameters. The nodes used are the same as for the simple spline-
based test. The instruments used in the moment conditions are
a constant, the current value of the forecast, and two lags each
of the forecast error, the predicted variable, and the derivative
of the loss function, λ (yielding a total of eight moments). All
tests are conducted at the .05 level. The results are presented in
Tables 2 and 3. We generated 3,000 replications of each simu-
lation design.

Under MSE loss, all five tests have generally satisfactory
size properties. The rejection frequencies are slightly high for
T = 100, although this is commonly observed in tests based on
robust standard errors. The rejection frequencies improve as the
sample size increases, although the size of the test based on the
flexible spline model (“spline 2”) remains slightly high even for
T = 1,000.

Turning to the relative power of the tests, we find that under
MSE loss the indicator-based test has approximately the same
power as the Mincer–Zarnowitz (MZ) test. This occurs even
though the indicator-based test is designed to detect subopti-
mality under any homogeneous loss function and may reflect, as
noted in Section 1, that the MZ regression tests only a weak im-
plication of forecast optimality. This interpretation is consistent
with the finding that the test based on forecast errors (“e test”)
has better power than both the MZ test and the indicator-based
test, because it uses additional instruments, such as the lagged
forecast error, that can identify serial correlation in the forecast
errors. This effect is also likely to explain the good power of the
two spline tests, which use even more conditioning variables as
instruments.

Table 2. Finite-sample size and power of the tests under MSE loss

Test type

T ξ MZ test e test I test Spline 1 Spline 2

100 0 .11 .12 .09 .09 .11
.25 .23 .39 .24 .70 .70
.5 .76 .92 .76 .91 .91
.75 .98 1.00 .97 .98 .98

1 1.00 1.00 1.00 .99 .99

250 0 .07 .09 .07 .06 .10
.25 .28 .56 .34 .89 .88
.5 .95 .99 .97 1.00 1.00
.75 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00

1,000 0 .06 .06 .06 .06 .09
.25 .66 .97 .80 1.00 1.00
.5 1.00 1.00 1.00 1.00 1.00
.75 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00

NOTE: This table reports the results of a Monte Carlo study of the finite-sample prop-
erties of the tests considered in this article. The DGP is a conditionally Gaussian AR(1)–
GARCH(1,1) process, and the sample sizes considered are denoted by T . When ξ = 0, the
forecast is truly optimal under MSE loss, and as ξ grows, the forecast becomes increasingly
contaminated with noise. The number of replications was 3,000.

Under asymmetric loss, the results are quite different. Un-
surprisingly, the MZ and e tests reject the null hypothesis of
optimality far more frequently than the nominal size. Even with
just 100 observations, the MZ and e test reject the null hypoth-
esis more than 60% of the time. The indicator-based test and
the “spline 1” test both have good size and power properties.
The more flexible spline-based test has poor size properties for
T = 100 and 250 (the empirical rejection frequencies are .45
and .35, compared with the nominal size of .05), and even for
T = 1,000, the size is still large (.17).

Table 3. Finite-sample size and power of the tests under
asymmetric loss

Test type

T ξ MZ test e test I test Spline 1 Spline 2

100 0 .64 .62 .11 .12 .45
.25 .65 .73 .23 .54 .69
.5 .89 .96 .75 .95 .91
.75 .98 1.00 .97 1.00 .98

1 1.00 1.00 1.00 1.00 .99

250 0 .95 .93 .07 .08 .35
.25 .96 .96 .31 .87 .88
.5 .99 1.00 .96 1.00 .99
.75 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00

1,000 0 1.00 1.00 .06 .05 .17
.25 1.00 1.00 .79 1.00 1.00
.5 1.00 1.00 1.00 1.00 1.00
.75 1.00 1.00 1.00 1.00 1.00

1 1.00 1.00 1.00 1.00 1.00

NOTE: This table reports the results of a Monte Carlo study of the finite-sample proper-
ties of the tests considered in this article. The DGP is a conditionally Gaussian AR(1)–
GARCH(1,1) process, and the sample sizes considered are denoted by T. When ξ = 0,
the forecast is truly optimal under “quad–quad” loss, and as ξ grows, the forecast becomes
increasingly contaminated with noise. The number of replications was 3,000.
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Overall, these simulation results indicate that if the true loss
function is MSE, then the MZ test and e test have reasonable
size and power (with the latter test more powerful than the for-
mer) in finite samples. Both tests are slightly oversized when
T ≤ 250. The indicator-based test and the simple spline test
have reasonable properties in finite samples for both MSE and
non-MSE loss. The flexible spline test appears to require large
samples (T ≥ 1,000) before the test’s size is close to its nom-
inal value, and thus rejections obtained using this test must be
interpreted with caution.

