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Forecast rationality under squared error loss implies various bounds on second moments of the data across
forecast horizons. For example, the mean squared forecast error should be increasing in the horizon, and
the mean squared forecast should be decreasing in the horizon. We propose rationality tests based on these
restrictions, including new ones that can be conducted without data on the target variable, and implement
them via tests of inequality constraints in a regression framework. A new test of optimal forecast revision
based on a regression of the target variable on the long-horizon forecast and the sequence of interim
forecast revisions is also proposed. The size and power of the new tests are compared with those of extant
tests through Monte Carlo simulations. An empirical application to the Federal Reserve’s Greenbook

forecasts is presented.
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1. INTRODUCTION

Forecasts recorded at multiple horizons, for example, from
one to several quarters into the future, are commonly reported
in empirical work. For example, the surveys conducted by the
Philadelphia Federal Reserve (Survey of Professional Forecast-
ers), Consensus Economics or Blue Chip and the forecasts pro-
duced by the IMF (World Economic Outlook), the Congres-
sional Budget office, the Bank of England and the Board of the
Federal Reserve all cover multiple horizons. Similarly, econo-
metric models are commonly used to generate multi-horizon
forecasts, see, for example, Clements (1997), Faust and Wright
(2009), and Marcellino, Stock and Watson (2006). The avail-
ability of such multi-horizon forecasts provides an opportunity
to devise tests of optimality that exploit the information in the
complete “term structure” of forecasts recorded across all hori-
zons. By simultaneously exploiting information across several
horizons, rather than focusing separately on individual horizons,
multi-horizon forecast tests offer the potential of drawing more
powerful conclusions about the ability of forecasters to produce
optimal forecasts. This article derives a number of novel and
simple implications of forecast rationality and compares tests
based on these implications with extant methods.

A well-known implication of forecast rationality is that, un-
der squared-error loss, the mean squared forecast error should
be a weakly increasing function of the forecast horizon, see, for
example, Diebold (2001), and Patton and Timmermann (2007a).
A similar property holds for the forecasts themselves: Internal
consistency of a sequence of optimal forecasts implies that the
variance of the forecasts should be a weakly decreasing function
of the forecast horizon. Intuitively, this property holds because
the variance of the expectation conditional on a large informa-
tion set (corresponding to a short forecast horizon) must exceed

that of the expectation conditional on a smaller information set
(corresponding to a long horizon). It is also possible to show
that optimal updating of forecasts implies that the variance of the
forecast revision should exceed twice the covariance between
the forecast revision and the actual value. It is uncommon to test
such variance bounds in empirical practice, in part due to the
difficulty in setting up joint tests of these bounds. We suggest
and illustrate testing these monotonicity properties via tests of
inequality constraints using the methods of Gourieroux, Holly,
and Monfort (1982) and Wolak (1987, 1989), and the bootstrap
methods of White (2000) and Hansen (2005).

Tests of forecast optimality have conventionally been based
on comparing predicted and realized values of the outcome vari-
able. This severely constrains inference in some cases since, as
shown by Croushore (2006), Croushore and Stark (2001), and
Corradi, Fernandez, and Swanson (2009), revisions to macroe-
conomic variables can be very considerable and so raises ques-
tions that can be difficult to address such as “What are the
forecasters trying to predict?”, that is first-release data or final
revisions. We show that variations on both the new and extant
optimality tests can be applied without the need for observa-
tions on the target variable. These tests are particularly useful
in situations where the target variable is not observed (such
as for certain types of volatility forecasts) or is measured with
considerable noise (as in the case of output forecasts).

Conventional tests of forecast optimality regress the realized
value of the predicted variable on an intercept and the fore-
cast for a single horizon and test the joint implication that the
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intercept and slope coefficient are 0 and 1, respectively (Mincer
and Zarnowitz 1969). In the presence of forecasts covering mul-
tiple horizons, a complete test that imposes internal consistency
restrictions on the forecast revisions is shown to give rise to
a univariate optimal revision regression. Using a single equa-
tion, this test is undertaken by regressing the realized value
on an intercept, the long-horizon forecast and the sequence
of intermediate forecast revisions. A set of zero—one equality
restrictions on the intercept and slope coefficients are then tested.
A key difference from the conventional Mincer—Zarnowitz test
is that the joint consistency of all forecasts at different horizons
is tested by this generalized regression. This can substantially
increase the power of the test.

Analysis of forecast optimality is usually predicated on co-
variance stationarity assumptions. However, we show that the
conventional assumption that the target variable and forecast are
(jointly) covariance stationary is not needed for some of our tests
and can be relaxed provided that forecasts for different horizons
are lined up in “event time,” as studied by Nordhaus (1987),
Davies and Labhiri (1995), Clements (1997), Isiklar, Lahiri, and
Loungani (2006), and Patton and Timmermann (2010b, 2011).
In particular, we show that the second moment bounds continue
to hold in the presence of structural breaks in the variance of
the innovation to the predicted variable and other forms of data
heterogeneity.

To shed light on the statistical properties of the variance bound
and regression-based tests of forecast optimality, we undertake
a set of Monte Carlo simulations. These simulations consider
various scenarios with zero, low, and high measurement error
in the predicted variable and deviations from forecast optimal-
ity in different directions. We find that the covariance bound
and the univariate optimal revision test have good power and
size properties. Specifically, they are generally better than con-
ventional Mincer—Zarnowitz tests conducted for individual hori-
zons, which either tend to be conservative, if a Bonferroni bound
is used to summarize the evidence across multiple horizons, or
suffer from substantial size distortions, if the multi-horizon re-
gressions are estimated as a system. Our simulations suggest
that the various bounds and regression tests have complemen-
tary properties in the sense that they have power in different
directions and so can identify different types of suboptimal be-
havior among forecasters.

An empirical application to the Federal Reserve’s Greenbook
forecasts of GDP growth, changes to the GDP deflator, and con-
sumer price inflation confirms the findings from the simulations.
In particular, we find that conventional regression tests often fail
to reject the null of forecast optimality. In contrast, the new vari-
ance bound tests and single-equation multi-horizon tests have
better power and are able to identify deviations from forecast
optimality.

The outline of the article is as follows. Section 2 presents
some novel variance bound implications of optimality of fore-
casts across multiple horizons and the associated tests. Section 3
considers regression-based tests of forecast optimality and Sec-
tion 4 presents some extensions of our main results to cover data
heterogeneity and heterogeneity in the forecast horizons. Sec-
tion 5 presents results from a Monte Carlo study, while Section 6
provides an empirical application to Federal Reserve Greenbook
forecasts. Section 7 concludes this article.
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2. MULTI-HORIZON BOUNDS AND TESTS

In this section, we derive variance and covariance bounds
that can be used to test the optimality of a sequence of forecasts
recorded at different horizons. These are presented as corollar-
ies to the well-known theorem that the optimal forecast under
quadratic loss is the conditional mean. The proofs of these corol-
laries are collected in the Appendix.

2.1 Assumptions and Background

Consider a univariate time series, ¥ = {Y;;t =1, 2,...},and
suppose that forecasts of this variable are recorded at dif-
ferent points in time, t = 1, ..., T and at different horizons,
h =hy, ..., hy.Forecasts of Y, made & periods previously will
be denoted as ?,U,h, and are assumed to be conditioned on the
information set available at time ¢ — h, F;_j;, which is taken
to be the filtration of o -algebras generated by {Zf_h_k; k > 0},
where Z,_, is a vector of predictor variables. This need not
(only) comprise past and current values of Y. Forecast errors
are givenbye,,_, =Y, — ?m,h.Weconsideran(H x 1) vector
of multi-horizon forecasts for horizons hy < hy, < --- < hy,
with generic long and short horizons denoted by %, and hg
(hr > hg). Note that the forecast horizons, /;, can be positive,
zero, or negative, corresponding to forecasting, nowcasting, or
backcasting, and further note that we do not require the forecast
horizons to be equally spaced.

We will develop a variety of forecast optimality tests based
on corollaries to Theorem 1 discussed later. In so doing, we
take the forecasts as primitive, and if the forecasts are generated
by particular econometric models, rather than by a combina-
tion of modeling and judgemental information, the estimation
error embedded in those models is ignored. In the presence
of estimation error, the results established here need not hold
in finite samples (Schmidt 1974; Clements and Hendry 1998).
Existing analytical results are very limited, however, as they as-
sume a particular model (e.g., an AR(1) specification) and use
inadmissible forecasts based on plug-in estimators. In practice,
forecasts from surveys and forecasts reported by central banks
reflect considerable judgmental information, which is difficult
to handle using the methods developed by West (1996) and West
and McCracken (1998).

The “real time” macroeconomics literature has demonstrated
the presence of large and prevalent measurement errors affecting
a variety of macroeconomic variables, see Corradi, Fernandez,
and Swanson (2009), Croushore (2006), Croushore and Stark
(2001), Diebold and Rudebusch (1991), and Faust, Rogers, and
Wright (2005). In such situations, it is useful to have tests that
do not require data on the target variable and we present such
tests below. These tests exploit the fact that, under the null of
forecast optimality, the short-horizon forecast can be taken as
a proxy for the target variable, from the standpoint of longer
horizon forecasts, in the sense that the inequality results pre-
sented earlier all hold when the short-horizon forecast is used in
place of the target variable. Importantly, unlike standard cases,
the proxy in this case is smoother rather than noisier than the
actual variable. This has beneficial implications for the finite
sample performance of these tests when the measurement error
is sizeable or the predictive R? of the forecasting model is low.
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Under squared-error loss, we have the following well-known
theorem (see, e.g., Granger 1969):

Theorem 1 (Optimal Forecast Under MSE Loss). Assume
that the forecaster’s loss function is quadratic, L(y, ) = (y —
$)2, and that the conditional mean of the target variable given
the filtration F,_j, E[Y;|F;_.]1, is a.s. finite for all ¢ . Then

A

Y

*
tlit—h

= argmin E[(Y, — $)* | Finl = E V)| Fnl, (1)
yey

where ) C R is the set of possible values for the forecast.

