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In the forecasting literature, researchers often seek to deter-
mine stylized facts, such as: Are forecasts rational? But fore-
casts can be characterized in many dimensions and answering
the question about whether forecasts are rational may require
a multidimensional answer. I think about forecasts in three di-
mensions: (1) horizon, (2) subsample, and (3) vintage.

One dimension of forecast rationality is the horizon of the
forecast. The literature on the rationality of forecasts finds some
differences across forecast horizons. Zarnowitz (1985) found
that the results of tests for bias vary across horizons with no
systematic tendency across variables, using individual fore-
casts from the ASA-NBER (American Statistical Association–
National Bureau of Economic Research) survey (now the Survey
of Professional Forecasters, SPF). Similarly, Brown and Maital
(1981) found varying bias across horizons for forecasts of vari-
ables from the Livingston survey. Generally, the early literature
in the 1980s finds many cases of bias in forecasts. However,
Keane and Runkle (1990) found convincing evidence of no bias
for inflation at short horizons using the individual forecasters in
the ASA-NBER survey.

The second dimension of forecast rationality is the subsam-
ple. Though researchers seek to find stylized facts, they are
thwarted by instabilities in empirical results across subsamples.
Croushore (2010) shows how forecast rationality tests using
SPF forecasts change dramatically over time, depending on the
starting date and ending date of the subsample. For example,
Figure 1 shows how the sample ending date affects the results
of a rationality test, which is a test that determines whether the
mean forecast error is zero. The plot shows the p-value testing

the null hypothesis whether the mean forecast error is zero for
different subsamples. The line labeled test for bias before break
point shows the p-values for tests using subsamples that begin
in 1971 and end at the date shown on the horizontal axis. The
line labeled test for bias after break point shows p-values for
tests using subsamples that begin at the date shown on the hori-
zontal axis and end at the end of 2008. The idea is that when we
look for stylized facts, we are limited by the data available to
us. And the starting and ending dates of our samples are often
random or occur by happenstance. Suppose the development of
the SPF had been delayed 5 or 10 years; then we would have a
very different starting date for many of our forecast tests. If the
facts we discover are truly stylized facts, then they should not be
affected by small changes in the starting or ending dates of our
data series. However, a look at Figure 1 suggests that facts about
the rationality of SPF inflation forecasts are a function of the
subsample. Depending on the exact starting or ending dates of
the sample, we reach different conclusions about the rationality
of the survey forecasts. Thus, no stylized fact is found that is
robust across subsamples.

The third dimension of forecast rationality is the data vin-
tage. Croushore (2011) shows that the results of some fore-
cast rationality tests depend somewhat on the vintage of the
data chosen as “actual” to be used to evaluate the accuracy of
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Figure 1. p-values for bias at alternative break dates. The plot shows the p-value testing the null hypothesis that the mean forecast error is
zero for different subsamples. The line labeled test for bias before break point shows the p-values for tests using subsamples that begin in 1971
and end at the date shown on the horizontal axis. The line labeled test for bias after break point shows p-values for tests using subsamples that
begin at the date shown on the horizontal axis and end at the end of 2008. (Color figure available online.)

forecasts. Many data series are revised for very long periods of
time, so how does a researcher choose which measure to use?
In the literature, the choices have varied from the release of
data two months after the initial release, to the annual revision,
to the last vintage before a benchmark revision, to the latest-
available data series. But that seemingly innocuous choice may
have a large impact on tests for rationality. For example, Figure 2
shows the sensitivity of the zero-mean forecast error test to the
choice of both the starting date of the forecast (shown on the
horizontal axis) and the choice of variable used as actual (ini-
tial, pre-benchmark, or latest-available). Clearly, not only does
the subsample period affect the rationality test, but so does the
choice of actual. Choosing the initial actual leads to many more
subsamples in which we reject the null hypothesis of no bias
than using the other two choices of actuals.

In their article, “Forecast Rationality Tests Based on Multiple-
Horizon Bounds,” Patton and Timmermann (2011) handle two
of the three dimensions of forecast rationality tests: they look
across alternative forecast horizons and they develop tests for
which choosing an “actual” is not needed. They do not, however,
look at the sensitivity of their results to alternative subsamples.

The Patton–Timmermann article accomplishes two main ob-
jectives. First, it uses forecasts across alternative horizons, which
is valuable because theory implies restrictions on forecasts
across different horizons that can be tested. The use of many dif-
ferent horizons avoids issues about choosing which one horizon
to analyze. Second, the article develops some tests for which
no choice of actual is necessary, which is valuable in avoiding
having to choose a vintage of the data to use as actual. Many
researchers struggle with this issue. They often use as actuals
the latest-available data, which is convenient, but which may
be problematic because of re-definitions and other methodolog-
ical changes. Alternatively, they must develop a real-time dataset

with some version of actual data that are not subject to distortions
because of methodological changes if the data they need are not
conveniently available in an existing real-time dataset, such as
the Philadelphia Fed’s Real-Time Data Set for Macroeconomists
(see Croushore and Stark 2001). With the Patton–Timmerman
tests, no choice of actual is necessary, so researchers avoid
having to make this difficult choice. Forecasts, as well as data
that will be revised in the future, are treated in a similar manner.

The article provides tests that are easy to interpret, because
they lend themselves to graphical interpretations. For example,
Figure 1 in the Patton–Timmermann article shows mean squared
errors and variances of forecasts from the Greenbook. The sum
of the two components should be constant across horizons if the
forecasts are optimal, but the graph shows clearly that is not the
case. In addition, the variance of the forecasts should increase
with horizon if the forecasts are optimal, but that does not hold
for the inflation series, as a quick glance at the figure illustrates.
Figure 2 in the Patton–Timmermann article shows plots across
horizons of mean squared forecast revisions and the covariance
between the forecast and the actual (for this test, an actual must
be chosen). Mean squared forecast revisions should increase as
a function of horizon if the forecasts are optimal, but that is not
the case for GDP growth. The covariance between the forecast
and the actual should decrease with horizon if the forecasts are
optimal, but that is not true for the GDP deflator.

So, the Patton–Timmermann article has many useful features
and is the first to provide us with solid analytical results and easy-
to-interpret tests. There are three issues about their methods that
are worthy of further investigation: (1) The tests may not provide
a researcher with the ability to engage in a forecast improvement
exercise. (2) The assumptions of the article may not be valid
when major benchmark revisions to the data occur. (3) The
conclusions are potentially sensitive to the subsample choice.
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Figure 2. Alternative actuals: p-values for bias after break point. The plot shows the p-value testing the null hypothesis that the mean forecast
error is zero for different subsamples and different concepts of actuals. Each line shows p-values for tests using subsamples that begin at the
date shown on the horizontal axis and end at the end of 2008. The line labeled actuals = initial shows the p-values for tests using as actuals the
value recorded in the initial data release and is the same line as shown in Figure 1. The line labeled actuals = pre-benchmark vintage shows the
p-values for tests using as actuals the value recorded in the last vintage before a benchmark revision. The line labeled actuals = latest available
shows the p-values for tests using as actuals the value recorded in the vintage of May 2011. (Color figure available online.)

