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Testing rationality and market efficiencyTesting rationality and market efficiency

Tests of market efficiency and investor rationalityTests of market efficiency and investor rationality 
are usually done by testing properties of forecast 
errors

Relating to the efficient markets hypothesis: Cargill 
and Meyer (JF, 1980), De Bondt and Bange (JFQA, 
1992), Mishkin (AER, 1981), inter alia.), ( , ),

Relating to rationality of decision-makers: Brown and 
Maital (EMA, 1981), Figlewski and Watchel (REStat, 
1981) K d R kl (AER 1990) L k i h k1981), Keane and Runkle (AER, 1990), Lakonishok 
(JF, 1980), inter alia.

All f th d l
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All of these papers assume squared error loss:
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All of these papers rely on properties of optimal 
forecasts derived assuming squared error loss:



The standard set-upThe standard set up

The standard results on optimal forecasts wereThe standard results on optimal forecasts were 
derived under the assumption that:
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Standard properties of optimal forecastsStandard properties of optimal forecasts

The properties of optimal forecasts in the standardThe properties of optimal forecasts in the standard 
set-up are:

1. Optimal forecasts are unbiased 

2. Optimal h-step forecast errors are serially 
correlated only to lag (h-1)

So 1-step forecasts are have zero serial correlationSo 1-step forecasts are have zero serial correlation

3. Optimal unconditional forecast error variance is an 
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p
increasing function of the forecast horizon



Is MSE the right loss function?Is MSE the right loss function?

The assumption of MSE loss in economics has beenThe assumption of MSE loss in economics has been 
questioned in the (mostly) recent literature:

G (1969) G d N b ld (1986) W tGranger (1969), Granger and Newbold (1986), West, 
Edison and Cho (1996), Granger and Pesaran (2000), 
Pesaran and Skouas (2001).

For example: financial analysts’ forecasts have been 
found to be biased upwards

A result of analyst irrationality, or simply that the 
analyst is penalised more heavily for under-predictions 
h d ?
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than over-predictions?



What we do in this paperWhat we do in this paper

We extend the work of Christoffersen and DieboldWe extend the work of Christoffersen and Diebold 
(1997) and Granger (1969, 1999) to analytically 
consider the time series properties of optimal 
forecasts under asymmetric loss and nonlinear 
DGPs.

We show that all the standard properties may be 
violated in quite reasonable situations

Thus the previous work on market efficiency and 
investor rationality may be disregarded if you do not 
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believe in MSE loss



What we do in this paper (cont’d)What we do in this paper (cont d)

We provide some general results on properties ofWe provide some general results on properties of 
optimal forecasts when the loss function is known, 
which may then be used in testing rationality

We also provide some testable implications of 
forecast optimality that hold without knowledge of p y g
the forecaster’s loss function

Finally we introduce a change of measure from theFinally, we introduce a change of measure, from the 
objective to the “MSE-loss probability measure”, 
under which the optimal forecast has the same 
properties as under MSE loss
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properties as under MSE loss.



Notation and some assumptionsNotation and some assumptions
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Properties in non-standard situationsProperties in non standard situations

1 Forecast error has zero conditional mean1. Forecast error has zero conditional mean

Granger (1969) and Christoffersen and Diebold (1997) 
showed that bias may be optimal under asym lossy p y

2. The optimal h - step forecast error exhibits zero 
serial correlation beyond the (h - 1)th lag.

Right idea, but wrong object: standard forecast error 
is not (generally) the variable with zero serial correl.

3 U diti l f t i i3. Unconditional forecast error variance is      
increasing  in h.

Variance is not (generally) right measure of forecast
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Variance is not (generally) right measure of forecast 
accuracy



A counter-exampleA counter example

We now present a realistic situation where all theWe now present a realistic situation where all the 
standard properties of optimal forecasts and 
forecast errors break down.

Our results are all analytical. We assume that the 
agent knows his loss function and the DGPagent knows his loss function, and the DGP 
(including the parameters of the DGP)
→ This agent is as optimal as can possibly be…g p p y

We will define the loss function and DGP as follows:
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Counter-example: loss functionCounter example: loss function

For tractability, we focus on the linear-exponential y, p
loss function of Varian (1975)
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Counter-example: DGPCounter example: DGP

We consider a regime switching process popular inWe consider a regime switching process, popular in 
both macroeconomics and finance
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Counter-example: DGPCounter example: DGP

For presentation purposes I will focus on aFor presentation purposes, I will focus on a 
particular case of the RS model:
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1 First property: Bias1. First property: Bias