Some of the results derived below will make use of a standard
covariance stationarity assumption:

Assumption S1: The target variable, Y;, is generated by a
covariance stationary process.

2.2 Monotonicity of Mean Squared Errors and Forecast
Revisions

From forecast optimality under squared-error loss it follows
that, for any Y;;—, € Fi—p,

)A/sz—h)z] . Etfh[(yt - ?z\z—h)zl

In particular, the optimal forecast at time r — &g must be at least
as good as the forecast associated with a longer horizon:

Einl(Y; —

En[(Yi=Y )1 < Eons[(Y=T7y,)7] forall hs < hy.

In situations where the predicted variable is not observed (or
only observed with error), one can instead compare medium- and
long-horizon forecasts with the short-horizon forecast. Define a
forecast revision as

* _ U O %
g, = Yieeng — Yien, for hs < hp.

The corollary below shows that the bounds on mean squared
forecast errors that follow immediately from forecast rationality
under squared-error loss also apply to mean squared forecast
revisions.

Corollary 1. Under the assumptions of Theorem 1 and S1, it
follows that

@) E|[ejp_ ] < E[efi_y,] forhs <hy, )
and

) E[d 4] < E[di5 ;] forhs <hy <hy. (3)

The inequalities are strict if more forecast relevant informa-
tion becomes available as the forecast horizon shrinks to zero,
see, for example, Diebold (2001) and Patton and Timmermann
(2007a).

2.3 Testing Monotonicity in Squared Forecast Errors
and Forecast Revisions

Corollary 1 suggests testing forecast optimality via a test of
the weak monotonicity in the “term structure” of mean squared
errors, Equation (2), to use the terminology of Patton and Tim-
mermann (2011). This feature of rational forecasts is relatively
widely known, but has, with the exception of Capistran (2007),
generally not been used to test forecast optimality. Capistrands
test is based on Bonferroni bounds, which are quite conservative
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in this application. Here, we advocate an alternative procedure
for testing nondecreasing MSEs at longer forecast horizons that
is based on the inequalities in Equation (2).

We consider ranking the MSE values for a set of forecast
horizons h = hy, hy, ..., hy. Denoting the population value of
the MSEs by u¢ = [uS, ..., u% ], with ,u; = E[ezz\th,-]’ and
defining the associated MSE differentials as Aj =pj—pjo1 =
E [ef‘l_hj] —E [e,zlt_h/_i1 ], we can rewrite the inequalities in (2) as

AG >0, forj=2,...,H. 4

Following earlier work on multivariate inequality tests in re-
gression models by Gourieroux et al. (1982), Wolak (1987,
1989) proposed testing (weak) monotonicity through the null
hypothesis:

Hy: A >0 versus Hy: A° £ 0, 5

where the (H — 1) x 1 vector of MSE differentials is given by
A° =[AS, ..., AY]. As in Patton and Timmermann (2010a),
tests can be based on the sample analogs Aj. =fj—ftj_ for

ij= % Zthl etz\tfhj' Wolak (1987, 1989) derived a test statis-
tic whose distribution under the null is a weighted sum of chi-
squared variables, Z,‘H; w(H — 1,1)x%(@i), where w(H — 1, 1)
are the weights and {x2(i )}iH: *11 is a set of independent chi-
squared variables with i degrees of freedom. The key com-
putational difficulty in implementing this test is obtaining the
weights. These weights equal the probability that the vector
Z ~ N(0, ¥) has exactly i positive elements, where X is the
long-run covariance matrix of the estimated parameter vector,
A°. One straightforward way to estimate these weights is via
simulation, see Wolak (1989, p. 215). An alternative is to com-
pute these weights in closed form, using the work of Kudo
(1963) and Sun (1988), which is faster when the dimension
is not too large (less than 10). (We thank Raymond Kan for
suggesting this alternative approach to us, and for generously
providing Matlab code to implement this approach.) When the
dimension is large, one can alternatively use the bootstrap meth-
ods in White (2000) and Hansen (2005), which are explicitly
designed to work for high-dimensional problems.

Note that the inequality in Equation (2) implies a total of
H(H — 1)/2 pairwise inequalities, not just the H — 1 inequal-
ities obtained by comparing “adjacent” forecast horizons. In a
related testing problem, Patton and Timmermann (2010a) con-
sidered tests based both on the complete set of inequalities and
the set of inequalities based only on “adjacent” horizons (port-
folios, in their case) and find little difference in size or power of
these two approaches. For simplicity, we consider only inequal-
ities based on “adjacent” horizons.

Wolak’s testing framework can also be applied to the bound
on the mean squared forecast revisions (MSFR). To this end, de-
fine the (H — 2) x 1 vector of mean squared forecast revisions
AT =[AY,..., ALY, where AY = E[d}, ,1— Eld, , ]
Then, we can test the null hypothesis that differences in mean
squared forecast revisions are weakly positive for all forecast
horizons:

Hy: A? >0 versus Hy: AY #0. (6)
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2.4 Monotonicity of Mean Squared Forecasts

We now present a novel implication of forecast rationality that
can be tested when data on the target variable are not available
or not reliable. Recall that, under rationality, E,_, [e;kpfh] =0,

which implies that cov [Y,It i €fjr—p] = 0. Thus, we obtain the
following corollary:

Corollary 2. Under the assumptions of Theorem 1 and S1,
we have

V[Y,thhs] > V[Y,T,th] for any hg < hy.

This result is closely related to Corollary 1 since V[Y;] =
V[ - »1+ Ele}, m »)- A weakly increasing pattern in MSE di-
rectly implies a weakly decreasing pattern in the variance of
the forecasts. Hence, one aspect of forecast optimality can be
tested without the need for a measure of the target variable. No-
tice again that since E [ - _,] = E[Y;] for all h, we obtain the
following inequality on the mean squared forecasts:

E [Y*Z

tit—hg

] > FE [Y;‘kt2 hL] for any hg < hy. (7

A test of this implication can again be based on Wolak’s (1989)
approach by defining the vector A/ = [A 5 e H] where
A{ = E[V;7, 1— ELY;7, ] and testing the null hypothesis
that differences in mean squared forecasts (MSF) are weakly

negative for all forecast horizons:
Hy: A/ <0 versus H, : AT £0. (8)

It is worth pointing out a limitation to this type of test. Tests
that do not rely on observing the realized values of the target
variable are tests of the internal consistency of the forecasts
across two or more horizons, and not direct tests of forecast ra-
tionality, see Pesaran (1989) and Pesaran and Weale (2006). For
example, forecasts from an artificially generated AR(p) process,
independent of the actual series but constructed in a theoreti-
cally optimal fashion, would not be identified as suboptimal by
this test.

2.5 Monotonicity of Covariance Between the Forecast
and Target Variable

An implication of the weakly decreasing forecast variance
property established in Corollary 2 is that the covariance of the
forecasts with the target variable should be decreasing in the
forecast horizon. To see this, note that

cov [ tlt—h> Y] = cov [?;\kt—h’ ?tTt—h + e;k\t—h] = V[?;\kt—h]'

Similarly, the covariance of the short-term forecast with another
forecast should be decreasing in the other forecast’s horizon:

%
cov [Ytlt—hL

t\r —hg ] = cov [ tit—hg> Ysz—hL + dl*lhg,hL]
= VI¥ )
Thus, we obtain the following.

Corollary 3. Under the assumptions of Theorem 1 and S1,
we have, for any hg < hp,
(a) cov [V

tit—hs> Yt] = COV[ tit—hg> Y]'
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Moreover, for any hg < hy < hyp,
(b) cov [V} tt—hy Yzlz sl = cov [Y}] tli—hp? Ysz ns -

Once again, using E[ = _n] = E[Y;], it follows that we can
express the above bounds as simple expectations of products:

E[Y},_,. Y] = E[¥},_,, Vi,
and

E[Y} il r\t _ngl = E[Y} i hLY;\kt hs ]
forany hg < hy < hy.
As for the earlier cases, these implications can again be
tested by defining the vector A“ = [AS, ..., A% ], where A; =
E[Y;thhj Y] — E[YITF,”_l Y;] and testing:

Hy: A° <0 versus H;: A £0, 9)
using Wolak’s (1989) approach.

2.6 Bounds on Covariances of Forecast Revisions

Combining the inequalities contained in the earlier corollar-
ies, we can place an upper bound on the variance of the forecast
revision as a function of the covariance of the revision with the
target variable. The intuition behind this bound is simple: if little
relevant information arrives between the updating points, then
the variance of the forecast revisions must be low.

Corollary 4. Denote the forecast revision between two dates
as djj p, = Y;Tt g Y,’T,_hL for any hg < hy. Under the as-
sumptions of Theorem 1 and S1, we have

(2) V[df*\hs,hL] < 2cov [}, dt*lhs’hL]

for any hg < hy. (10)
Moreover,
®) Vidy,, n,] =< 2cov [V} i—ngs Dy iy ]
forany hy < hy < hy. )

For testing purposes, using E[dj}, ,, 1 =0, we can use the
more convenient inequalities:

Eld}; 5,1 < 2E[Yd}, 1, for any hg < h, or

Eld}, ‘h nl = 2E[Y: i—ns@inyn, ] forany hg < hy <hy.
(12)

Note also that this result implies (as one would expect) that the
covariance between the target variable and the forecast revision
must be positive; when forecasts are updated to reflect new
information, the change in the forecast should be positively
correlated with the target variable.

The above bound can be tested by forming the vector
AP =[AS, ..., ALY, where AY = ERYdyp; 1, — dﬁh;.h,,ll’
for j=2,...,H and then testing the null hypothesis
that this parameter is weakly positive for all forecast
horizons

Hy: A’ >0 versus H, : A” 7 0.
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2.7 Monotonicity of Covariances with the Forecast Error

We finally consider bounds on the covariance of the fore-
cast error with the target variable or with the forecast revision,
and corresponding versions of these results that may be imple-
mented when data on the target variable are not available or not
reliable. These bounds are perhaps less intuitive than the earlier
ones and so will not be further pursued, but are included for
completeness.