The first issue worthy of further investigation is that the tests
may not provide a researcher with the ability to engage in a
forecast improvement exercise. For example, consider the test
discussed earlier for investigating whether mean forecast errors
are zero. The mean forecast error is et = xat − x

f
t , where xat

is the actual value and xft is the forecast value. If we run the
regression et = α + εt , we can use the estimated value of α to
create an improved forecast: xit = α̂ + x

f
t , where the improved

forecast is xit . Researchers in the 1980s who found bias in fore-
casts advocated this procedure as a method to reduce forecast
errors. Such a test can be used in many different contexts. For
example, Faust, Rogers, and Wright (2005), used such a pro-
cedure to show how that they can use initial data releases to
forecast revisions to GDP in many countries, reducing the mean
squared forecast error substantially.

The tests provided by Patton and Timmermann are useful
in showing that forecasts are not optimal, but the tests do not
lend themselves to forecast improvement possibilities. So, the
tests can determine that there is a problem with the forecasts,
but provide no guidance about what to do in response. Often
in working on forecasts, we observe in-sample predictability of
forecast errors, but we are unable to improve the forecasts in
a real-time out-of-sample forecast improvement exercise. So,
Patton and Timmermann might want to consider how to use
their tests to provide guidance to forecasters on how to fix the
problems their tests identify.

The second issue worth further investigation is that the as-
sumptions in the article may not be valid under major bench-
mark revisions to the data. In particular, the monotonicity of
mean squared forecast revisions depends on the covariance sta-

tionarity of the data series. Under the benchmark revision pro-
cess, forecast revisions that violate some of the proposed tests
could be rational if large benchmark revisions cause a change in
the data-generating process. Have such large revisions occurred
in practice? It is hard to know for sure, but the Stark plots from
Croushore and Stark (2001) are suggestive.

For example, Figure 3 shows the Stark plot for the bench-
mark revision of GDP in examining the key benchmark revision
that occurred in January 1996, which was the benchmark re-
vision in which chain weighting was introduced and in which
some government purchases were reclassified as investment.
The plot shows the demeaned log differences of GDP before
and after the benchmark revision of January 1996. It is a plot
of log[X(t,b)/X(t,a)] – m, where X(t,s) is the level of X at date
t from vintage s, where s = a or s = b, b > a, and m is the
mean of log[X(τ ,b)/X(τ ,a)] for all the dates that are common to
both vintages a and b. The upward trend in the Stark plot means
that later data were revised up more than earlier data. But the
downward slope at the beginning and end of the sample shows a
more complex pattern. This could cause a lack of covariance sta-
tionarity across vintages and violate the conditions under which
the monotonicity of mean squared forecast revisions is derived.
Some work to ensure that this issue is not sufficient to worry
about might be in order for data samples that include major
benchmark revisions, such as that in 1996.

The third issue worth considering is that the conclusions could
be sensitive to subsample choices. This may be worth investi-
gating so that we do not falsely generalize about results based
on the overall sample. Potentially, the tests proposed by Patton
and Timmermann could be less sensitive to subsample choice
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Figure 3. Stark plot across January 1996 benchmark revision. The plot shows the demeaned log differences of GDP before and after the
benchmark revision of January 1996. It is a plot of log[X(t,b)/X(t,a)] – m, where X(t,s) is the level of X at date t from vintage s, where s = a or s
= b, b > a, and m is the mean of log[X(τ ,b)/X(τ ,a)] for all the dates that are common to both vintages a and b. In this plot, a = December 1995
and b = October 1999. (Color figure available online.)

than other tests, including the standard Mincer–Zarnowitz test
and the test for zero-mean forecast errors.

To conclude, this article by Patton and Timmermann provides
us with an excellent set of tests that can complement much
existing research. The tests help us cross two dimensions of
forecast rationality: horizon and real-time vintage. They could
potentially help as well in the subsample dimension.

[Received April 2011. Revised August 2011.]
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1. INTRODUCTION

I enjoyed reading yet another article by Patton and Timmer-
mann (PT hereafter) and feel that it has broken new ground
in testing the rationality of a sequence of multi-horizon fixed-
target forecasts. Rationality tests are not new in the forecasting
literature, but the idea of testing the monotonicity properties
of second moment bounds across several horizons is novel and
can suggest possible sources of forecasting failure. The basic
premise is that since fixed-target forecasts at shorter horizons

are based on more information, they should on the average be
more accurate than their longer horizon counterparts. The inter-
nal consistency properties of squared errors, squared forecasts,
squared forecast revisions, and the covariance between the tar-
get variable and the forecast revision are tested as inequality
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constraints across horizons. They also generalize the single-
horizon Mincer-Zarnowitz (MZ) unbiasedness test by estimat-
ing a univariate regression of the target variable on the longest
horizon forecast and all intermediate forecast revisions. Using a
Monte Carlo experiment and Greenbook forecasts of four macro
variables, PT show that the covariance bound test and the gen-
eralized MZ regression using all interim forecast revisions have
good power to detect deviations from forecast optimality. I am
sure we will be using, extending, and finding caveats with some
of the testing proposals suggested in this article for years to
come.

2. THEORETICAL CONSIDERATIONS

An important starting point of the article is that for internal
consistency of a sequence of optimal forecasts, the variance of
forecasts should be a weakly decreasing function of the forecast
horizon. This point has been discussed by Isiklar and Lahiri
(2007), and was originally the basis for testing whether data re-
visions are news (and not noise) by Mankiw and Shapiro (1986).
In order to highlight the nature of the fixed-target forecast vari-
ances, I have plotted in Figure 1 the sequences of monthly real
GDP forecasts for 24 target years 1986–2009 from horizons
24 to 1 using consensus forecasts from the Blue Chip surveys.
This survey is very well suited to examining the dynamics of
forecasts over horizons. The respondents start forecasting in
January of the previous year, and their last forecast is reported
at the beginning of December of the target year. The shaded
bars in the bottom of Figure 1 are the variances of mean fore-
casts calculated over the target years. Clearly, the variances are
nondecreasing functions of horizons and thus the relationship is
consistent with rational expectations. Isiklar and Lahiri (2007)
explained the relationship by the following logic. Consider yt