Optimal h step forecast in this special case is:Optimal h - step forecast in this special case is:
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1 Bias (cont’d)1. Bias (cont d)
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2 Second property: Serial correlation2. Second property: Serial correlation

The jth order serial correlation for the h step

1

The jth-order serial correlation for the h – step 
forecast is given by:

[ ] { } ( )( )λππιπλσπ h
j

hjtjhttht

j

P
a

jeeCov

as0

'''101', 2*
,

*
,

∞→→

−⊗+==−−++

( )φλ h
h Pwhere

j
log 

as0                              
=

∞→→

Notice that the only break-point is at j=0 ⇒ serial 
correlation for j > h-1 may also be non-zero…
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correlation for j > h 1 may also be non zero…



2 Serial correlation (cont’d)2. Serial correlation (cont d)
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2 Serial correlation (cont’d)2. Serial correlation (cont d)

This is the shape that we would expect from standard results:
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2 Serial correlation - intuition2. Serial correlation intuition

Some intuition for this result may be gleaned from aSome intuition for this result may be gleaned from a 
result of Christoffersen and Diebold, who show that:
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t,ht αYEŶ +++ +=

tht ,+α p y y g
moments of order higher than 1

tht ,+

If          exihibits persistence, via its dependence on 
persistent second moments for example, then the 
forecast error may also exhibit persistence, ie serial 

tht ,+α

21

y p ,
correlation.



3 Third property: Forecast error variance3. Third property: Forecast error variance

The conditional forecast error variance can beThe conditional forecast error variance can be 
increasing or decreasing in h under MSE loss –
GARCH is a common example here

We instead focus on unconditional forecast error 
variance as a function of h which is non decreasingvariance as a function of h, which is non-decreasing 
for MSE loss. In the RS example it is:
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3 Forecast error variance (cont’d)3. Forecast error variance (cont d)
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3 Forecast error variance - intuition3. Forecast error variance intuition

The main intuition here is that in general forecastThe main intuition here is that, in general, forecast 
error variance is not the right way to measure how 
difficult it is to forecast

Given some loss function L, the right way to 
measure forecast accuracy is expected lossmeasure forecast accuracy is expected loss

It happens that under MSE loss forecast errorIt happens that under MSE loss forecast error 
variance and expected loss coincide:
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Expected forecast error loss and 
variance under MSE lossvariance under MSE loss

Under MSE loss:Under MSE loss:
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And so it happens that here expected loss and error 
variance coincide. In general this is not the case.
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A recapA recap

What we’ve shown up to this point:What we ve shown up to this point:

1. Optimal forecast errors may have non-zero mean1. Optimal forecast errors may have non zero mean

2. Optimal forecast errors may be serially correlatedp y y

3. The forecast error variance may decrease with the 
f t h iforecast horizon

But where are these “violations” coming from?

26

But where are these violations  coming from?



Causes of the violationsCauses of the violations

Our counter example involves both:Our counter-example involves both:
an asymmetric loss function, and 
a non-linear DGP

Earlier, we showed that the usual results hold under: 
Squared error loss, and 
any stationary DGP

What about the case of: 
asymmetric loss and 
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asy et c oss a d
a simple DGP, such as an ARMA?



Asymmetric loss and DGP with      
mean-only dynamicsmean only dynamics

Let [ ] DΩ|εεΩYEY +Let
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,
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and

1 Optimal forcast is biased (bias is only a function of h1. Optimal forcast is biased (bias is only a function of h, 
see Christoffersen and Diebold, 1997)

2. The h - step forecast error has MA(h-1) ACF*
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3. The forecast error variance is weakly increasing in h
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h - step forecast error has MA(h-1) ACFh step forecast error has MA(h 1) ACF
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InterpretationInterpretation

This shows that the serial correlation properties areThis shows that the serial correlation properties are 
robust to the loss function under restrictions on the 
DGP

This implies that if we can assume that there are 
only conditional mean dynamics, we can test for 
forecast optimality without any knowledge of theforecast optimality without any knowledge of the 
forecaster’s loss function.  This extends existing 
literature: 

1. Assume MSE, allow arbitrary DGP

2. Elliott et al. (2002): assume loss function up to 
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Error variance is weakly increasing in hError variance is weakly increasing in h

Proof:Proof:
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Error variance is weakly increasing in hError variance is weakly increasing in h
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Some intuitionSome intuition

What’s behind the results violating standardWhat s behind the results violating standard 
properties?