Corollary 5. Under the assumptions of Theorem 1 and S1,
we have
(a) for any hg < hy,

cov [ef,_pg» Vil < cov lef,y,, Vil

(b) forany hy < hy < hy,

* Ok * O %
oV [} pys Yeje—ng] = €OV [y p, s Yiongls
and (¢)
* * * *
cov L&), _p,s Aring.ny) < €OV L€f_p,  dipgn, 1-

The first part follows from the simple intuition that as the
forecast horizon grows, the forecast explains less and less of
the target variable, and thus the forecast error becomes more
and more like the target variable. The last inequality links the
forecast error made a time ¢ — & to the forecast revision made
between time ¢ — & and some shorter horizon. This result may
prove useful where the target variable (and thus the forecasts)
is very persistent, as the variables in this bound are differences
between actuals and forecasts, or between forecasts, and will
be less persistent than the original variables. In applications
where the target variable is not available a corresponding result
involves using the short-horizon forecast in place of the target
variable. Doing so gives a result for the variance of the forecast
revision, which was already presented in Corollary 1, and so it
is not repeated here.

2.8 Summary of Test Methods

The tests presented here are based on statistical properties
of either the outcome variable, Y,, the forecast error, e;j —n» the
forecast, I?IT[_ »» OF the forecast revision, dy},, ,,, . The table below
shows that the tests discussed so far provide an exhaustive list of
all possible bounds tests based on these four variables and their
mutual relations. The table lists results as the forecast horizon
increases (h 1), and for the forecast revision relations we keep

the short horizon (hy) fixed:

Y, e;g\tfh Ytthh dt*\hs,hL
Y, o} cov 4 cov | cov bound
€—n MSE ¢ cov=0 cov 1
Y, MSF | cov 4
dyn, MSEFR 4

Summary of test methods

Almost all existing optimality tests focus on cell (2,3), that is,
the forecast errors are uncorrelated with the forecast, which is
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what conventional rationality regressions effectively test as can
be seen by subtracting the forecast from both sides of the re-
gression. Capistran (2007) studied the increasing MSE property,
cell (2,2). Our analysis generalizes extant tests to the remain-
ing elements. We pay particular attention to cells (3,3), (3,4),
and (4,4), which do not require data on the target variable, and
thus may be of use when this variable is measured with error or
unavailable.

3. REGRESSION TESTS OF FORECAST
RATIONALITY

Conventional Mincer—Zarnowitz (MZ) regression tests form
a natural benchmark against which the performance of our
new optimality tests can be compared, both because they are
in widespread use and because they are easy to implement.
Such regressions test directly if forecast errors are orthogonal
to variables contained in the forecaster’s information set. For a
single forecast horizon, A, the standard MZ regression takes the
form:

Y, = oy + Bu¥ij—n + Vi (13)

Forecast optimality can be tested through an implication of
optimality that we summarize in the following corollary to
Theorem 1:

Corollary 6. Under the assumptions of Theorem 1 and S1,
the population values of the parameters in the Mincer—Zarnowitz
regression in Equation (13) satisfy

Hé’ cap =0N B, =1, for each horizon A.

The MZ regression in Equation (13) is usually applied sep-
arately to each forecast horizon. A simultaneous test of opti-
mality across all horizons requires developing a different ap-
proach. We next present two standard ways of combining these
results.

3.1 Bonferroni Bounds on MZ Regressions

One approach, adopted by Capistran (2007), is to run MZ
regressions (13) for each horizon, & = hy, ..., hy and obtain
the p-value from a chi-squared test with two degrees of freedom.
A Bonferroni bound is then used to obtain a joint test. Forecast
optimality is rejected if the minimum p-value across all H tests
is less than the desired size divided by H, o/ H. This approach
is often quite conservative.

3.2 Vector MZ Tests

An alternative to the Bonferroni bound approach is to stack the
MZ equations for each horizon and estimate them as a system:

Yiin, o Bi--- 0 Yiine Ut |t
= |t : + :
Yiihy oy 0 - Bu | | Yisnun Uty |t

(14)



The relevant hypothesis is now

Hy:op=---=ap=0Np=---=pg=1 (15

versus Hy :a) #0U---Uayg #0UB #1U.---UPBy # 1.

For h > 1, the residuals in Equation (14) will, even under
the null, exhibit autocorrelation and will typically also exhibit
cross-autocorrelation, so a HAC estimator of the standard errors
is required.

3.3 Univariate Optimal Revision Regression

We next propose a new approach to test optimality that uses
the complete set of forecasts in a univariate regression. The
approach is to estimate a univariate regression of the target
variable on the longest horizon forecast, I?,|,_hH, and all the
intermediate forecast revisions, d; s, sy - - - » dejhy_,.hy - TO derive
this test, notice that we can represent a short-horizon forecast
as a function of a long-horizon forecast and the intermediate
forecast revisions:

H-1
Yoo = Yoony + Z iy - (16)
j=1

Rather than regressing the outcome variable on the one-period
forecast, we propose the following “optimal revision” regres-
sion:

Hol
Y =+ Bu¥i—n, + Z Bidin; hp + U

Jj=1

A7)

Corollary 7. Under the assumptions of Theorem 1 and S1,
the population values of the parameters in the optimal revision
regression in Equation (17) satisfy

H():a=00,31=...=ﬂH=1.

Equation (17) can be rewritten as a regression of the target
variable on all of the forecasts, from & to & g, and the parameter
restrictions given in Corollary 7 are then that the intercept is
0, the coefficient on the short-horizon forecast is 1, and the
coefficient on all longer horizon forecasts is 0.

This univariate regression tests both that agents optimally and
consistently revise their forecasts at the interim points between
the longest and shortest forecast horizons and also that the long-
run forecast is unbiased. Hence, it generalizes the conventional
single-horizon MZ regression (13).

3.4 Regression Tests Without the Target Variable

All three of the above regression-based tests can be applied
with the short-horizon forecast used in place of the target vari-
able. That is, we can undertake a MZ regression of the short-
horizon forecast on a long-horizon forecast

YA}‘;,hl = 5{]’ + Igj?t\t*h_; + Utlt—h; for all hj > h;.  (18)
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Similarly, we get a vector MZ test that uses the short-horizon
forecasts as target variables:

Yethale+h as B+ 0 Vit
: = -
YVithuli-thn ay | 0 - By Vith
i Urhy|t
+ . (19)
L Vtthylt

Finally, we can estimate a version of the optimal revision re-
gression:

H-1
Vioon =&+ Bu ¥y + Y B,y +vie (20)
j=2

The parameter restrictions implied by forecast optimality are the
same as in the standard cases, and are presented in the following
corollary.

Corollary 8. Under the assumptions of Theorem 1 and S1,
(a) the population values of the parameters in the MZ regression
in Equation (18) satisfy

Hél 2@, =0NpB, =1 foreachhorizon h > hy;

(b) the population values of the parameters in the vector MZ
regression in Equation (19) satisfy

H():&zz...Z&H200322...231-1:1;

(c) the population values of the parameters in the optimal
revision regression in Equation (20) satisfy

HoidZOﬂBZI...ZBHZl.

This result exploits the fact that under optimality (and
squared-error loss) each forecast can be considered a condi-
tionally unbiased proxy for the (unobservable) target variable,
where the conditioning is on the information set available at
the time the forecast is made. That is, if )A’,‘,,hs = E;_;,[Y;] for
all hg, then E,_hL[?,‘,_hS] = E;_;,[Y;] for any h; > hg, and
so the short-horizon forecast is a conditionally unbiased proxy
for the realization. If forecasts from multiple horizons are avail-
able, then we can treat the short-horizon forecast as a proxy
for the actual variable, and use it to “test the optimality” of the
long-horizon forecast. In fact, this regression tests the internal
consistency of the two forecasts, and thus tests an implication
of the null that both forecasts are rational.

3.5 Relation Between Regression and Bounds Tests

In this section, we show that certain forms of suboptimality
will remain undetected by Mincer—Zarnowitz regressions, even
in population, but can be detected using the bounds introduced
in the previous section. Consider the following simple form for
a suboptimal forecast:

17,|,_h =y, + )\;,?tthh +u,_y, where u,_, ~N (0, a,ih) .
(21)
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An optimal forecast would have (A, y, auz’ ) =(1,0,0). Cer-
tain combinations of these parameters will not lead to a rejection
of the MZ null hypothesis, even when they deviate from (1, 0, 0).
Consider the MZ regression:

Yi = +ﬂhYI|t—h + &.

The population values of these parameters are

v [

MV I:?tthhiI +0o7,

_ cov [Y:. Yen] _
! V [Yii]

so B, = 1 implies O’ = Ap(l — Ah)V[ =

=E[Y] - BE [?t\t—h] =EY] = Bn(yn + MELY(]D.

Hence, if B8, = 1, then «;, = 0 provided that y, = E[Y;](1 —
Ap). Thus, we can choose any Aj, € (0, 1) and find the parame-
ters (vx, %2, ,») that lead to MZ parameters that satisfy the null of
rationality. We now verify that such a parameter vector would
violate one of the multi-horizon bounds. Consider the bound
that the variance of the forecast should be decreasing in the hori-
zon. Inthlsexample we have V[Y,‘t nl = AZV[ i ]+ O'u h =
AhV[ - _»], when Uu p =Ml — Ah)V[ - _»)- We know by ra-
tionality that V [YZTF 1 1s decreasing in A, but since A, can take
any value in (0, 1), and this value can change across horizons,
a violation may be found. Specifically, a violation of the de-
creasing forecast variance bound V[f’”,_hs] < V[Y,|,_hL] will
be found if

»1- Moreover,

M V[f}le‘ hL]

< . 22)
)\hL v [YITI h s]

It is also possible to construct an example where an MZ test
would detect a suboptimal forecast but a bounds-based test
would not. A simple example of this is any combination where
s Vi 021) # O ELY 1A = 2), A (1 = ) VIV, D), and
where V[Ym—hs] > V[Y,\t_hL]. For example, (Ay, ¥, u’h) =
(An, 0,0) forany Ay, = Ap, = Aj € (0, 1). We summarize these
examples in the following proposition.