= ft,h + ut,h where yt is the actual GDP growth, ft,h is the h-
period ahead forecast (h = 24, 23, . . . , 1) made at time t – h,
and ut,h denotes the ex-post error associated with this forecast.
Since rational expectations imply that cov(ft,h, ut,h) = 0, we have
var(yt) = var(ft,h) + var(ut,h), which implies (since for fixed tar-
get forecasts, variance of yt is same for all h) that the variations
in forecasts and forecast errors move in opposite directions as
the forecast horizon changes. Therefore, as the forecast horizon
decreases, the forecast error variability (and therefore the un-
certainty) also decreases, but the forecast variability increases.
Another way of looking at this increasing variability of fore-
casts is that as the forecast horizon decreases, more information
is absorbed in the forecasts, thus increasing their variability. This
information accumulation process can be seen using a simple
moving average (MA) data-generating process. Suppose that the
actual process has a moving average representation of order q
so that yt = µ+∑q

k=0 θkεt−k with var(εt) = σ 2. Let It,h denote
the information available at time t-h. Then, the optimal forecast
at horizon h will be

ft,h ≡ E(yt |It,h) = µ+
q∑
k=h

θkεt−k, (1)

and the variance of the forecast is

var(E(yt |It,h)) = σ 2
q∑
k=h

θ2
k . (2)

Similarly, the variance of the forecast when the forecast
horizon is h – 1 is var(E(yt |It,h−1)) = σ 2 ∑q

k=h−1 θ
2
k , so that

var(ft,h−1) = var(ft,h) + θ2
h−1σ

2.
Thus, when the forecast horizon is very long, that is, sev-

eral years, the forecasts tend to converge toward the mean of
the process, and as information is accumulated, the forecasts
change increasing the forecast variability. Figure 1 exhibits this
phenomenon very well. Note that for horizons from 24 to 16, the
variance seems to remain constant, as was illustrated by Isiklar
and Lahiri (2007) for a large number of countries, but with a
smaller sample size using the Consensus Survey forecasts. The
forecast variability increases because of the variability of the
accumulated shocks, that is, θkεt−k . Therefore, if forecast vari-
ability does not change over several long horizons, this may
mean that the information acquired at 24 to 16 horizons does
not have much impact on the actual value, that is, |θk| is small
or equivalently relevant information simply does not exist. Of
course, this may also be related to the informational inefficiency
of the forecasts. It is possible that even if potentially relevant
information over these horizons were available, the forecast-
ers did not incorporate them appropriately causing less than
optimal variability in the forecasts. The point here is that due
to the nonmonotone arrival and use of information by forecast-
ers at different horizons, the monotonicity properties of second
moments like the forecast variance that PT exploit may be less
obliging for the detection of forecast suboptimality.

The first difference in the MSEh provides a measure of the
new information content of forecasts when the horizon is h. On
the basis of Equation (1), an optimal forecast ft,h satisfies

�MSE(ft,h) ≡ MSE(ft,h+1) − MSE(ft,h) = θ2
hσ

2, (3)

which is equivalent to the information content of the new infor-
mation in the actual process.

Now let Ĩt,h denote a strict subset of It,h, and f̃t,h be a subop-
timal forecast, which is generated according to

f̃t,h ≡ E(yt |Ĩt,h) = µ̃+
q∑
k=h

θ̃kε̃t−k, (4)

where q denotes the longest forecast horizon at which the
first fixed-target forecast is reported—it defines the conditional
mean of the actual process when the horizon is q, that is,
µ̃ = E(yt |Ĩt,q); ε̃t−h denotes the “news” component used by the
forecaster, and θ̃h denotes the impact of this news component as
perceived by the forecaster.

For convenience, let us assume that the forecasters observe
the news εt−h correctly, but that their utilization of news is not
optimal, so that θ̃h �= θh and ε̃t−h = εt−h. Thus, we see that the
forecast errors follow:

yt − f̃t,h = (µ− µ̃) +
q∑
k=h

(θk − θ̃k)εt−k +
h−1∑
k=0

θkεt−k, (5)

where the first component on the right-hand side (RHS) de-
notes the bias in the forecast, the second component denotes
the error due to inefficiency, and the third component denotes
the error due to unforecastable events after the forecast is re-
ported. Calculating mean squared error (MSE) and assuming
that sample estimates converge to their population values, we
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Figure 1. Evolution of fixed target forecasts over horizons and their variances.

get

MSEh = (µ− µ̃)2 +
q∑
k=h

(θk − θ̃k)
2σ 2 +

h−1∑
k=0

θ2
k σ

2. (6)

Thus, we find that �MSEh ≡ MSEh+1 − MSEh is

�MSEh = θ2
hσ

2 − (θh − θ̃h)2σ 2, (7)

which gives the improvement in forecast content with the new
information. The first element on the RHS represents the max-
imum possible improvement in the quality of forecasts if the
information is used efficiently, but the second component rep-
resents the mistakes in the utilization of the new information. If
the usage of the most recent information θ̃h differs from its op-
timal value θh, the gain from the utilization of new information
will decrease and result in excess variability in the forecasts
given by the second term. In the special case where θ̃h = θh,
Equation (7) is equivalent to Equation (3). In this case,�MSEh
will measure the content of new information in the actual
process, which is simply θ2

hσ
2. Note, however, that a non-

negative MSE differential is compatible with the situation where
θ̃h �= θh for a wide range of parameter values. This underscores
the point that the bounds derived by PT are implied by fore-
cast rationality, and hence are not necessary conditions. In other
words, if these tests reject the null, we have evidence against
forecast rationality, but if the tests do not reject, we cannot say
we have evidence in favor of rationality. The issue is whether ex-
tant forecast efficiency tests, like those due to Nordhaus (1987)
or Davies and Lahiri (1999), would detect forecast irrationality
under the latter scenario.

While the use of �MSEh provides an estimate of the im-
provement in forecasting performance at horizon h in an ex-post
sense, a similar measure can be constructed based solely on
forecasts without using the actual data on the target variable—a
point emphasized by PT. Notice that, based on Equation (1),
the optimal forecast revision rt,h ≡ ft,h − ft,h+1 is nothing but
rt,h = θhεt−h. In the suboptimal case of Equation (4), we have
the forecast revision process rt,h = θ̃hεt−h. Calculating the mean
squared revisions (MSRs) at horizon h and taking the probability
limit, we get MSRh = p limT

1
T

∑T
t=1 r

2
t,h = θ̃2

hσ
2, which pro-

vides a measure for the reaction of the forecasters to news. But
since forecasters react to news based on their perceptions of
the importance of the news, this measure can be seen as the
content of the new information as perceived by the forecasters
in real time. Note the clear difference between �MSEh and
MSRh. While the former is driven by the forecast errors, the
latter has nothing to do with the actual process or the outcomes.
But both of the measures should give the same values if the
survey forecasts are optimal. This result was originally pointed
out by Isiklar and Lahiri (2007).

The difference between MSRh and�MSEh may provide im-
portant behavioral characteristics of the forecasters such as over
or underreaction to news at a specific forecast horizon. MSRh

can be seen as a measure of how forecasters interpret the im-
portance of news at a specific horizon, and�MSEh can be seen
as the “prize” they get as a result of revising their forecasts.
Suppose that forecasters make large revisions at horizon h, but
the performance of the forecasts does not improve much at that
horizon, then one may conjecture that the forecasters react ex-
cessively to the news. To see this more clearly, simple algebra
yields MSRh −�MSEh = 2(θ̃2

h − θhθ̃h)σ 2, which is positive
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Figure 2. MSE, MSF, and their differentials, Blue Chip Consensus Forecasts 1986–2009.

when θ̃2
h > θhθ̃h. This is the same as the condition |θ̃h| > |θh|.

