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Testing rationality and market efficiency

= Tests of market efficiency and investor rationality
are usually done by testing properties of forecast
errors



Testing rationality and market efficiency

= Tests of market efficiency and investor rationality
are usually done by testing properties of forecast
errors:

= Relating to the efficient markets hypothesis. Carqill
and Meyer (JF, 1980), De Bondt and Bange (JFQA,
1992), Mishkin (AER, 1981), /nter alia.

= Relating to rationality of decision-makers. Brown and
Maital (EMA, 1981), Figlewski and Watchel (REStat,
1981), Keane and Runkle (AER, 1990), Lakonishok
(JF, 1980), /nter alia.

= All of these papers rely on properties of optimal
forecasts derived assuming squared error loss:



The standard set-up

= The standard results on optimal forecasts were
derived under the assumption that:
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Standard properties of optimal forecasts

= The properties of optimal forecasts in the standard
set-up are:

1. Optimal forecasts are unbiased

2. Optimal h-step forecast errors are serially
correlated only to lag (h-1)

= So 1-step forecasts are have zero serial correlation

3. Optimal unconditional forecast error variance is an
Increasing function of the forecast horizon



Is MSE the right loss function?

= The assumption of MSE loss in economics has been
guestioned in the (mostly) recent literature:

= Granger (1969), Granger and Newbold (1986), West,
Edison and Cho (1996), Granger and Pesaran (2000),
Pesaran and Skouas (2001).

= For example: financial analysts’ forecasts have been
found to be biased upwards

= A result of analyst irrationality, or simply that the
analyst is penalised more heavily for under-predictions
than over-predictions?



What we do In this paper

= We extend the work of Christoffersen and Diebold
(1997) and Granger (1969, 1999) to analytically
consider the time series properties of optimal
forecasts under asymmetric loss and nonlinear
DGPs.

= We show that all the standard properties may be
violated in quite reasonable situations

= Thus the previous work on market efficiency and
Investor rationality may be disregarded if you do not
believe in MSE loss



What we do in this paper (cont'd)

= We provide some general results on properties of
optimal forecasts when the loss function is known,
which may then be used in testing rationality

= We also provide some testable implications of
forecast optimality that hold without knowledge of
the forecaster’s loss function

= Finally, we introduce a change of measure, from the
objective to the “MSE-loss probability measure”,
under which the optimal forecast has the same
properties as under MSE loss.



Notation and some assumptions

Y., the scalar random variable to be forecast
a forecast made at time ¢

the optimal forecast made at time ¢

L=L\Y,,, AHM) the loss function

Cons =Y — )A’H .. theforecast error

Q, time ¢ information set o O'(K_ 5J2 O)
Y, =argmin E|L(Y,,, )@, ]

y



Properties in non-standard situations

1. Forecast error has zero conditional mean

= Granger (1969) and Christoffersen and Diebold (1997)
showed that bias may be optimal under asym loss

2. The optimal /7 - step forecast error exhibits zero
serial correlation beyond the (/- 1)t lag.

= Right idea, but wrong object: stanadard forecast error
IS not (generally) the variable with zero serial correl.

3. Unconditional forecast error variance Is
Increasing in A.

= lariance is not (generally) right measure of forecast

accuracy
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A counter-example

= We now present a realistic situation where all the
standard properties of optimal forecasts and
forecast errors break down.

= Qur results are all analytical. We assume that the
agent knows his loss function, and the DGP
(including the parameters of the DGP)

— This agent is as optimal as can possibly be...

= We will define the loss function and DGP as follows:
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Counter-example: loss function

= For tractability, we focus on the linear-exponential
loss function of Varian (1975)

L(Yt+h ’ At+h,z ) a) = CXp {a (Yt+h o YAt—f-h,t )}_ a(Yt+h o i}Hh,t )_ 1

= eXp{aeHh,t }_ A€ p, — 1

— — MSE loss

— Linex loss

)3 2 1 0 1 > 3
forecast error



Counter-example: DGP

= \We consider a regime switching process, popular in
both macroeconomics and finance

Yt+1 — u + GSt+1Vt+1’ Vt+1 ~ lld N(Oal)
S,,, ={L2,....k}
Pr[S,,, =j|S, =i]=P

t+1 1,]]
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Counter-example: DGP

= For presentation purposes, | will focus on a
particular case of the RS model:

Y, =u+0, V., V., ~IiidN(0,])
p#=0
o =[0.5,2]
0.95 0.05]
p=
0.10 0.90
2 1]
T=|—,—
1373