Proposition 1. The MZ regression test and variance bound
tests do not subsume one another: Rejection of forecast opti-
mality by one test need not imply rejection by the other.

4. EXTENSIONS AND DISCUSSION

This section shows how our tests cover certain forms of non-
stationary processes and heterogeneous forecast horizons and
also shows that the results can be used to detect model misspec-
ification.

4.1 Stationarity and Tests of Forecast Optimality

The literature on forecast evaluation conventionally assumes
that the underlying data generating process is covariance sta-
tionary. To see the role played by the covariance statlonanty
assumption, recall Y, th, = =argming E,_;[(Y;1p — y) ]. By
optimality, we must have

EdYen — Vi 1 = EdYin — Y1 for j = 1. (23)

7
Then, by the law of iterated expectations,
E[(Yien — iy 0?1 = El(Ypan — ¥y )] for j = 1. (24)

This result compares the variance of the error in predicting the
outcome at time ¢ + & given information at time ¢ against the
prediction error given information at an earlier date,  — j, and
does not require covariance stationarity. This uses a so-called
“fixed event” set-up, where the target variable (Y;4;) is kept
fixed, and the horizon of the forecast is allowed to vary (from
t— jtor).

When the forecast errors are stationary, it follows from Equa-
tion (24) that

I CATINES AT R ATED ATIRE IR =

(25)

Equation (25) need not follow from Equation (24) under nonsta-
tionarity. For example, suppose there is a deterministic reduction
in the variance of Y between periods t + & and 7 + A + j, such
as

u+oe for t<t+4+h

Y, = (26)

,u+%8, for t >t +h,
where ¢, is zero-mean white noise. This could be a stylized
example of the “Great Moderation.” Clearly Equation (25) is

now violated as Yr+h+]|t = Yr+h\r M, and so

D 27 _ o’ 2 _ - 2
E[(Yr+h+] - Yr+h+j|1:) ] = Z <0o" = E[(Y‘H-h - Yf+h“[) ]

for j>1. (27)

For example, in the case of the Great Moderation, which is be-
lieved to have occurred around 1984, a 1-year-ahead forecast
made in 1982 (i.e., for GDP growth in 1983, while volatility
was still high) could well be associated with greater (uncondi-
tional expected squared) errors than, say, a 3-year-ahead fore-
cast (i.e., for GDP growth in 1985, after volatility has come
down).

One way to deal with nonstationarities such as the break in
the variance in Equation (26) is to hold the date of the tar-
get variable fixed and to vary the forecast horizon as in fixed-
event forecasts, see Clements (1997) and Nordhaus (1987).
In this case, the forecast optimality test is based on Equation
(24) rather than Equation (25). To see how this works, notice
that, by forecast optimality and the law of iterated expectations,
for h; > hg

E (Yo = Y}, )71 = Epg (Y —

Vil (28

and

ENY, = ¥, ") = ENY, = T, 1,

For the example with a break in the variance in Equation (26),

(7 5 _ Ux _
we have Y}, _, =Y;,_, = u,and

E[(¥, =¥, 0,) "] = ELY, = 95,07

o2 for t<t+4+h
o?/4 for t>1+h,



Using a fixed-event setup, we next show that the natural ex-
tensions of the inequality results established in Corollaries 1, 2,
3, and 4 also hold for a more general class of stochastic processes
that do not require covariance stationarity but, rather, allows for
unconditional heteroscedasticity such as in Equation (26) and
dependent, heterogeneously distributed data processes.

Proposition 2. Define the following variables:

T
1
== ZMSE, (h),

t=1

E [(Yt - ?rTr—h)z] >

MSEr (h)
where MSE; (h) =

T
1
= D MSF, (k).

MSE; (h) =
=1
_ (O *2 .
where  MSF, (h) = E[7;2,,];
1 T
Cr(h) = 7Z:Cz(h),

where C;(h)=E [YtTt WX

MSFRy (hs, hy) = 1XT:MSFR (hs, hy)
T S\ L) = T — 1 S L),

where MSFR, (hs, hy) = E [, |;

T
_ 1
By (h) = 7;&@),
where B, (hg,hy) = E [Y,d;k‘hs,h[‘] .

Then, under the assumptions of Theorem 1, the following
bounds hold for any hg < hy < hy :

(a) MSEr (hs) < MSEr (hyr),

(b) MSFy (hs) > MSFr (hy),

(© Cr(hs) = Cr(hy),

(d) MSFR7 (hs, hy) < MSFRy (hs, hr),
(e) MSFRy (hs,hy) < 2Br (hs, hy).

Allowing for heterogeneity in the data does not affect the
bounds obtained in Section 2, which were derived under the
assumption of stationarity: rather than holding for the (unique)
unconditional expectation, under data heterogeneity they hold
for the unconditional expectation at each point in time, and for
the average of these across the sample. The bounds for averages
of unconditional moments presented in Proposition 2 can be
tested by drawing on a central limit theorem for heterogeneous,
serially dependent processes, see, for example, Wooldridge and
White (1988) and White (2001), which notably excludes unit
root processes. The following proposition provides conditions
under which these quantities can be estimated.

Proposition 3. Define

& 2 .
M = (Y, -7, h) —(Yi =¥, ), forj=2,....H,
=V, =Y, . forj=2,... H,

Journal of Business & Economic Statistics, January 2012

8, =YY, YV, |, forj=2,... H,
MSFR 2 :
85 = (din, ) —(din )" forj=3,.... H,
51; = det*\hl Ytdt*|h,,hj,.’ forj=3,...,H,

Sk

t

- 1,
[65,....85] Ay = 7255 vk,

where k € {MSE, MSF, C, MSFR, B) and ¢ =2 for k€
{MSE, MSF, C} and g = 3 for k € {MSFR, B}. Assume: (1)
8F = Afpek, for 1 =1,2,..., A e R¥"1; (ii) € is a uni-
form mixing sequence with ¢ of size —r/2(r - 1) r>2or
a strong mixing sequence with «a of size —r/(r -2), r>2;
(iii) E[ef]:Ofort:l,Z .T; (iv) E[|e "] < C < oo for
i=1,2,..., H—1;(v) V¥ is uniformly positive definite; (vi)
There exists a Vﬁ that is symmetric and positive definite such
that ‘7715 — V]]f —7 0. Then

(V) VT (A

—Ak):>N(O,I) as T — oo.

Thus, we can estimate the average of unconditional moments
with the usual sample average, with the estimator of the co-
variance matrix suitably adjusted, and then conduct the test of
inequalities using Wolak’s (1989) approach.

4.2 Bounds for Forecasts with Heterogeneous Horizons

Some economic datasets contain forecasts that have a wide
variety of horizons, which the researcher may prefer to aggregate
into a smaller set of forecasts. For example, the Greenbook
forecasts we study in our empirical application are recorded
at irregular times within a given quarter, so that the forecast
labeled as a one-quarter horizon forecast, for example, may
actually have a horizon of 1, 2, or 3 months. Given limited time
series observations, it may not be desirable to attempt to study
all possible horizons, ranging from O to 15 months. Instead, we
may wish to aggregate these into forecasts of hg € {I1, 2, 3},
hr € {4,5, 6}, etc.

The proposition below shows that the inequality results es-
tablished in the previous sections also apply to forecasts with
heterogeneous horizons. The key to this proposition is that any
“short” horizon forecast must have a corresponding “long” hori-
zon forecast. With that satisfied, and ruling out correlation be-
tween the forecast error and whether a particular horizon length
was chosen, we show that the bounds hold for heterogeneous
forecast horizons. We state and prove the proposition below
only for MSE; results for the other bounds follow using the
same arguments.

Proposition 4. Consider a dataset of the form
(Y, Y Y )=y, where k, >0V Let the as-
sumptions of Theorem 1 and S1 hold. (a) If (h;, k) are
realizations from some stationary random variable and e;], 0
and etlt hj—k; are independent of 1{h; = h;} and 1{k, = k}
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then
MSE; = E[ (Yl o ?ZTZ—h,)Z]fE[ (Yt a I?;\kt—h,—k,)z] = MSE;.

(b) If {h;, k;} is a sequence of predetermined values, then

_ 1 Z A
MSEs 7 = T Z E[ (Y, - y;‘;_hr)z]
=1
1 ¢ 2 JE—
= T Z:: Bl - Y’T’*hr*kr) ] =MSE_ .

t=1

The only nonstandard assumption here is in part (a), where we
assume that the process determining the short- and long-forecast
horizons is independent of the forecast errors at those horizons.
This rules out choosing particular (h;, k,) combinations after
having inspected their resulting forecast errors, which could
of course overturn the bounds. Notice that heterogeneity of
the short- and long-forecast horizon lengths in part (b) induces
heterogeneity in the mean squared errors, even when the data
generating process is stationary. The assumption of stationarity
of the datagenerating process in both parts can be relaxed using
similar arguments as in Proposition 2.

4.3 Multi-horizon Bounds and Model Misspecification

If a forecaster uses an internally consistent but misspecified
model to predict some target variable, will any of the tests pre-
sented earlier be able to detect it? We study this problem in two
cases: one where the multistep forecasts are obtained from a
suite of horizon-specific models (“direct” multistep forecasts),
and the other where forecasts for all horizons are obtained from
a single model (and multistep forecasts are obtained by “iterat-
ing” on the one-step model). In both cases we show that model
misspecification can indeed be detected using the multi-horizon
bounds presented earlier.