With regard to our empirical application, the simulation re-
sults lend support to our interpretation of the reported find-
ings. The reasonable finite-sample size of the regression and
indicator-based tests support our rejection of the joint hypothe-
sis of forecast optimality under conditional mean–variance dy-
namics (Assumption D2) and loss that is homogeneous in the
forecast error (Assumption L2). Similarly, our rejection of the
simple error-based spline model and our failure to reject the
more general spline model that allows loss to depend on both
the forecast error and the level of the outcome variable is not
overturned by the tendency of tests based on the latter to be
oversized.

5. CONCLUSION

Motivated by the surprising rejection of the optimality of the
Fed’s internal forecasts (i.e., the “Greenbook” forecasts) of real
GDP growth under MSE loss, in this article we have proposed
new tests of forecast optimality that are applicable when the
forecaster’s loss function is unknown. Our first set of tests ap-
plies when the loss function is homogeneous in the forecast
error and the variable of interest has dynamics in the condi-
tional mean and variance but constant higher-order moments.
This restriction on the loss function is quite weak, whereas the
necessary restrictions on the DGP can be easily tested. In par-
ticular, we propose a new set of quantile tests that does not re-
quire knowledge of the conditional mean and variance of the
predicted variable, both of which depend on the forecaster’s
(unobserved) information set.

Our second set of tests is based on flexible parametric ap-
proximations to the unknown loss function. We found signifi-
cant evidence against the optimality of the Fed’s forecasts when
the loss function was assumed to be a function solely of the
forecast error, but found no evidence against optimality when
the loss function was allowed to depend on the forecast and the
realization separately. Our estimates of the loss function sug-
gest that the Fed issues “conservative” estimates of economic
growth, with underestimates penalized less heavily than overes-
timates. This conservatism appears to be particularly important
when economic growth is moderate or low. This is consistent
with the Fed viewing overpredictions of economic growth as
being not just more costly than underpredictions, but also dis-
proportionately more costly in times of low growth, perhaps
because such forecasts may incorrectly signal a recovery from
a recession and could result in an overly tight monetary policy
at a critical point in time.

APPENDIX: PROOFS

Proof of Proposition 1

The proof of part a was shown by Granger (1969) and Christoffersen
and Diebold (1997). It is similar to our proof of Proposition 2 herein.

For part b, given the representation result in part a, we know that
the forecast error associated with the optimal forecast is e∗

t+h,t =
Yt+h − Ŷ∗

t+h,t = εt+h −α∗
h , where α∗

h solves minα

∫
L(εt+h −α)dFε,h.

Because α∗
h is constant for fixed h, we have that e∗

t+h,t is independent
of all Zt ∈Ft .

For part c, consider h > 0 and j > 0. Let

Yt+h+j = Et[Yt+h+j] + ηt+h+j, ηt+h+j|Ft ∼ Fε,h+j(0, σ 2
ε,h+j)

and

Yt+h+j = Et+j[Yt+h+j] + εt+h+j, εt+h+j|Ft ∼ Fε,h(0, σ 2
ε,h).

Also let σ 2
ε,h < ∞, and further assume that σ 2

ε,h+j < ∞. Using again

the fact that Ŷ∗
t+h,t = Et[Yt+h]+α∗

h , we have that e∗
t+h+j,t = ηt+h+j −

α∗
h+j and e∗

t+h+j,t+j = εt+h+j − α∗
h , where α∗

h and α∗
h+j are con-

stants. Thus Vt[e∗
t+h+j,t] = Vt[ηt+h+j] = σ 2

ε,h+j and Vt[e∗
t+h+j,t+j] =

σ 2
ε,h, where these moments are independent of t by Assumption D1.

Also note that V[e∗
t+h+j,t] = E[Et[η2

t+h+j]] = σ 2
ε,h+j and, similarly,

V[e∗
t+h+j,t+j] = σ 2

ε,h. Now we seek to show that σ 2
ε,h+j ≥ σ 2

ε,h,

V[e∗
t+h+j,t] = Vt[Yt+h+j − Et[Yt+h+j]]

= Vt
[
εt+h+j + (Et+j[Yt+h+j] − Et[Yt+h+j])

]
= σ 2

ε,h+j + Vt[Et+j[Yt+h+j]]
+ 2 covt

[
εt+h+j,Et+j[Yt+h+j] − Et[Yt+h+j]

]
≥ σ 2

ε,h+j

= V[e∗
t+h,t].