1. First property: Bias

= Optimal /- step forecast in this special case is:
7 % 1 A
Y, = ,u+—log(7z/ Ph(p)

a

t+h,t s, |t

Q= exp{O.Sazaz}
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1. First property: Bias

= Optimal /- step forecast in this special case is:

7% 1

Y= ﬂ+—log( 2 Plo)

Q= exp{O.Sa o }

= which implies conditional and unconditional bias of:

E [ Hht] —log( Ph(p)

[ t+ht] —Zf'log(Phgp)

— —llog(f'go)as h — ©
a
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1. Bias (cont'd)

-0.85

Bias
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-1.25

Optimal bias for various forecast horizons
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Horizon
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2. Second property: Serial correlation

= The j"-order serial correlation for the /7 — step
forecast is given by:

Corlel vy Jo A =014~ 2, (7o) 0P - 72,

—>0asj—o>»®
where A, = log(Ph ¢)

= Notice that the only break-point is at j=0 = serial
correlation for y > /-1 may also be non-zero...
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2. Serial correlation (cont’d)

Optimal forecast error autocorrelation function for various forecast horizons

025 I T T
-- h=1
« -— h=2
| —- h=3
-8~ h=5
Serial 0.15 i
correlation A
01 r i
0.05 S < 1
= = = :-.-:=:=_¢§:=:=;=:~»§
C 1 1 - = “\—E-i
0 5 10 15 20
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2. Serial correlation (cont’d)

This is the shape that we would expect from standard results:

Ptete

Serial
correlation

)]
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2. Serial correlation - intuition

= Some Intuition for this result may be gleaned from a
result of Christoffersen and Diebold, who show that:

Nk

Yt+h,t — Et [Yt+h ] + OLt+h,t

where &,,,, depends on/y on the time-varying
moments of order higher than 1

= If &, exihibits persistence, via its dependence on
persistent second moments for example, then the
forecast error may also exhibit persistence, ie serial

correlation.
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3. Third property: Forecast error variance

= The conditional forecast error variance can be
Increasing or decreasing in 2 under MSE loss —
GARCH is a common example here

= We instead focus on wrnconditional forecast error
variance as a function of A, which is non-decreasing
for MSE loss. In the RS example it is:

Ve, |=7c>+ l/l'h (z')®I-77')A,
a

t+h,t

—>7?'0'2:V[Y ]ash—>oo

t+h,t
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3. Forecast error variance (cont’d)

Optimal forecast error variance for various forecast horizons
2.1

Variance

1.4

Horizon



3. Forecast error variance - intuition

= The main intuition here is that, in general, forecast
error variance is not the right way to measure how
difficult it is to forecast

= Glven some loss function L, the right way to
measure forecast accuracy Is expected /0ss

= |t happens that under MSE loss forecast error
variance and expected loss coincide:
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Expected forecast error loss and
variance under MSE loss

= Under MSE loss:

(t+h9 t+ht) (t+h t+ht)z_et+ht
E[L( t+h9 t+ht)] t+ht] V[ t-l—ht]

= And so it happens that here expected loss and error
variance coincide. In general this is not the case.
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A recap

=  What we’ve shown up to this point:
1. Optimal forecast errors may have non-zero mean
2. Optimal forecast errors may be serially correlated

3. The forecast error variance may decrease with the
forecast horizon

= But where are these “violations” coming from?
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Causes of the violations

= Qur counter-example involves both:
= an asymmetric loss function, and
= a non-linear DGP

= Earlier, we showed that the usual results hold under:
= Sqguared error loss, and
= any stationary DGP

= What about the case of:
= asymmetric loss and
= g simple DGP, such as an ARMA?
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Asymmetric loss and DGP with
mean-only dynamics

" let Y., = E[Yt+h‘Qt]+8 €.nl £ ~ Dy

t+h °
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Asymmetric loss and DGP with
mean-only dynamics

" let Y., = E[Yt+h‘Qt]+8t+h , 8yl 2~ Dy,

= Let L(Yt+h ) YAt+h,t ): L(YHh - YAHhJ ): L(ef”’af)
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Asymmetric loss and DGP with
mean-only dynamics

" let Y., = E[Yt+h‘Qt]+8 €.nl £ ~ Dy

t+h °

" Let L(Yt+h ) YAz+h,t ): L(Y - YAHhJ ): L(e”h”f)

t+h

Then: fftjhz =E[Y,,|+a,

and

1. Optimal forcast is biased (bias is only a function of A,
see Christoffersen and Diebold, 1997)
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Asymmetric loss and DGP with
mean-only dynamics