4.3.1 Direct Multistep Forecasts. 1f the forecaster is using
different models for different forecast horizons it is perhaps not
surprising that the resulting forecasts may violate one or more of
the bounds presented in the previous section. To illustrate this,
consider a target variable that evolves according to a stationary

AR(2) process,
Yi=¢1Yioi + Yo +e, & ~iildN(0,0%), (29

but the forecaster uses a direct projection of Y, onto Y,_; to
obtain an &-step ahead forecast:

Y, =pY,p+uv, forh=1,2,... 30)
Note that by the properties of an AR(2) we have
2 2
— ¢+
p=t Ut G31)
1—¢ 1—¢»

For many combinations of (¢;, ¢»), we obtain |p;| > ||, for
example, for (¢, ¢,) = (0.1,0.8) we find p; = 0.5 and p, =
0.85. This directly leads to a violation of the bound in Corollary
2, that the variance of the forecast should be weakly decreasing
in the horizon. Furthermore, it is simple to show that it also
violates the MSE bound in Corollary 1:

MSE, = E[ (Y, ¥y—1)’ | =02 (1-p?) =0.7502,
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MSE; = E[ (Y, ~ V)’ | =02 (1-p3) =0.2802, (32)

where ayz is the variance of y. In this situation, the forecaster
should recognize that the two-step forecasting model is better
than the one-step forecasting model, and so simply use the two-
step forecast again for the one-step forecast. (Or better yet,
improve the forecasting models being used.)

4.3.2 Iterated Multistep Forecasts. If a forecaster uses the
same, misspecified, model to generate forecasts for all horizons
it may seem unlikely that the resulting term structure of forecasts
will violate one or more of the bounds presented earlier. We
present here one simple example where this turns out to be
true. Consider again a target variable that evolves according to
a stationary AR(2) process as in Equation (29), but suppose the
forecaster uses an AR(1) model:

Yi=p1 Y1+,

s0 Yip=plY,y, forh=1,2,..., (33)

where p; = ¢1/(1 — ¢») is the population value of the AR(1)
parameter when the DGP is an AR(2). (It is possible to show
that a simple Mincer—Zarnowitz test will not detect the use of
a misspecified model, as the population parameters of the MZ
regression in this case can be shown to satisfy («, 8) = (0, 1).
However, a simple extension of the MZ regression that includes
a lagged forecast error would be able to detect this model mis-
specification.) We now verify that this model misspecification
may be detected using the bounds on MSE:

MSE1 =F I:(Yt - ?t‘t_l)zil = 0'3 (1 - ,012) ,
MSE; = E[ (¥, = Vyi2)'] = 02 (1= o} + 207 (0} = 1) ).

(34)

Intuitively, if we are to find an AR(2) such that the one-step
MSE from a misspecified AR(1) model is greater than that for
a two-step forecast from the AR(1) model, it is likely a case
where the true AR(1) coefficient is small relative to the AR(2)
coefficient. Consider again the case that (¢;, ¢») = (0.1, 0.8).
The one- and two-step MSEs from the AR(1) model are then

MSE; = 0.750;, MSE,; = 0.640".

Thus, the MSE bound is violated. It is also possible to show that
a test based only on the forecasts can detect model misspecifi-
cation, despite the fact that the model is used in an internally
consistent fashion across the forecast horizons. Consider the
forecast revision, d;jp,,n, = )A’m,hs — )A’m,,“, and the result es-
tablished in Corollary 1 that the mean squared forecast revision
should be weakly increasing in the forecast horizon. Using the
same AR(2) example we obtain

MSFR;, = E[d}, ,] = pi (1 — o) o5 =0.190,
MSFR;; = E [d12|1,3] = ,012 (1 + pf — 2,0%,02) ay? = 0.1603.

Hence the MSFR is not increasing from horizon 2 to 3, in
violation of forecast optimality. Tests based on the MSE or
MSFR bounds would detect, at least asymptotically, the use of a
misspecified forecasting model, even though the model is being
used consistently across horizons.
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These simple examples illustrate that our variance bounds
may be used to identify suboptimal forecasting models, even
when the forecasting models are being used consistently, and
thus may help to spur improvements of misspecified forecasting
models.

5. MONTE CARLO SIMULATIONS

There is little existing evidence on the finite sample perfor-
mance of forecast rationality tests, particularly when multiple
forecast horizons are simultaneously involved. Moreover, our
proposed set of rationality tests take the form of bounds on
second moments of the data and can be implemented using the
Wolak (1989) test of inequality constraints, the performance
of which in time series applications such as ours is not well
known. For these reasons, it is important to shed light on the fi-
nite sample performance of the various forecast optimality tests.
Unfortunately, obtaining analytical results on the size and power
of these tests for realistic sample sizes and types of alternatives
is not possible. To overcome this, we use Monte Carlo simula-
tions of a variety of scenarios. We first describe the simulation
design and then present the size and power results.

5.1 Simulation Design

To capture persistence in the underlying data, we consider a
simple AR(1) model for the data-generating process:

Yi=u,+¢ (Y,,l — ,uy) + &, & ~ 1id N (0, 082)

fort =1,...,7T =100. (35)

The parameters are calibrated to quarterly U.S. CPI inflation
data: ¢ = 0.5, ayz = 0.5, ny = 0.75. Optimal forecasts for this
process are given by Y,T,_h =E Y] =pn, + " (Y,_p — Hy).
We consider all horizons between h = 1 and h = H, and set
H e {4,8]}.

5.1.1 Measurement Error. The performance of rationality
tests that rely on the target variable versus tests that only use
forecasts is likely to be heavily influenced by measurement
errors in the underlying target variable, Y;. To study the effect
of this, we assume that the target variable, Y,, is observed with
error, Y,

Vi =Y, 4+, ¥, ~iidN (0, 07).

Three values are considered for the magnitude of the mea-
surement error, oy: (i) zero, oy = 0 (as for CPI); (ii) medium,
oy = +/0.75, (similar to GDP growth first release data as re-
ported by Faust, Rogers, and Wright (2008)); and (iii) high,
oy = 2+/0.70,, which is chosen as twice the medium value.

5.1.2  Suboptimal Forecasts. To study the power of the op-
timality tests, we consider two simple ways in which the fore-
casts can be suboptimal. First, forecasts may be contaminated
by the same level of noise at all horizons:

Yion = Yoy + 0cnbraon, &n ~iid N (0, 1),

where o ), = may for all & and thus has the same mag-
nitude as the medium level measurement error. Forecasts may
alternatively be affected by noise whose standard deviation is in-
creasing in the horizon, ranging from zero for the short-horizon
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forecastto 2 x +/0.70, for the longest forecast horizon (H = 8):

2(h—1
og,h=¥><«/0.7ay, forh=1,2,...,H <8.

This scenario is designed to mimic the situation where esti-
mation error, or other sources of noise, are greater at longer
horizons.

5.2 Simulation Results

Table 1 reports the size of the various tests for a nominal size
of 10%. Results are based on 1,000 Monte Carlo simulations
and a sample of 100 observations. The variance bound tests are
clearly undersized, particularly for H = 4, where none of the
tests have a size above 4%. This result is unsurprising since not
all of the moment inequalities are binding here, see, for example,
Hansen (2005) for a related discussion.

In contrast, the MZ Bonferroni bound is oversized. Conven-
tionally, Bonferroni bound tests are conservative and tend to be
undersized. Here, the individual MZ regression tests are severely
oversized, and the use of the Bonferroni bound partially miti-
gates this feature. The vector MZ test is also hugely oversized,
while the size of the univariate optimal revision regression is
close to the nominal value of 10%. Because of the clear size
distortions to the MZ Bonferroni bound and the vector MZ re-
gression, we do not further consider those tests in the simulation
study.

Turning to the power of the various forecast optimality tests,
Table 2 reports the results of our simulations across the two
scenarios. In the first scenario with equal noise across different
horizons (Panel A), neither the MSE, MSF, MSFR nor decreas-
ing covariance bounds have much power to detect deviations
from forecast optimality. This holds across all three levels of
measurement error. In contrast, the covariance bound on forecast
revisions has very good power to detect this type of deviation
from optimality, around 70%—-99%, particularly when the short-
horizon forecast, ?”1*1’ which is not affected by noise, is used
as the dependent variable. The covariance bound in Corollary 4
works so well because noise in the forecast increases £ [dtzI hgy ]
without affecting E[Y;d, ], thereby making it less likely
that E[2Y,dng.n, — dtzthth] > 0 holds. The univariate optimal
revision regression in Equation (17) also has excellent power
properties, notably when the dependent variable is the short-
horizon forecast.

The scenario with additive measurement noise that increases
in the horizon, 4, is ideal for the decreasing MSF test since now
the variance of the long-horizon forecast is artificially inflated
in contradiction of Equation (7). Thus, as expected, Panel B
of Table 2 shows that this test has very good power under this
scenario: 45% in the case with four forecast horizons, rising
to 100% in the case with eight forecast horizons. The MSE
and MSFR bounds have essentially zero power for this type of
deviation from forecast optimality. The covariance bound based
on the predicted variable has power around 15% when H = 4,
which increases to a power of around 90% when H = 8. The
covariance bound with the actual value replaced by the short-run
forecast in Equation (12), performs best among all tests, with
power of 72% when H = 4 and power of 100% when H = 8.
This is substantially higher than the power of the univariate
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Table 1. Monte Carlo simulation of size of the inequality tests and regression-based tests of forecast optimality
H=4 H=38

Meas. error variance: High Med Zero High Med Zero
Tests

Increasing MSE 3.0 1.5 1.0 6.3 52 5.2
Decreasing COV 1.1 0.9 0.8 5.0 4.7 4.4
COV bound 1.8 1.4 1.2 0.0 0.0 0.0
Decreasing MSF 2.0 2.0 2.0 0.7 0.7 0.7
Increasing MSFR 0.1 0.1 0.1 4.4 4.4 4.4
Decreasing COV, with proxy 1.2 1.2 1.2 6.0 6.0 6.0
COV bound, with proxy 3.8 3.8 3.8 0.0 0.0 0.0
MZ on short horizon 10.8 11.9 13.6 10.8 11.9 13.6
Univar opt. revision regr. 10.2 9.7 9.8 11.5 10.2 9.4
Univar opt. revision regr., with proxy 10.8 10.8 10.8 9.5 9.5 9.5
Univar MZ, Bonferroni 12.5 12.9 18.2 18.4 19.1 224
Univar MZ, Bonferroni, with proxy 17.8 17.8 17.8 20.8 20.8 20.8
Vector MZ 332 315 28.9 922 89.9 83.5
Vector MZ, with proxy 20.7 20.7 20.7 68.6 68.6 68.6
Bonf, using actuals 3.0 2.7 2.5 8.0 7.5 8.5
Bonf, using forecasts only 3.0 3.0 3.0 7.0 7.0 7.0
Bonf, all tests 3.7 32 23 8.1 7.2 6.1