The first equality follows from the equality of the conditional and
unconditional variance of the forecast error under Assumption D1,
the third equality follows from the fact that Et[Yt+h+j] is constant
given Ft , the weak inequality follows from the nonnegativity of
Vt[Et+j[Yt+h+j]] and Et+j[εt+h+j ·φ(Zt+j)] = 0, and the final equality
follows from the fact that Fε,h does not change with t. The cases where
h = 0 and/or j = 0 are trivial. Thus V[e∗

t+h+j,t] ≥ V[e∗
t+h,t] ∀h, j ≥ 0

if V[e∗
t+h+j,t] < ∞. If σ 2

ε,h < ∞ but σ 2
ε,h+j is infinite, then the propo-

sition holds trivially.

Proof of Proposition 2

To prove part a, by homogeneity, we have

Ŷ∗
t+h,t ≡ arg min

ŷ

∫
L(y − ŷ)dFt+h,t(y)

= arg min
ŷ

∫ [
g

(
1

σt+h,t

)]−1
L

(
1

σt+h,t
(y − ŷ)

)
dFt+h,t(y)

= arg min
ŷ

∫
L

(
1

σt+h,t
(y − ŷ)

)
dFt+h,t(y)

= arg min
ŷ

∫
L

(
1

σt+h,t
(μt+h,t + σt+h,tηt+h − ŷ)

)
dFη,h(η).

We represent a forecast as Ŷt+h,t = μt+h,t + σt+h,t · γ̂t+h,t , so that

Ŷ∗
t+h,t = μt+h,t

+ σt+h,t · arg min
γ̂

∫
L

(
1

σt+h,t
(μt+h,t + σt+h,tηt+h

− μt+h,t − σt+h,tγ̂ )

)
dFη,h(η)
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= μt+h,t + σt+h,t · arg min
γ̂

∫
L(ηt+h − γ̂ )dFη,h(η)

= μt+h,t + σt+h,t · γ ∗
h ,

where the last line follows from the fact that Fη,h is time-invariant
under Assumption D2.

The proof of part b follows from noting that d∗
t+h,t = ηt+h − γ ∗

h ,
where γ ∗

h is a constant for fixed h, and, by Assumption D2, ηt+h is
independent of all elements in Ft and has unit variance.

Proof of Corollary 1

Under Assumptions D2′ and L2, we have, from Proposition 2,
that Ŷ∗

t+h,t = σt+h,t(β + γ ∗
h ). Thus d̂∗

t+h,t ≡ e∗
t+h,t/Ŷ∗

t+h,t = (ηt+h −
γ ∗

h )/(β + γ ∗
h ), that is, an affine transformation of ηt+h. The result fol-

lows by noting that ηt+h is independent of all Zt ∈Ft .

Proof of Proposition 3

To prove part a under Assumptions D1 and L1 or D2 and L2, we
know from Propositions 1 and 2 that Y∗

t+h,t = μt+h,t + σt+h,t · γ ∗
h ,

with σt+h,t constant under Assumption D1, where γ ∗
h depends only on

the loss function and Fη,h. Now note that Ft+h,t(Ŷ
∗
t+h,t) ≡ Pr[Yt+h ≤

Ŷ∗
t+h,t|Ft] = Pr[μt+h,t + σt+h,tηt+h ≤ μt+h,t + σt+h,t · γ ∗

h |Ft] =
Pr[ηt+h ≤ γ ∗

h |Ft], which is constant under Assumption D2. If we de-

note q∗
h ≡ Pr[ηt+h ≤ γ ∗

h |Ft], then Ŷ∗
t+h,t is the q∗

h conditional quantile
of Yt+h|Ft ∀t. Note that q∗

h is a function only of the loss function and
Fη,h.

To prove part b, because I∗t+h,t is a binary random variable and

Pr[I∗t+h,t = 1|Ft] = Pr[Yt+h ≤ Ŷ∗
t+h,t|Ft] = q∗

h ∀t, we thus have that
I∗t+h,t is independent of all Zt ∈Ft .

Proof of Proposition 4

To prove part a, following the steps in the proof of Proposition 2,
we find that

Ŷ∗
t+h,t = μt+h,t + arg min

α̂

∫
L(σt+h,t(ηt+h − α̂))dFη,h(η)

≡ μt+h,t + α∗
t+h,t,

where α∗
t+h,t depends on the loss function, L; the conditional standard

deviation of Yt+h, σt+h,t; and the distribution of the innovation, Fη,h.
For part b, similarly,

Ŷ∗
t+h,t = μt+h,t + σt+h,t · arg min

γ̂

∫
L(ηt+h − γ̂ )dFη,t+h,t(η)

≡ μt+h,t + σt+h,t · γ ∗
t+h,t.

Thus γ ∗
t+h,t will be a function of the loss function and Fη,t+h,t , with

the latter depending on time-varying properties of the conditional dis-
tribution of Yt+h|Ft beyond the conditional mean and variance.

[Received April 2006. Revised August 2006.]
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