But |θ̃h| > |θh| is equivalent to overreaction to the news when
the horizon is h. Thus, forecast optimality can be tested by the
equality between MSRh and �MSEh. This concept is the ba-
sis of the amended Nordhaus-type rationality test suggested by
Lahiri and Sheng (2008) in which forecast error is regressed on
the latest forecast revision for testing its significance. Note that
PT’s bounds test on the MSRs is defined slightly differently as
the difference between ft,1 − ft, m and ft,1 − ft, m−1 where m is an
intermediate horizon.

3. ADDITIONAL SURVEY EVIDENCE

In order to visualize the differences in MSRh as we defined
above, �MSEh and PT’s MSR, we plotted these values in Fig-
ure 2, calculated from the Blue Chip consensus forecasts over
1986–2009. The actual values are the first available real-time
data obtained from the Philadelphia Fed’s real-time database.
First note that PT’s MSR and �MSEh are almost identical at
most horizons because when the shortest horizon forecast is very
close to the actual value, as is actually the case, the two mea-
sures will be very similar. Second, both are nonnegative at all
horizons suggesting forecast rationality by the PT criteria. How-
ever, we find a substantial wedge between MSRh and �MSEh
particularly in the middle horizons that suggests substantial un-
derreaction to news, and hence inefficiency. Thus, PT’s MSE and
MSR differential bounds conditions are not stringent enough to
detect inefficiency in the Blue Chip consensus forecasts. This is
consistent with the evidence they report. Note, however, with the
same Blue Chip data series over 1977–2009, the Nordhaus test
readily rejects rationality over multiple horizons with adjusted
R2 in excess of 0.20 and the coefficient on the lagged forecast
revision around 0.58. This result is valid over different sample
periods 1977–2009 and 1986–2009, over all horizons and also

over horizons between 16 and 6. Note that even though PT did
not consider the Nordhaus test in their experiments, their bounds
test that the variance of the forecast revision should not exceed
twice the covariance between the forecast revision and the ac-
tual value is effectively the Nordhaus test in disguise because,
given that the longer horizon forecasts have larger MSEs than
shorter horizon forecasts, this particular PT condition is derived
using the Nordhaus condition that forecast errors should be un-
correlated with forecast revisions under forecast efficiency (see
their proof of Corollary 4 in the appendix).

We also experimented with the extended MZ regression us-
ing consensus Blue Chip real GDP forecasts from 1977 to 2009.
Data on horizons 16 through 7 are available throughout the Blue
Chip sample. PT’s univariate optimal revision regression gen-
eralizing the MZ regression rejected the null that the intercept
is zero and that the coefficients of the horizon 16 forecast and
the series of intermediate forecast revisions are one with the
p-value of 0.07. But all individual MZ regressions accepted the
unbiasedness hypothesis with p-values in excess of 0.5. This re-
sult is very similar to what PT found with Greenbook forecasts
on real GDP. However, the high multicollinearity between suc-
cessive revisions tends to make this regression highly unstable,
particularly when forecasts on a large number of horizons are
available. Thus, one should be careful while using this test—the
conclusions using this test may depend on the horizons included
in the extended regression.

I also used another rich survey panel dataset—the U.S. Survey
of Professional forecasters (SPF)—over 1968Q4–2011Q1 using
three primitive forecasts of individuals (ID nos 40, 65, and 85)
each having more than 100 quarters of participation, and also
all forecasters who participated at least 10 times yielding a total
of 425 forecasters in the “all” group. I used real GDP forecasts
for six available horizons—beginning with the current quarter.
Various forecast statistics are reported in Table 1. The actual



24 Journal of Business & Economic Statistics, January 2012

Table 1. Real GDP forecast error statistics for SPF data

Forecaster ID no. 40 Forecaster ID no. 65 Forecaster ID no. 85 All

Horizon quarter MSE MSR �MSE MSE MSR �MSE MSE MSR �MSE MSE MSR �MSE

1 7.295 2.997 0.788 4.447 5.645 4.62 4.572 2.283 2.66 7.083 7.203 3.793
2 8.083 1.765 3.442 9.067 2.962 2.066 7.232 1.789 −0.789 10.876 6.650 2.444
3 11.525 0.766 1.147 11.133 2.927 0.474 6.443 1.326 −0.148 13.320 6.696 3.543
4 12.672 1.495 −4.129 11.607 4.934 3.69 6.295 2.142 5.057 16.863 5.601 −0.065
5 8.543 - - 15.297 - - 11.352 - - 16.798 - -

GDP values are again the real-time figures released one month
after the end of the quarter. Here, we find very few negative
�MSEh or MSR values that would suggest inefficiency. Only
the MSE differential for forecaster 40 between quarter 5 and
quarter 4 is substantially negative, suggesting forecast subopti-
mality. However, this evidence of inconsistency can be a result
of the arrival of the current year’s real GDP value for predicting
the first quarter GDP growth for the next year. More generally,
relevant information regarding different target values may ar-
rive at different times in a nonmonotone manner, and as a result,
the relative forecast accuracy over horizons may not be smooth.
PT’s approach of pooling all horizons together to test forecast
rationality can mask this important horizon-specific heterogene-
ity in forecast efficiency. In other words, forecasts may be effi-
cient at certain horizons but not at others.

In Figure 3, we have plotted total sum of squares of fore-

cast revisions (defined as Sth = ∑Nh
i=1

∑t ih
t=1

(rit,h− =
rh )2∑Nh

i=1 T
i
h

, where

i refers to the ith forecaster, rit,h = f it,h − f it,h+1, =
rh =

1
Nh

∑Nh
i=1

1
T ih

∑T ih
t=1 r

i
t,h, andNh and T ih denote the available obser-

vations) at horizons from 23 to 1 to illustrate that the maximum
amount of revisions take place in the middle horizons, and inter-
estingly, the maximum amount of underreaction to news takes
place at these horizons too. See Lahiri and Sheng (2010) for

additional evidence on this point. These results mean that the
efforts put forward by forecasters to produce serious forecasts
vary by horizons, and the process begins seriously at around
16-month horizon. Thus, forecasting efforts and the resulting
efficiency are also conditioned by the institutions’ requirements
under which the forecasters operate. To truly understand the
forecasting inefficiencies, the demand side of the forecasting
market should also be considered, in addition to the schedule of
official data announcements.