NOTES: This table presents the outcome of 1,000 Monte Carlo simulations of the size of various forecast optimality tests. Data are generated by a first-order autoregressive process with
parameters calibrated to quarterly U.S. CPI inflation data, i.e., ¢ = 0.5, rrf = 0.5, and py = 0.75. We consider three levels of error in the measured value of the target variable (high,
medium, and zero). Optimal forecasts are generated under the assumption that this process (and its parameter values) are known to forecasters. The simulations assume a sample of 100
observations and a nominal size of 10%. The inequality tests are based on the Wolak (1989) test and use simulated critical values based on a mixture of chi-squared variables. Tests
labeled “with proxy” refer to cases where the one-period forecast is used in place of the predicted variable.

optimal revision regression test in Equation (17), which has
power around 9%—11% when conducted on the actual values
and power of 53%—-66% when the short-run forecast is used
as the dependent variable. For this case, f/m—h,, is very poor,
but also very noisy, and so deviations from rationality can be

relatively difficult to detect.

Table 2. Monte Carlo simulation of power of the inequality tests and regression-based tests of forecast optimality

We also consider using a Bonferroni bound to combine var-
ious tests based on actual values, forecasts only, or all tests.
Results for these tests are shown at the bottom of Tables 1 and
2. In all cases we find that the size of the tests falls below the
nominal size, as expected for a Bonferroni-based test. However,

the power of the Bonferroni tests is high and is comparable to

PANEL A: Equal noise

across all forecast horizons

PANEL B: Increasing noise
across forecast horizons

H=4 H=38 H=4 H=38

Meas. error variance: High Med Zero High Med Zero High Med Zero High Med Zero
Tests

Increasing MSE 7.1 6.5 5.0 158 144 132 05 02 0.1 0.1 04 0.1
Decreasing COV 6.0 5.1 4.9 149 138 13.0 34 34 40 12.1 112 125
COV bound 724 780 825 735 789 840 133 146 160 89.1 91.6  96.0
Decreasing MSF 6.0 6.0 6.0 182 182 182 452 452 452 100.0 100.0 100.0
Increasing MSFR 8.1 8.1 8.1 16.7 16.7 16.7 00 00 0.0 0.0 0.0 0.0
Decreasing COV, with proxy 8.4 8.4 8.4 155 155 15.5 50 50 50 13.9 139 139
COV bound, with proxy 98.5 985 985 99.2 992 992 7277 727 727 100.0 100.0 100.0
MZ on short horizon 92.6 98.0 100.0 92.6 98.0 100.0 10.8 119 13.6 10.8 119 136
Opt. revision regr. 844 940 99.6 739 88.0 99.0 9.0 86 11.0 9.3 99 11.6
Opt. revision regr., proxy 100.0 100.0 100.0 100.0 100.0 100.0 66.1 66.1 66.1 539 539 539
Bonf, using actuals 684 838 977 673 793 954 127 122 128 994 994 995
Bonf, using forecasts only 100.0 100.0 100.0 100.0 100.0 100.0 63.9 639 639 100.0 100.0 100.0
Bonf, all tests 100.0 100.0 100.0 100.0 100.0 100.0 523 521 520 100.0 100.0 100.0

NOTES: This table presents the outcome of 1,000 Monte Carlo simulations of the size of various forecast optimality tests. Data are generated by a first-order autoregressive process
with parameters calibrated to quarterly U.S. CPI inflation data, i.e., ¢ = 0.5, af = 0.5, and p, = 0.75. We consider three levels of error in the measured value of the target variable
(high, medium, and zero). Optimal forecasts are generated under the assumption that this process (and its parameter values) are known to forecasters. Power is studied against suboptimal
forecasts obtained when forecasts are contaminated by the same level of noise across all horizons (Panel A) and when forecasts are contaminated by noise that increases in the horizon
(Panel B). The simulations assume a sample of 100 observations and a nominal size of 10%. Tests labeled “with proxy” refer to cases where the one-period forecast is used in place of
the predicted variable.
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the best of the individual tests. This suggests that it is possible
and useful to combine the results of the various bound-based
tests via a simple Bonferroni test.

It is also possible to combine these tests into a single omnibus
test by stacking the various inequalities into a single large vector
and testing whether the weak inequality holds for all elements
of this vector. We leave this approach aside for two reasons:
The first relates to concerns about the finite sample properties
of a test with such a large number of inequalities relative to the
number of available time series observations. The second relates
to the interpretability of the omnibus test: by running each of the
bound tests separately we can gain valuable information into the
sources of forecast suboptimality, if present. An omnibus bound
test would, at most, allow us to state that a given sequence of
forecasts is not optimal; it would not provide information on the
direction of the suboptimality.

We also used the bootstrap approaches of White (2000) and
Hansen (2005) to implement the tests of forecast rationality
based on multi-horizon bounds in our simulations. We found
that the finite sample size and power from those approaches are
very similar to those presented in Tables 1 and 2, and so we do
not discuss them separately here.

In conclusion, the covariance bound test performs best among
all the second-moment bounds. Interestingly, it generally per-
forms much better than the MSE bound which is the most com-
monly known variance bound. Among the regression tests, ex-
cellent performance is found for the univariate optimal revision
regression, particularly when the test uses the short-run forecast
as the dependent variable. This test has good size and power
properties and performs well across both deviations from fore-
cast efficiency. Across all tests, the covariance bound and the
univariate optimal revision regression tests are the best indi-
vidual tests. Our study also finds that Bonferroni bounds that
combine the tests have good size and power properties.

Journal of Business & Economic Statistics, January 2012

6. EMPIRICAL APPLICATION

As an empirical illustration of the forecast optimality tests,
we next evaluate the Federal Reserve Greenbook forecasts of
quarter-over-quarter rates of change in GDP, the GDP deflator,
and CPI. Data are from Faust and Wright (2009), who extracted
the Greenbook forecasts and actual values from real-time Fed
publications, extended by 4 years. We use quarterly observations
of the target variable over the period from 1980Q1 to 2004Q4, a
total of 100 quarters. The forecast series begin with the current
quarter and run up to five quarters ahead in time, that is, & =
0,1,2,3,4,5. All series are reported in annualized percentage
points. If more than one Greenbook forecast is available within
a given quarter, we use the earlier forecast. If we start the sample
when a full set of six forecasts is available, then we are left with
95 observations. This latter approach is particularly useful for
comparing the impact of the early part of our sample period,
when inflation volatility was high.

The results of our tests of forecast rationality are reported
in Table 3. Panel A shows the results for the common sample
(1981Q2-2004Q4) that uses 95 observations, and represents our
main empirical results. For GDP growth, we observe a strong
rejection of internal consistency via the univariate optimal revi-
sion regression using the short-run forecast as the target variable,
Equation (20), while none of the bound tests reject. For the GDP
deflator, several tests reject forecast optimality. In particular, the
tests for decreasing covariance between the forecast and the ac-
tual, the covariance bound on forecast revisions, a decreasing
mean squared forecast, and the univariate optimal revision re-
gression all lead to rejections. Finally, for the CPI inflation rate
we find a violation of the covariance bound, Equation (12), and
a rejection through the univariate optimal revision regression.
For all three variables, the Bonferroni combination test rejects
multi-horizon forecast optimality at the 5% level.

Table 3. Forecast rationality tests for Greenbook forecasts

Observations lined up in event time

All available observations

(T = 95) (T = 100)

Series: Growth Deflator CPI Growth Deflator CPI
Tests

Increasing MSE 0.616 0.887 0.403 0.468 0.762 0.000*
Decreasing COV 0.780 0.073* 0.954 0.616 0.528 0.777
COV bound 0.193 0.001* 0.088* 0.119 0.000* 0.140
Decreasing MSF 0.963 0.040* 0.606 0.960 0.408 0.596
Increasing MSFR 0.305 0.937 0.425 0.316 0.928 0.377
Decreasing COV, with proxy 0.904 0.063 * 0.637 0.902 0.336 0.451
COV bound, with proxy 0.134 0.007* 0.497 0.150 0.032* 0.489
MZ on short horizon 0.078* 0.204 0.848 0.038* 0.003* 0.038*
Opt. revision regr. 0.242 0.002* 0.000* 0.242 0.002* 0.000*
Opt. revision regr., with proxy 0.000* 0.011* 0.078* 0.000* 0.011% 0.018*
Bonf, using actuals 0.388 0.003* 0.002* 0.189 0.000* 0.000*
Bonf, using forecasts only 0.000* 0.037* 0.088* 0.000* 0.055* 0.088*
Bonf, all tests 0.000* 0.006* 0.004* 0.000* 0.000* 0.000*

NOTES: This table presents p-values from inequality and regression tests of forecast rationality applied to quarterly Greenbook forecasts of GDP growth, the GDP deflator and CPI
Inflation. The sample covers the period 1980Q1-2004Q4. Six forecast horizons are considered, (h = 0, 1, 2, 3, 4, 5 quarters) and the forecasts are aligned in event time. The inequality
tests are based on the Wolak (1989) test and use critical values based on a mixture of chi-squared variables. Tests labeled “with proxy” refer to cases where the shortest-horizon forecast
forecast is used in place of the target variable in the test. P-values less than 0.10 are marked with an asterisk. In order, the tests listed in the rows correspond to Corollary 1(a), 3(a), 4(a),
2, 1(b), 3(b), 4(b), 6,7, 8(c).
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Faust and Wright (2008) pointed out that forecasts from cen-
tral banks are often based on an assumed path for the policy
interest rate, and forecasts constructed using this assumption
may differ from the central bank’s best forecast of the target
variable. Ignoring this conditioning can lead standard tests to
over- or under-reject the null of forecast rationality. We leave
the extension of our bound-based tests to conditional forecasts
for future work.