" let Y., = E[Yt+h‘Qt]+8 €.nl £ ~ Dy

t+h °

" Let L(Yt+h ) YAz+h,t ): L(Y - YAHhJ ): L(e”h”f)

t+h

Then: fftihz =E[Y,,|+a,

and

1. Optimal forcast is biased (bias is only a function of A,
see Christoffersen and Diebold, 1997)

* 2. The h- step forecast error has MA(h-1) ACF

* 3. The forecast error variance is weakly increasing in /1
31



/1 - step forecast error has MA(Hh-1) ACF

Proof: Y

t+h

Y

t+h,t

=E[Y,

t+h

=E[Y

t+h
Yt+h Y

t+h,t

] + gt+h

I+a,

t+ht

Covle Covle, ), € ;]
=0V j=>h

|QtNDh

t+h,t?o t+h —Jj,t— ]]

since €,

32



Interpretation

1.
2.

This shows that the serial correlation properties are
robust to the loss function under restrictions on the
DGP

This implies that if we can assume that there are
only conditional mean dynamics, we can test for
forecast optimality without any knowledge of the
forecasterss loss function. This extends existing
literature:

Assume MSE, allow arbitrary DGP

Elliott et al. (2002): assume loss function up to
unknown parameter vector, assume linear forecast
model
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Error variance is weakly increasing in A

Proof:
Yt+h+] =L [ t+h+]]+77t+h+j9 77t+h+j |Q ~ Dh+j
Yt+h+j :Et+j[Yt+h+j]+gt+h+j9 t+h+j |Q Dh
et*+h+j,t =T)inej — Gy
et*+h+j t+j gt+h+j — ¢,
V [et-l-h-l-] t] 0h+] = V[et+h+] t]
4 [et+h+] t+J] V[et+h+J t+]]

Want to show o, ;2 o
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Error variance is weakly increasing in A

2 *
n Vt [et+h+j,t ]

— ¥y :Yt+h+j o Et[Y;+h+j]]

=Vle o T E Y - E LY ]

=Vle, . JHVILE Y N+ 2C0v 6,50 B LY ]
=V, :gt+h+j: + I/I[Et+j[Yt+h+j]]

2V, €]

=0,
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Some Intuition

= What's behind the results violating standard
properties?

— A mis-match of the loss function and MSE
— Dynamics in the process beyond the mean

= The standard results all follow from the use of the
squared error as the loss function, and when a
different loss is employed we find “violations”

= So what are the properties optimal forecasts in
general situations?
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The “generalised forecast error”

= Granger (1999) proposes looking at a generalised
forecast error. We modify his definition slightly.

= The generalised forecast error comes out of the
first-order condition for forecast optimality:

Nk

Y,

t+ht

= arg minE[L Y¢+h’j>)‘gf]

aE[L AR 2) ]

N

Oy

FOC: =0
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The generalised forecast error

= A natural alternative to the standard forecast error
IS thus:
.ol 7))

. t+h’ ~t+ht
l)yt+h,t o

0y

= Notice that under MSE the generalised and standard
forecast errors are related by:

LS 2 %
Wﬁ—h,t - ez+h,t

= The properties assigned to e,,,, are actually
properties of v,.,, more generally
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Properties of optimal forecast errors
under general conditions

= By using the generalised forecast error and the
arbitrary loss function L we can provide properties
of optimal forecasts more generally:

1. E[WH;”] E[Wt-l—ht] 0

2. The generalised forecast error from an optimal
h — step forecast has the same ACF as some
MA(/ — 1) process.

3. Unconditional expected loss is hon-decreasing in /.
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1. Mean of generalised forecast error

= By the first-order condition for an optimal forecast
we have:

ol
oy
so Ely’, |=0by the LLE.

Ely]

(assuming that we can interchange the differentiation
and expectation operators.)
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2. Serial correlation

= |nstead of referring to an MA(/ — 1) process, we
show that the generalised forecast errors are
uncorrelated for lags >h-1, ie, it has the same ACF
as some MA(h-1) process.

E\_l//;h,t QtJ: 0= E[W;h,t ) 7/(Wt*+h—j,t—j )] =0
for all j > h and any function y

= (l//; oV e )are uncorrelated for all j > A
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3. EXxpected loss

= The unconditional expected loss from an optimal

forecast Is non-decreasing in the forecast horizon.