There are a few more such negative (though small) MSE
differentials in Table 1. PT also found a similar result with re-
spect to Greenbook real GDP forecasts; see also Clements et al.
(2007). We find that the MSE differentials and MSRs are quite
different particularly in the middle horizons and the latter tend to
underestimate the former, suggesting underreaction to new in-
formation. Following PT, we also calculated MSR differentials
between ft,2 − ft, 4 and ft,2 − ft, 3, and ft,3 − ft, 5 and ft,3 − ft, 4;
and between ft,4 − ft, 6 and ft,4 − ft, 5 for the three long-standing
forecasters and also for the “all’ group using disaggregate data.
In none of the cases did we find any evidence of negative MSR
differentials and thus we fail to detect any indication of irra-
tionality based on this MSR criterion. However, the Nordhaus
test and the regressions of forecast errors on forecast revisions,
a la Lahiri and Sheng (2008, 2010), readily detected deviations
from rationality in most cases.

Figure 3. Total sum of squares in GDP forecast revisions during 1986–2009: Blue Chip Surveys.
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4. CONCLUSION

I find the ideas put forward in this article to rigorously test the
optimality of forecasts across horizons interesting and the efforts
to implement the tests quite commendable. Despite their math-
ematical elegance, these derived bounds are implied by forecast
rationality, and hence are not necessary conditions. Thus, if the
tests do not reject the null, we cannot say we have evidence in
favor of rationality. For instance, even though the forecast vari-
ances and MSEs are observed to be weakly decreasing functions
of the forecast horizon, the underlying forecasts can be easily
be still inefficient. By using Blue Chip and SPF survey fore-
casts, we found, like PT, that some of the bounds tests proposed
in the paper are not very powerful to detect suboptimality in
instances where the extant Nordhaus test readily identifies it.
However, their new extended MZ test based on a regression
of the target variable on the long-horizon forecast and the se-
quence of interim forecast revisions works well, provided the
multicollinearity problem does not become serious. We have
argued that by testing the equality of MSE differentials with
mean square forecast revisions, one can also examine forecast
rationality over multiple horizons. In order to truly understand
the pathways through which forecasts fail to satisfy forecast op-
timality, we have also to consider the demand side of the fore-
casting market and the schedule of official data announcements.
For instance, there is evidence that forecasters record maximum
suboptimality at horizons where they also make maximum fore-
cast revisions. The observed suboptimality of Greenbook fore-
casts that PT found cannot be understood unless the institu-
tional requirements of such forecast are appreciated. Neverthe-
less, the importance of testing the joint implications of forecast

rationality across multiple horizons when such information is
available as proposed by the authors must be appreciated.
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Patton and Timmermann (2011) propose new and creative
forecast rationality tests based on multi-horizon restrictions.
The novelty is to consider the implications of forecast rationality
jointly across the horizons. They focus on testing implications
of forecast rationality such as the fact that the mean squared
forecast error should be increasing with the forecast horizon
(Diebold 2001; Patton and Timmermann 2007) and that the
mean squared forecast should be decreasing with the horizon.
They also consider new regression tests of forecast rationality
that use the complete set of forecasts across all horizons in a
univariate regression, which they refer to as the “optimal revi-
sion regression” tests. One of the advantages of the proposed
procedures is that they do not require researchers to observe
the target variable, which sometimes is not clearly available. In
fact, Patton and Timmermann (2011) show that both their in-
equality results as well as the “optimal revision regression” test
hold when the short horizon forecast is used in place of the target
variable. Their work is an excellent contribution to the literature.

The main objective of this comment is to check the robust-
ness of forecast rationality tests to the presence of instabilities.
The existence of instabilities in the relative forecasting perfor-
mance of competing models is well known [see Giacomini and
Rossi (2010) and Rossi and Sekhposyan (2010), among others;
Rossi (2011) provide a survey of the existing literature on
forecasting in unstable environments]. First, we show heuris-
tic empirical evidence of time variation in the rolling estimates
of the coefficients of forecast rationality regressions. We then
use fluctuation rationality tests, proposed by Rossi and Sekh-
posyan (2011), to test for forecast rationality, while, at the
same time, being robust to instabilities. We also consider a
version of Patton and Timmermann’s (2010) optimal revision
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Table 1. Full-sample Mincer and Zarnowitz (1969) forecast rationality tests

GDP deflator inflation Output growth

h α β Joint α β Joint

0 1.1600 5.2183 8.9164 3.9022 2.2612 4.2239
(0.5599) (0.0736) (0.0116) (0.1421) (0.3228) (0.1210)

1 0.5753 0.3029 4.5608 13.5417 17.8056 18.0331
(0.7500) (0.8594) (0.1022) (0.0011) (0.0001) (0.0001)

2 0.5275 0.5369 9.3500 8.3291 8.5530 9.0285
(0.7681) (0.7646) (0.0093) (0.0155) (0.0139) (0.0110)

3 0.0277 1.4636 8.4619 6.5810 4.0920 7.2051
(0.9862) (0.4810) (0.0145) (0.0372) (0.1292) (0.0273)

4 0.1992 3.6437 12.2100 1.6620 0.7996 3.0507
(0.9052) (0.1617) (0.0022) (0.4356) (0.6705) (0.2175)

5 2.2151 9.1047 14.8061 0.1852 0.0045 1.5906
(0.3304) (0.0105) (0.0006) (0.9116) (0.9977) (0.4515)

NOTE: Full-sample Mincer and Zarnowitz (1969) regression, Equation (1). P-values based on HAC robust estimates (with bandwidth equal to 3) for testing α = 0 (column labeled “α”),
β = 1 (column labeled “β ”), and both α = 0 and β = 1 (column labeled “Joint”) in parentheses.

regression test robust to instabilities, which we will refer to as
the “fluctuation revision” test. Finally, we discuss the empirical
evidence.

We focus on the same data as in Patton and Timmermann
(2010), which include the Federal Reserve “Greenbook” fore-
casts of quarter-over-quarter rates of change in GDP and the
GDP deflator. The data are from Faust and Wright (2009), start-
ing in 1980 and ending in 2002.

First, we consider the typical “full-sample” Mincer and
Zarnowitz (1969) forecast rationality test. Let the target value
to be forecasted at time t using information up to time t − h

be yt and let the forecast be denoted by yt |t−h. The Mincer and
Zarnowitz (1969) regression is as follows:

yt = α + βyt |t−h + εt,h, t = 1, . . . , P , (1)

where P is the number of out-of-sample forecasts, h is the
forecast horizon, and εt,h is the residual. If the forecasts are
unbiased, the constant α should be statistically insignificantly
different from zero; if the forecasts are optimal, the slope β
should be statistically insignificantly different from unity. The
null hypothesis of forecast rationality is that α = 0 and β = 1,
jointly. Table 1 reports the results. The table shows that forecast
rationality is rejected at the 5% significance level for the GDP
deflator inflation at most horizons, and it is rejected at horizons
1–3 for GDP growth.