Figures 1 and 2 illustrate the sources of some of the rejections
of forecast optimality. For each of the series, Figure 1 plots
the mean squared errors and variance of the forecasts. Under
the null of forecast optimality, the forecast and forecast error
should be orthogonal and the sum of these two components
should be constant across horizons. Clearly, this does not hold
here, particularly for the GDP deflator and CPI inflation series.
In fact, the variance of the forecast increases in the horizon for
the GDP deflator, and it follows an inverse U-shaped pattern for
CPI inflation, both in apparent contradiction of the decreasing
forecast variance property established earlier.

Figure 2 plots mean squared forecast revisions and the co-
variance between the forecast and the actual against the forecast
horizon. Whereas the mean squared forecast revisions are mostly
increasing as a function of the forecast horizon for the two in-
flation series, for GDP growth we observe the opposite pattern,
namely a very high mean squared forecast revision at the one-
quarter horizon, followed by lower values at longer horizons.
In the right panel, we see that while the covariance between the
forecast and the actual is decreasing in the horizon for GDP
growth and CPI, for the GDP deflator it is mildly increasing, a
contradiction of forecast rationality.

The Monte Carlo simulations are closely in line with our em-
pirical findings. Rejections of forecast optimality come mostly
from the covariance bound in Equation (12) and the univariate
optimal revision regressions in Equations (17) and (20). More-
over, for GDP growth, a series with greater measurement errors

Covariance between forecast and actual
4 . .
= 9 — Growth
a5l ceE-- CPI |
5 =—8— Deflator

05

forecast horizon

Figure 2. Mean squared forecast revisions (left panel) and the covariance between forecasts and actuals, for U.S. GDP deflator, CPI inflation

and GDP growth. (Color figure available online.)
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and data revisions, a stronger rejection is observed when only
the forecasts are used.

In Panel B of Table 3 we present the results using the full
sample of 100 observations (1980Q1-2004Q4), which gives us
more long-horizon forecasts from the beginning of the sample
period. Changing the sample period does not affect the results
for GDP growth very much. The strong rejection of internal
consistency via the univariate optimal revision regression using
the short-run forecast as the target variable remains, as does the
rejection using the Bonferroni bound to combine all tests. The
results for the GDP deflator forecasts change, with three out of
the five rejections using bounds tests vanishing, while the sim-
ple MZ test on the shortest horizon goes from not significant to
strongly significant. The results for CPI inflation forecasts also
change, with the bound on mean squared errors being signifi-
cantly violated in this different sample period. Hence, some of
the tests are sensitive to the use of a common, fixed event sam-
ple versus a partially nonoverlapping sample period. Overall,
however, this change in sample period does change the results
of some of the individual tests, but the broader conclusions re-
main: for all three series, we find significant evidence against
forecast rationality.

7. CONCLUSION

This article proposes several new tests of forecast optimality
that exploit information from multi-horizon forecasts. Our new
tests are based on monotonicity properties of second moment
bounds that must hold across forecast horizons and so are joint
tests of optimality across several horizons. We show that mono-
tonicity tests, whether conducted on the squared forecast errors,
squared forecasts, squared forecast revisions or the covariance
between the target variable and the forecast revision can be re-
stated as inequality constraints on regression models and that
econometric methods proposed by Gourieroux et al. (1982) and
Wolak (1987, 1989) can be adopted. Suitably modified versions
of these tests conducted on the sequence of forecasts or forecast
revisions recorded at different horizons can be used to test the
internal consistency properties of an optimal forecast, thereby
side-stepping the issues that arise for conventional tests when the
target variable is either missing or observed with measurement
error.

Simulations suggest that the new tests are more powerful than
extant ones and also have better finite sample size. In particu-
lar, a new covariance bound test that constrains the variance of
forecast revisions by their covariance with the outcome vari-
able and a univariate joint regression test that includes the long-
horizon forecast and all interim forecast revisions generally have
good power to detect deviations from forecast optimality. These
results show the importance of testing the joint implications
of forecast rationality across multiple horizons when data are
available. An empirical analysis of the Fed’s Greenbook fore-
casts of inflation and output growth corroborates the ability of
the new tests to detect evidence of deviations from forecast
optimality.

Our bounds hold whenever the optimal forecast is the
conditional mean of the target variable. Beyond this case, the
MSE bound is readily generalized to a bound based on non-
decreasing expected loss as the horizon grows, see Patton and
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Timmermann (2007a). Similarly, the orthogonality regressions
can be extended to use the generalized forecast error, which is
essentially the score associated with the forecaster’s first-order
condition, see Granger (1999). The estimation of loss function
parameters via moment (equality) conditions may be com-
bined with the multi-horizon inequality conditions presented
earlier using recent work by Moon and Schorfheide (2009).
Establishing results on multi-horizon forecasts when the loss
function is unknown, as in Patton and Timmermann (2007b),
may also be possible. We leave these extensions for future
work.

APPENDIX: PROOFS

Proof of Corollary 1. (a) By the optimality of Y, , and

t|l —hg
since Y‘[ n, € Fi—ng for any hg < hy, we have E,_ hb[(Y,

,|, hs) 1< E (Y, — W_hL) 1, which implies E[e];_, ] <

E [em n, ] by the law of iterated expectatlons (LIE) (b) Let
z|z hM)+( tt—hy —

hs < hy < h,. Thus

dz\h5 hy = ?;Tt—hg Yt\t hy _( tlt—hs
Vi) = dt*“‘lg T G, hy for
E[dz*lhg hy tth hL] = E[(Y} tlt—hy t|t hL)Et hM[( tlt—hs
Y, )1=0 and so covld}, 4, ] =0, and
Vidion 1= VIdy, 1+ VId,, 112> V[d[*‘h e ]. Further-
more, since E;_,[d}), ;1= Ei- hM[ t—hs Ysz—hM] =0,
for any hy < hy < hp, we have E[d,*lﬁsth] > [d;"‘%&hM].

Proof of Corollary 2. Forecast optimality under MSE loss im-
plies V7, = E;_[Y;]. Thus E,_[e},,_,1 = E_y[Y, — V]
=0,s0 Ele},_,] = 0 and cov [?;thh, €,_p) =0,and V[Y,] =
VI A;“t wl + E[em »l, or V[ Jen] = VIY] = E[em 1. Coro-
llary 1 showed that Ele}, ,l, »] 1s weakly increasing in &, which

implies that V[ /lr—] must be weakly decreasing in h.

Proof of Corollary 3. As useAtd in the earlier proofs,
forecast optimality implies cov [Y}j, . €] = O and thus
cov [ fe—n» Yil = cov [ thi—h> Yzlz p T €]l = V[ fe—nl-
Corollary 2 showed that V[¥; 1r—n]) 18 weakly decreasing in £,
and thus we have that cov [Yr\r h, Y,]is also weakly decreasing
in h. Forpart(b) cov [V i—hy > Yth n, T
dt*‘hghL] = V[ Hr—hy ]A since cov [V* Hr—hy > tlhghL] = 0. Sim-
ilarly, cov [Ytlt_hM, Yt\r—hs] = V[Ym—hML and the bound on
covariances follows from the bound on VY, ;"‘[7 »] established in
Corollary 2.

tit—hy’ t|t —hg ] = cov [

Proof of Corollary 4. For any hs < hy, Corollary 1
showed V[Y, — Y,Tt 1= VI =Yy 1. so VY ]+
V[ f—hy 1 — 2cov [Y;, Y;‘l‘, Iy 1> V[Y]+ V[ e hg]

— 2cov [Y;, l‘l_hs] and

v [AtTt—hL]
=V [A;\Ff*hs]
=V [Vin + ]~

= V[P S ]V [, ]
—2cov [Yts dt*|hg,hL] :

— 2cov [Yh ?tTt—hL]
— 2cov [Ytﬂ ?;\ktfhs]
2cov Y, )A’,T,th + dt*|hs,hL]

— 2cov [, ?tTt_hL]
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Thus V[d}j,, 5,1 < 2cov [Yy, dfjy, 5, 1-
For the second part, V[d}; by 1= 200V [Y:. d, r\hM hL] =
2cov [Y},_ps F €y Ay 1 = i

2cov [V} AT
* * _
cov [, _pe iy, ] =

Hi—hs> n, ] since

Proof of Corollary 5. (a) Note that cov [e;"‘tfh,Y,]z
cov [el*‘l_h, I?;Tt_h + e;jt_h] = V[e;‘“_h], cov [e;*lt_h,
)?;thh] =0 by forecast optimality. Corollary 1 established
that MSE is increasing in the forecast horizon, and thus
we have that cov [e] Y,] is increasing in the forecast
horizon.  (b)  cov [d, ;.. ffff,_hs] = cov [d}j 1, » f’l’l‘l_,u
+dy o 1= VIdy, 1. since  cov[df, Y, 1=0.
Corollary 1 established that the mean squared forecast re-
vision is increasing in the long forecast horizon, and thus
we have that cov [d}, ;. Y/, ;] is increasing in the long

since

tle—h>

z\z

forecast  horizon. (c) cov [em hL s s, hL] =cov [¥; —
% O %
Yr\r —hp> Yz|z hs Yzlt hr ]_COV [Yf’ tlt hs Ytlt hL]

since cov[ di—n, > dingn, ] = 0. Corollary 3 showed that
cov [Y;, Y t\t »] is decreasing in the forecast horizon thus,
keeping hgs fixed, we find that cov [Y;, Y,
cov [Y;, mehs] —cov [Y;, Yz\thL
forecast horizon, as claimed.

t\t hs t\t hL] -
] is increasing in the long

Proof of Corollary 6. The population value of B, is
cov [Y,|t 7 Y, /V[Y,|, »], which under optimality equals
Br = cov [¥}] tli=h YT]/V[Ysz h] = cov [Yt|t ho z\z h +ez|z h]/
V[Y,T, Wl = V[ = h]/V[Y:“t »1=1. The populatlon value
of o under optimality equals «;, = E[Y;] —,BhE[ - =
ElY,] — E[Ytthh] = 0 by the LIE since Ytthh = E,_;1Y;].