By the optimality of Yt+ht we have, for all j > 0,
e Y |
E[L t+h9 t+ht)Qt_£EL( t+ht J ]
EIL(Y.... Y0, )< EL(Y,,,, ), )by the L.LE.

EL

(Yt+h+ J’Y':I-h-l- it )]
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Properties under a different measure

= Here we propose retaining the object of interest,
but changing its probability distribution

= This Is akin to moving from the objective to the risk-
neutral measure in asset pricing.

= After a change of measure, assets may be priced as
though agents are risk neutral

= Following our change of measure, the optimal
forecast errors have the same properties as under
MSE loss

= S0 bias and serial correlation may be tested, for
example
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A change of measure - assumptions

= Suppose:

aL( t+h? t+ht)
5y

oL(Y ,, .
( t+hA t+h t) < O f Y;Jrh YHht > O
0y ’

OL(Y,
O< E 1 (t+h9 z+hz)

, < O

et+h ay

ZOfY;+h Yt+ht O
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A change of measure - formula

= Notice that:

feHh’t (e; Yt+h,t) — ft+h,t(Yt+h - t—l—h,t) ve,Y,

+h,t
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A change of measure - formula

= Notice that:

t+h,t

feHh’t (e;YtJrh,t) — ft+h,t(th+h o t+h,t) ve,Y

Let the “MSE-loss probability measure” be defined as:

1 . 8L(Y, ?Hh,t)

' feHh’t (e; Yt+h,t)

f* ( ~ ) C 85\, Y=Y +e
: e; Y + _ _ t+h,t — —
t+h,t t+h,t 1 aL(YH_h 9 Yt-I—h,t )
E, ~
B et+h,t y -
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Change of measure - validity

= Must show that the new measure is a valid
probability measure.

= By assumption

1 ) aL(YHh? Yt+h,t) <0VY ?
Y -

A t+h> ~ t+h,t
t+h,t 6 )

= So the denominator is negative, and numerator Iis
weakly negative, thus entire expression is weakly
positive

Y

t+h

= By construction it integrates to 1, so it is a valid pdf.
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Mean under MSE-loss measure

Proposition: Under the MSE-loss probability measure
the optimal forecast error has conditional mean
Zero.

Proof:

* 1 GL(Y teht)
E[ t+ht A _.- T

6}] A et+h t

*
Y=Y p 1€

(e +ht)
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Mean under MSE-loss measure

Proposition: Under the MSE-loss probability measure
the optimal forecast error has conditional mean
Zero.

Proof:
E [ t+ht A _[ 8}7 s et+ht(e +ht)
Y:Yt*+h,t+e
oL(Y,
:A J- ( +ht) eHht(e +ht)
ay Y:Yt* hite

=0

by the first-order condition for forecast optimality. 49



Serial correl under MSE-loss measure

Proposition: The optimal /step forecast error has zero
serial correlation beyond lag /2 -1.

Proof:

* *

%k
Cov [eHh,t, C

* K *

t+h—j,t—j] =E -et+h,t ' et+h—j,t—j]

* * * *

=E -Et [et+h,t] ) et+h—j,t—j] v J > h
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Objective and MSE-loss error densities

Pi = [2/3,1/3]

probability density

Objective and "MSE-loss" density for the regime switching example, and h=1

0.7

0.6 -

o
o1
[

o
I
[

o
w
[

o
N}
[

0.1 -

-10

—— Obijective density
— "MSE-loss density"

—

Forecast error, e

5

10
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Summary of Results: Implications

= Tests of forecast optimality/forecaster rationality
that are based on the standard forecast errors
(generally) implicitly assume MSE loss

= |If the forecast user/provider has a different loss
function, the forecasts may be perfectly optimal and
still violate standard properties

= Qur results simply show that without some
knowledge of the forecaster’s loss function testing
forecast optimality is an extremely difficult task
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Summary: Testing optimality

If the forecaster’s loss function is known, the results in
this paper may be used to construct tests of forecast

optimality
= Combine our results with the tests of Diebold-Mariano

(1995) or West (1996)

= |f the forecaster’s loss function is known up to an
unknown parameter, the work of Elliott, Komunjer and

Timmermann (2002) may be used instead

= |f the DGP is known to only have conditional mean
dynamics we showed that forecast optimality may be
tested with much robustness to the unknown loss

function.
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