However, the estimates of α and β may not be stable over
time. The presence of instability is a serious concern, since it
would imply that typical forecast rationality tests are invalid.
See Rossi (2005) for an intuitive discussion of why full-sample
tests are invalid in the presence of instabilities. To provide in-
formal evidence, Figure 1 reports estimates of α and β in rolling
regressions, using a window of 60 out-of-sample forecast obser-
vations. The x-axis is the time of the latest forecast included in
the rolling regression sample. Figure 1(A) shows that the esti-
mates of α and β in regression (1) for the GDP deflator forecasts
are quite unstable over time: α is closer to 0 and β is closer to 1
in the late 1990s than in the mid-1990s. Similarly, Figure 1(B)
shows that parameter estimates for GDP growth forecasts are

also quite unstable over time. This evidence is only suggestive,
though, since it ignores parameter estimation uncertainty.

In what follows, we will consider formal tests to investi-
gate whether the empirical evidence in favor of the rejection of
rationality in the Greenbook forecasts may depend on the sam-
ple period. We use the Fluctuation Rationality test developed
by Rossi and Sekhposyan (2011), which is designed to test
forecast rationality in unstable environments. Consider the
general regression

vt = g′
t−h · θ + ηt,h, t = 1, . . . , P , (2)

where θ is a (k × 1) parameter vector, vt is the realized variable,
gt−h is a (p × 1) vector of variables known at time t − h, andηt,h
is the residual. Equation (2) corresponds to Equation (1) for θ =
[α, β]′ , vt = yt , and gt−h = [1, yt |t−h] . Consider the following
rolling regression. Let θ̂t be the parameter estimate in regression
(2) computed over centered rolling windows of size m = 60.
That is, consider estimating regression (2) using data from t −
m/2 up to t +m/2 − 1, for t = m/2, . . . , P −m/2 + 1. Also,
let the Wald test in the corresponding regressions be defined as

Wt,m = (
θ̂t − θ0

)′
V̂ −1
θ,t

(
θ̂t − θ0

)
,

for t = m/2, . . . , P −m/2 + 1, (3)

where V̂θ,t is a Heteroscedasticity and Autocorrelation robust
(HAC) estimator of the asymptotic variance of the parameter
estimates in the rolling windows, see Newey and West (1987).
Rossi and Sekhposyan (2011) define the Fluctuation Rationality
test as

suptWt,m, for t = m/2, . . . , P −m/2 + 1. (4)

The test rejects the null hypothesis H0 : E(θ̂t ) = θ0 for all
t = m/2, . . . , P −m/2 + 1 if maxt Wt,m > κα,k , where κα,k
are the critical values at the 100α% significance level. The
critical values at 5% are reported in table 1 of Rossi and
Sekhposyan (2011) for various values of µ = [m/P ] and the
number of restrictions, k.

A simple, two-sided t-ratio test on the sth parameter, θ (s)
0 , can

be obtained as (θ̂ (s)
t − θ

(s)
0 ) V̂ −1/2

θ (s),t
, where V̂θ (s),t is an element in
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Figure 1. Rolling estimates of parameters of α and β in the Mincer and Zarnowitz (1969) regressions for various horizons (h). (Color figure
available online.)

the sth row and sth column of V̂θ,t . We reject the null hypoth-
esis H0 : E(θ̂ (s)

t ) = θ
(s)
0 for all t = m/2, . . . , P −m/2 + 1 at

the 100α% significance level if maxt |(θ̂ (s)
t − θ

(s)
0 )V̂ −1/2

θ (s),t
| > κα ,

where κα are the critical values provided by Giacomini and
Rossi (2010).

Figure 2 shows fluctuation rationality results for the Min-
cer and Zarnowitz (1969) regressions for the following cases:
for testing H0 : α = 0 and β = 1 jointly for each horizon (first
row); for testing H0 : α = 0 (second row); and for testing H0 :
β = 1 (third row). The figure also plots 95% confidence bands.
The former is a one-sided test, whereas the latter are two-sided
t-tests. Specifically, the Mincer and Zarnowitz’s regression is
Wt,m = (θ̂t − θ0)′ V̂ −1

θ,t (θ̂t − θ0) for t = m/2, . . . , P −m/2 + 1
and θ0 = [0, 1]′ (first row); the fluctuation rationality test
on the constant is Wα

t,m = α̂′
t V̂

−1/2
α,t (second row) and that

on the slope is W
β
t,m = (β̂t − 1) V̂ −1/2

β,t (third row), where
V̂α,t and V̂β,t are the diagonal elements of V̂θ,t . The figure

shows that forecast rationality is rejected for horizons 0, 2,
and 5 for the GDP deflator, and for horizon 1 for the GDP
growth.

The framework discussed above can also be generalized to
develop a version of the Patton and Timmermann’s (2010)
optimal revision regression test (implemented with a proxy)
robust to instability. We refer to this test as the “fluctuation
revision” test. The fluctuation revision test is defined as in
Equation (4), where Wt,m is defined by Equation (3), vt = yt ,
gt−h = [1, yt |t−hH , dt |h1,h2 , . . . , dt |hH−1,hH ], H is the maximum
forecast horizon, dt |hH−1,hH denotes the forecast revision be-
tween horizons hH−1 and hH , and θ0 = [0, 1, . . . , 1]′. Figure 3
shows the test statistic, Wt,m, over time; the dotted lines report
the 5% critical value. According to the figures, the implications
of forecast rationality considered by Patton and Timmermann
(2010) are not rejected for the GDP deflator, whereas they are
rejected for GDP growth (mainly in the late 1990s).
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Figure 2. Fluctuation rationality tests for the Mincer and Zarnowitz (1969) regressions for the following cases: for testing H0 : α = 0 and
β = 1 jointly for each horizon (first row); for testing H0 : α = 0 (second row); and for testing H0 :β = 1 (third row). In particular, the figure
reports Equation (3) together with 95% confidence bands (dotted lines). (Color figure available online.)
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Figure 3. Fluctuation revision test over time (line with stars) for GDP deflator data (left-hand side panel) and GDP growth (right-hand side
panel), together with the critical value (dotted line). (Color figure available online.)

To conclude, we found empirical evidence in favor of insta-
bilities in the parameters of forecasting rationality regressions.
Studying such instabilities might provide useful information as
to when rejections of forecast rationality occurred, as well as
their possible economic causes.
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Herman K. VAN DIJK
Econometric Institute and Tinbergen Institute, Erasmus University Rotterdam and Department of Econometrics,
Vrije Universiteit Amsterdam, The Netherlands (hkvandijk@ese.eur.nl)

Forecast rationality under squared error loss implies various
bounds on second moments of the forecasts across different hori-
zons. For example, the mean squared forecast error should be
nondecreasing in the horizon. Patton and Timmermann (2011)
propose rationality tests based on such restrictions, including
interesting new tests that can be conducted without having data
on the target variable; that is, these tests can be performed by
checking only the “internal consistency” of the “term structure”
of forecasts.