Proof of Corollary 7. Let the parameters in the regression

H—-1
Yi=a+ ,BHYAvt\tth + Z ,Bjdz|h‘,v,h,v+1 + u,,

Jj=1

be denoted 6 = [a, By, Bi, . .., Ba—1]". The result follows from
the fact that the probability limit of the OLS estimator of 6 is

Yth/oéhH +1 —I_’hH/o)%hH o .- 0
_?hH/G}%hH o;hi 0
-2
0 0 Oy 0 0
0
0
0 0 0 o2
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Y, 0
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where ¥y, = E[Y,—n, ], O’% = V[¥y—1,] and we used prop-
iy

erties of the partitioned inverse.

Proof of Corollary 8. (a) Under optimality, B, = cov

[ tlt—hy? Tt hj ]/V[YITI hj ] - COV[ t|t—h; +dz>lh1 hj? )A/tTt—h/-]/
V[Y,Tt h] VI Y;’l‘t h /V |t 0 ]=1,and @, = E[Y;\szh]]_
,BhE[ i 1= E[Y,] — E[Y;] = 0. Part (b) follows from part

(a), noting "that this is a constrained regression where all off-
diagonal slope coefficients are restricted to be zero and so these
are just stacked regressions of the type in part (a). Part (c) fol-
lows using the same steps as the proof of Corollary 7, noting

that Y;;, - = =E hz[y,] = E,_n,[¥},_, ] by the LIE, and that
Ei._ hz[ tlt—hy t|t hz] =E._ hv[dt|h hz] 0.

Proof of Proposmon 2. (a) By forecast optimality
we have E,_p[(Y, — ¥, ] < E,_ w0 =¥, 1 for
all hg < hy, which implies E[(Y; — \t—h~)2] < E[(Y; —

(7 2 -1 r 2
¥i,,)’] by the LIE. Thus 7' " ELY, — ¥, )1 <

T
7! Zt E[(Y, —
(b) By forecast optlmahty we haveE,_h[e;kltfh]zo,

so E;_ple,_, Y5, 1=0 and Ele},_, A;;l ,]=0 by the
LIE This implies that E[Y?]= E[(Y_, +¢};,_,)°] =
E[ first h] + E[em »]1 = MSF;(h) + MSE,(h),so MSF,(h) =
E[Y, ’] —MSE,(h). We established in part (a) that
MSE,(hs) < MSE,(h;) for all hg < h; and for each f,
and since E[Y,z] is not a function of h, this implies that
MSF,(hs) > MSF,(hy) for all hg < hy. Averaging over
t=1,2,..., T leads to MSFy(hg) > MSFy(hy).

© E._ulY; A;‘; W =E ;,[Yt]?;[ p=Y2,. and so
Ci(h) = E[Y,Y],_,] = E[E,_4lY/Y, T, R = E[Y[L2 nl =
MSF, (h), which was shown to be decreasing in /4 in part (b), thus
C,(h) is also decreasing in h. Averaging over t =1,2,..., T
leads to Cr(hs) > Cr(hy).

(d) By the fact that ?sz—h = E;_4[Y,] we have
E 1Yy = Vi 1= E, 3, 1=0forall hs < hy.
Thus Ei_p, [dt*llts,hL] = Ein, [(dyg 1, + dt*th,hL)z] =
Ei- —hu [dt*I%sth] + dl*l%lM.,hL’ and E[dl*llzlsth] = E[df*listh] +
E[d;; , 1bythe LIE. Thus MSFR,(hs, k) = MSFR,(hs, hy)
for all hg <hy <hy for each t. Averaging over
t=1,2,...,T leads to MSFR7(hg, hy) < MSFR7(hs, hr)
as claimed.

(e) From (a) we have E;_j [(Y; — t\t hL)z] > Et n (Y —
YtTt hs )2] for all hg < hy, which implies E[(Y; — lIt . )] >
E[(Y; — ” +_ny)’], by the LIE. Using the derivations in the proof
of Corollary 4 this implies MSFR,(h,, hy) = E[dt*‘%s,hL] <
2EY,d}; s ] 1= Bi(hy, hy). Averaging over t =1,2,...,T
leads to MSFRy (hs, hy) < 2Br(hg, hy) as claimed.

Y, )] as claimed.

Proof of Proposition 3. Follows from Exercise 5.21 of White
(2001).

Proof of Proposition 4. (a) Let h;, k, be integer-valued
random variables with support H x K. Let Pr[h, = h;] = p;
and let Prlk, = k;|h, = h;] = g;;. First, note that ej,_, =

Y, - Y, = ZhjeH(Y, — ¥ ) Wy =hj}and €, =



16

Zh,eH(Y’ — V)% Uk =hy} since 1{h, = hj}1{h, =
hi} =0 for h; #h;. Then the “short horizon” MSE
equals:

MSEjy

E [(Yl - AtTt—h/)z]
Z E |:(Yf - Al‘TT—hj)z A = hl}]

/’lj€H

=) piE [(Yt - At*th_,)z]

hjeH

while the “long horizon” MSE equals

MSE, = E [(Y, - A;@fhﬁ,{/)z]

=) D E [l{k,=ki}1{h,=h A (r- A,T,_hj_k,.)z}

hjeH kieK

hjeH kiek

A 2
X (Yt - sz—hj—k,) |72 Zhji| Pl‘[h, Zhj]

=Y piY E [1 {kfzki}(y, - A,’,‘,h,_ki)zm,:h,]

hjeH  kek
A 2
= > k| (6= i) |
h,‘EH kiek

The difference between these is

A 2
MSEs — MSE. = »_ p; (E [(Yz - sz—h,-) ]

hjeH
. 2

— ZCIUE |:<Y, - tltfh‘,'fk,) :|>

k,’EK
=> Pj(Zqz'j {E [(Yt - tlt—hj) ]
hjeH kiek

— E [(Yz - A:*rh,fkf)z}D
0 since E [(Yz - Ar*r—hf)z}

R 2
<E [(Y, - ;‘;_h/__k/_) ] for allh;, k;.

(b) Let the short-horizon lengths, h,, and long horizon
lengths, h, + k;, be given by some predetermined sequence
{h:, k32 _ . Note that this introduces heterogeneity into the
problem, even when the underlying data generating process is
stationary. Nevertheless, the bounds established in Section 2
continue to hold: By forecast optimality we have E,_j [(Y; —
Y )1 < Eip [(Ys — ¥}, )] for each ¢, which implies
E[(Y, = Y;,_,)*] < E[(Y, — ¥}},_, _, )*] by the LIE. Averag-
ingovert =1,2,..., T leads to a bound on the average MSE

IA
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over the sample period MSE7(hs) < MSEy(h,). Correspond-
ing results can be obtain for the remaining bounds using the
same arguments.
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In the forecasting literature, researchers often seek to deter-
mine stylized facts, such as: Are forecasts rational? But fore-
casts can be characterized in many dimensions and answering
the question about whether forecasts are rational may require
a multidimensional answer. I think about forecasts in three di-
mensions: (1) horizon, (2) subsample, and (3) vintage.

One dimension of forecast rationality is the horizon of the
forecast. The literature on the rationality of forecasts finds some
differences across forecast horizons. Zarnowitz (1985) found
that the results of tests for bias vary across horizons with no
systematic tendency across variables, using individual fore-
casts from the ASA-NBER (American Statistical Association—
National Bureau of Economic Research) survey (now the Survey
of Professional Forecasters, SPF). Similarly, Brown and Maital
(1981) found varying bias across horizons for forecasts of vari-
ables from the Livingston survey. Generally, the early literature
in the 1980s finds many cases of bias in forecasts. However,
Keane and Runkle (1990) found convincing evidence of no bias
for inflation at short horizons using the individual forecasters in
the ASA-NBER survey.

The second dimension of forecast rationality is the subsam-
ple. Though researchers seek to find stylized facts, they are
thwarted by instabilities in empirical results across subsamples.
Croushore (2010) shows how forecast rationality tests using
SPF forecasts change dramatically over time, depending on the
starting date and ending date of the subsample. For example,
Figure 1 shows how the sample ending date affects the results
of a rationality test, which is a test that determines whether the
mean forecast error is zero. The plot shows the p-value testing

the null hypothesis whether the mean forecast error is zero for
different subsamples. The line labeled test for bias before break
point shows the p-values for tests using subsamples that begin
in 1971 and end at the date shown on the horizontal axis. The
line labeled test for bias after break point shows p-values for
tests using subsamples that begin at the date shown on the hori-
zontal axis and end at the end of 2008. The idea is that when we
look for stylized facts, we are limited by the data available to
us. And the starting and ending dates of our samples are often
random or occur by happenstance. Suppose the development of
the SPF had been delayed 5 or 10 years; then we would have a
very different starting date for many of our forecast tests. If the
facts we discover are truly stylized facts, then they should not be
affected by small changes in the starting or ending dates of our
data series. However, a look at Figure 1 suggests that facts about
the rationality of SPF inflation forecasts are a function of the
subsample. Depending on the exact starting or ending dates of
the sample, we reach different conclusions about the rationality
of the survey forecasts. Thus, no stylized fact is found that is
robust across subsamples.

The third dimension of forecast rationality is the data vin-
tage. Croushore (2011) shows that the results of some fore-
cast rationality tests depend somewhat on the vintage of the
data chosen as “actual” to be used to evaluate the accuracy of
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