A i h f h l f i d MSE→ A mis-match of the loss function and MSE
→ Dynamics in the process beyond the mean

The standard results all follow from the use of the 
squared error as the loss function, and when a 
different loss is employed we find “violations”different loss is employed we find violations

So what are the properties optimal forecasts in 
l i i ?
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general situations?



The “generalised forecast error”The generalised forecast error

Granger (1999) proposes looking at a generalisedGranger (1999) proposes looking at a generalised 
forecast error. We modify his definition slightly.

The generalised forecast error comes out of the 
first-order condition for forecast optimality:
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The generalised forecast errorThe generalised forecast error

A natural alternative to the standard forecast errorA natural alternative to the standard forecast error 
is thus:
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Properties of optimal forecast errors 
under general conditionsunder general conditions

By using the generalised forecast error and theBy using the generalised forecast error and the 
arbitrary loss function L we can provide properties 
of optimal forecasts more generally:

1. .[ ] [ ] 0== ++
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2. The generalised forecast error from an optimal      
h – step forecast has the same ACF as some    p
MA(h – 1) process.

3 U diti l t d l i d i i h
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3. Unconditional expected loss is non-decreasing in h.



1 Mean of generalised forecast error1. Mean of generalised forecast error

By the first order condition for an optimal forecastBy the first-order condition for an optimal forecast 
we have:
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2 Serial correlation2. Serial correlation

Instead of referring to an MA(h – 1) process, we 
show that the generalised forecast errors are 
uncorrelated for lags >h 1 ie it has the same ACFuncorrelated for lags >h-1, ie, it has the same ACF 
as some MA(h-1) process.
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3 Expected loss3.  Expected loss

The unconditional expected loss from an optimalThe unconditional expected loss from an optimal 
forecast is non-decreasing in the forecast horizon.
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Properties under a different measureProperties under a different measure

Here we propose retaining the object of interestHere we propose retaining the object of interest, 
but changing its probability distribution

This is akin to moving from the objective to the risk-
neutral measure in asset pricing.

After a change of measure, assets may be priced as g , y p
though agents are risk neutral

Following our change of measure the optimalFollowing our change of measure, the optimal 
forecast errors have the same properties as under 
MSE loss

So bias and serial correlation may be tested for

43

So bias and serial correlation may be tested, for 
example



A change of measure - assumptionsA change of measure assumptions

Suppose:Suppose:
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A change of measure - formulaA change of measure formula

Notice that:Notice that:
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eŶY
t,ht

*
e

t,ht

t,ht

t,ht

46

⎥
⎦

⎢
⎣ ∂+ ŷe
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Change of measure - validityChange of measure validity

Must show that the new measure is a validMust show that the new measure is a valid 
probability measure.

By assumption
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So the denominator is negative, and numerator is 
weakly negative, thus entire expression is weakly
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weakly negative, thus entire expression is weakly 
positive

B t ti it i t t t 1 it i lid df
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By construction it integrates to 1, so it is a valid pdf.



Mean under MSE-loss measureMean under MSE loss measure

Proposition: Under the MSE-loss probability measureProposition: Under the MSE-loss probability measure 
the optimal forecast error has conditional mean 
zero.

Proof:
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Serial correl under MSE-loss measureSerial correl under MSE loss measure

Proposition: The optimal h step forecast error has zeroProposition: The optimal h-step forecast error has zero 
serial correlation beyond lag h –1.

Proof:
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Objective and MSE-loss error densitiesObjective and MSE loss error densities
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Summary of Results: ImplicationsSummary of Results: Implications

Tests of forecast optimality/forecaster rationalityTests of forecast optimality/forecaster rationality 
that are based on the standard forecast errors 
(generally) implicitly assume MSE loss

If the forecast user/provider has a different loss 
function the forecasts may be perfectly optimal andfunction, the forecasts may be perfectly optimal and 
still violate standard properties

Our results simply show that without some 
knowledge of the forecaster’s loss function testing 
f t ti lit i t l diffi lt t k
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forecast optimality is an extremely difficult task



Summary: Testing optimalitySummary: Testing optimality

If the forecaster’s loss function is known the results inIf the forecaster s loss function is known, the results in 
this paper may be used to construct tests of forecast 
optimality

C b l h h f b ldCombine our results with the tests of Diebold-Mariano 
(1995) or West (1996)

If the fo e aste ’s loss f n tion is kno n p to anIf the forecaster’s loss function is known up to an 
unknown parameter, the work of Elliott, Komunjer and 
Timmermann (2002) may be used instead

If the DGP is known to only have conditional mean 
dynamics we showed that forecast optimality may be 
t t d ith h b t t th k l
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tested with much robustness to the unknown loss 
function.