One of their novel tests that is easily implemented and
that performs well in Monte Carlo simulations (in the sense
that the actual size is equal to the nominal size and that the
power is high) considers the hypothesis of optimal forecast
revision in the context of a linear regression of the most re-
cent forecast on the long-horizon forecast and the sequence of
interim forecast revisions. That is, it considers the following
regression:

Ŷt |t−1 = α̃ + β̃H Ŷt |t−H +
H−1∑
j=2

β̃j
(
Ŷt |t−j − Ŷt |t−j−1

)+ vt , (1)

where the null hypothesis of “rationality” or “optimal revision”
corresponds to the hypothesis

H0 : α̃ = 0 ∩ β̃2 = . . . = β̃H = 1. (2)

Note that the time of the variable to be predicted is “fixed”
at time t, while the regressors are the forecasts for this time t
“running backward,” made at time t − 1 to t −H .

For a simple interpretation of the hypothesis, we rewrite the
optimal revision regression (1) as

Ŷt |t−1 − Ŷt |t−2 = α̃ + γ̃H Ŷt |t−H

+
H−1∑
j=2

γ̃j
(
Ŷt |t−j − Ŷt |t−j−1

)+ vt , (3)

with γ̃h ≡ β̃h − 1 (h = 2, . . . , H ). In (3) the null hypothesis of
“rationality” or “optimal revision” obviously corresponds to the
hypothesis

H0 : α̃ = 0 ∩ γ̃2 = . . . = γ̃H = 0. (4)

One of the attractive properties of this test proposed by Patton
and Timmermann (2011) is that it has a clear intuitive inter-
pretation: under the null hypothesis of “no expected forecast

correction” the last update of the forecast, Ŷt |t−1 − Ŷt |t−2, does
not need to correct a bias of Ŷt |t−2 (α̃ = 0), or the previous
updates Ŷt |t−j − Ŷt |t−j−1 (γ̃j = 0 for j = 2, . . . , H − 1), or the
long-horizon forecast Ŷt |t−H (γ̃H = 0).

In our comment we address several points. Our main point
is to exploit the fact that no actually observed target variable is
required and to extend the analysis of Patton and Timmermann
to the case of risk measures such as value-at-risk and expected
shortfall for which we never observe the true value. The tests
can also be used for volatility or variance measures.

Consider the following example in which the target variable
evolves according to a stationary AR(2) process:

Yt = φ0 + φ1 Yt−1 + φ2 Yt−2 + εt , εt ∼ iidN (0, σ 2), (5)

with φ0 = 0, φ1 = 0.5, and σ 2 = 1. For φ2 we consider sev-
eral values: φ2 = 0.0, 0.1, 0.2, 0.3. We estimate a simple AR(1)
model, Equation (5) with φ2 = 0. We simulate 1,000 datasets
of 1,500 observations, where the first 1,000 in-sample observa-
tions are used for ordinary least squares (OLS) estimation of
the parameters θ = (φ0, φ1, σ

2)′ and the last 500 out-of-sample
observations are used for evaluation of value-at-risk forecasts.
Define VaR95%

t |t−h as the 5% quantile of the predicted distribution
of Yt at time t − h (h = 1, 2, . . .):

VaR95%
t |t−h = Ŷt |t−h + σ̂ �−1(0.05)

with

Ŷt |t−h = φ̂0
1 − φ̂h1

1 − φ̂1
+ φ̂h1 Yt−h.

These VaR95%
t |t−h take the role of Ŷt |t−h in (3), which thus becomes

VaR95%
t |t−1 − VaR95%

t |t−2 = α̃ + γ̃H VaR95%
t |t−H

+
H−1∑
j=2

γ̃j
(
VaR95%

t |t−j − VaR95%
t |t−j−1

)+ vt .

(6)
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Table 1. Estimated AR(1) model for simulated data from the AR(2) model

95% VaR (or 99% VaR) 95% VaR 99% VaR

optimal forecast revision (H = 3) UC CC UC CC

H0 : model is H0 : model is
correct correct

including allowing for H0 : model is correct including estimated parameters
estimated estimation error

φ2 parameters in parameters

0.0 0.116 (0.010) 0.046 (0.007) 0.080 (0.009) 0.084 (0.009) 0.081 (0.009) 0.088 (0.009)
0.1 0.490 (0.016) 0.315 (0.015) 0.101 (0.010) 0.090 (0.009) 0.077 (0.008) 0.085 (0.009)
0.2 0.979 (0.005) 0.934 (0.008) 0.105 (0.010) 0.113 (0.010) 0.078 (0.008) 0.080 (0.009)
0.3 1.000 (0.000) 0.999 (0.001) 0.148 (0.011) 0.161 (0.012) 0.097 (0.009) 0.098 (0.009)

NOTE: Percentage of rejections (size or power) at 5% nominal size in the optimal forecast revision regression test, and tests for UC and CC of value-at-risk forecasts. Results are computed
for 1,000 simulated datasets. Numerical standard errors are given within parentheses.

Our null hypothesis is not

H0: forecast rationality or optimality under squared error loss
(7)

but

H0: the estimated model for VaR prediction is correct. (8)

That is, we use the test regression (6) without requiring the
assumption of squared error loss. The price for this is that, to the
best of our knowledge, one generally has to use simulation from
the assumed model to generate the distribution of the F-statistic
for the null hypothesis in Equation (4). However, for the AR(1)
model with iidN (0, σ 2) errors, the errors in (6) are given by vt =
φ1εt−1 ∼ iidN (0, φ2

1 σ
2), so that underH0 the F-statistic has its

standard F-distribution. Since σ̂ �−1(0.05) is constant, applying
the optimal revision regression test to VaR95%

t |t−h amounts to the
test for Ŷt |t−h.

Results for the test (with H = 3) are presented in the first
column of Table 1. Even if the AR(1) model is true (φ2 = 0.0),
the percentage of rejections (at a nominal size of 5%) is 11.6%
(with a numerical standard error of 1.0%). The obvious reason
is that there are errors in the parameter estimates. The Monte
Carlo simulation by Patton and Timmermann (2011) (with a
nominal size of 10%) does not suffer from this phenomenon,
as they assume that the process and its parameter values are
known to forecasters.

If we want to test for the validity of the model, taking into
account the presence of errors in parameter estimates, then we
must adapt (i.e., increase) the critical value. We propose the
following method:
Procedure for optimal revision testing taking into account
errors in parameter estimates

Step 1. Compute parameter estimates θ̂ in model for ob-
served time series y (e.g., AR(1) model with θ =
(φ0, φ1, σ

2)′); generate forecasts (1, 2, . . . , H steps
ahead); compute F-statistic F (y) in optimal revision
regression.

Step 2. Simulate N (e.g., N = 1,000) data series y(i) (i =
1, . . . , N )—with the same number of observations

as those of the observed time series y—from the es-
timated model with parameters θ̂ .

Step 3. Compute parameter estimates θ̂ (i) for each simulated
data series y(i) (i = 1, . . . , N ).

Step 4. Generate forecasts (1, 2, . . . , H steps ahead) for each
estimated model with parameters θ̂ (i) and data y(i)

(i = 1, . . . , N ).
Step 5. Compute the F-statisticF (y(i)) (i = 1, . . . , N ) in op-

timal revision regression for each set of forecasts
from step 4.

Step 6. CompareF (y) with the desired percentile of the sam-
ple of F-statistics under H0 F (y(i)) (i = 1, . . . , N )
from step 5.

Results for this adapted test (with H = 3) are in the second
column of Table 1. For φ2 = 0 the percentage of rejections (at
a nominal size of 5%) is 4.6% (with a numerical standard error
of 0.7%), so that we have no evidence that the size is distorted.

In order to assess the power of the test, we compare the
performance to the well-known unconditional coverage (UC)
and conditional coverage (CC) tests for the 95% and 99% value-
at-risk; see Kupiec (1995) and Christoffersen (1998). In this
example, for the optimal revision regression the test results are
the same for each 100(1 − α)% value-at-risk with α ∈ (0, 1).
The percentage of rejections forφ2 = 0.1, 0.2, and 0.3 is clearly
larger for the optimal revision regression than for the UC and
CC tests. Intuitively, this makes sense, since the optimal revision
regression uses a large set of forecasts for multiple horizons,
whereas the UC and CC tests are only based on the limited
information in the set of 0/1 variables that indicate whether the
predicted value-at-risk is exceeded by the actual observation.
The nominal size for the UC and CC tests is chosen somewhat
larger than 5%, as the discrete distributions of the test statistics
do not allow for an exact nominal size of 5%. The nominal size
is 5.4% and 5.0% (5.3% and 6.4%) in the UC and CC tests for
the 95% VaR (99% VaR). The critical values for the UC and
CC tests are computed by simulating 100,000 series of iid 0/1
variables under H0, as the asymptotically valid χ2 distributions
may be rather poor approximations in finite samples, especially
for the CC test.
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Next, consider the example in which the target variable
evolves according to a stationary ARCH(2) process

Yt = εt

√
σ 2
t , εt ∼ iidN (0, 1),

σ 2
t = φ0 + φ1 Y

2
t−1 + φ2 Y

2
t−2, (9)

with φ0 = 0.5 and φ1 = 0.5. For φ2 we consider several values:
φ2 = 0.0, 0.1, 0.2, 0.3. We estimate a simple ARCH(1) model,
Equation (9) with φ2 = 0. Again, we simulate 1,000 datasets of
1,500 observations, where the first 1,000 in-sample observations
are used for estimation of the parameters φ0, φ1 and the last 500
out-of-sample observations are used for evaluation of value-at-
risk forecasts:

VaR95%
t |t−h =

√
σ̂ 2
t |t−h �

−1(0.05)

with

σ̂ 2
t |t−h = φ̂0

1 − φ̂h1

1 − φ̂1
+ φ̂h1 Y

2
t−h.

Applying the optimal revision regression test to VaR95%
t |t−h (or

any other 100(1 − α)% VaR with α ∈ (0, 0.5)) amounts to the

test for the standard deviation
√
σ̂ 2
t |t−h. In this case we cannot

even use the critical value from the standard F-distribution for
the first, “strict” optimal revision test (of validity of the model
including the parameter values) for two reasons. First, the re-
gressors in (6) may even have small explanatory power for the
regressand if the model is correct. For example, in the ARCH(1)
model the regressors have no explanatory power for the regres-
sand in test regression (3) for the variance σ̂ 2

t |t−h, but since the

VaR is proportional to the standard deviation
√
σ̂ 2
t |t−h this is

not necessarily true. Second, the errors vt in the optimal revi-
sion regression (6) can be substantially non-Gaussian, having a
negatively skewed and fat-tailed distribution. The histogram in
the top panel of Figure 1 shows the negative skewness of the
distribution of the errors vt for one dataset simulated from the
ARCH(1) model. This skewness is caused by the negative skew-
ness of the distribution of the regressand (VaR95%

t |t−1 − VaR95%
t |t−2)

in (6); the latter is illustrated by the histogram in the mid-
dle panel. The bottom panel shows the reason for the negative
skewness of (VaR95%

t |t−1 − VaR95%
t |t−2): VaR95%

t |t−2 is more “moder-
ate” than VaR95%

t |t−1, since VaR95%
t |t−2 is closer to the unconditional

VaR. Therefore, VaR95%
t |t−1 is sometimes much more negative than

VaR95%
t |t−2, whereas it is often slightly less negative. The result is

a distribution of (VaR95%
t |t−1 − VaR95%

t |t−2) that has a positive mode
and substantially negative skewness. The small differences be-
tween the histograms of the errors vt and the dependent variable
(VaR95%

t |t−1 − VaR95%
t |t−2) reflect that the regressors in (6) have small

explanatory power for the regressand, even though the ARCH(1)
model is correct. For these reasons, the actual size may be much
larger than the nominal size if we would use the critical value
from the F-distribution (e.g., an actual size larger than 50%
for a nominal size of 5%). Therefore, we require simulation
for the critical value in both versions of the optimal revision
test. There is also heteroscedasticity for which we use weighted
least squares (WLS), assuming var(vt ) proportional to var(yt−1)
(which seems to be a usable approximation). The aim of WLS is
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Figure 1. Simulated dataset from the ARCH(1) model: histograms
of error terms vt (top panel) and regressand (VaR95%

t |t−1 − VaR95%
t |t−2) (mid-

dle panel) in optimal revision test regression (6); graph of simulated
data yt in out-of-sample period (dots), together with VaR95%

t |t−1 (gray
line) and VaR95%

t |t−2 (black line) (bottom panel).

to increase the power of the test; the computation of the critical
value by simulation already takes care of the size.

In the first test (of validity of the model including the param-
eter values) we perform the procedure without step 3, using the
“true” parameters θ̂ (instead of θ̂ (i)) of our simulated data series
in steps 4 and 5. Results are presented in Table 2. Again, the
percentage of rejections of the first optimal revision test is larger
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Table 2. Estimated ARCH(1) model for simulated data from the ARCH(2) model

95% VaR (or 99% VaR) 95% VaR 99% VaR

optimal forecast revision (H = 3) UC CC UC CC

H0 : model is H0 : model is
correct correct

including allowing for H0 : model is correct including estimated parameters
estimated estimation error

φ2 parameters in parameters

0.0 0.081 (0.009) 0.049 (0.007) 0.087 (0.009) 0.068 (0.008) 0.074 (0.008) 0.084 (0.009)
0.1 0.175 (0.012) 0.111 (0.010) 0.104 (0.010) 0.084 (0.009) 0.083 (0.009) 0.092 (0.009)
0.2 0.386 (0.015) 0.295 (0.014) 0.145 (0.011) 0.112 (0.010) 0.103 (0.010) 0.111 (0.010)
0.3 0.495 (0.020) 0.438 (0.016) 0.197 (0.013) 0.160 (0.012) 0.127 (0.011) 0.132 (0.011)

NOTE: Percentage of rejections (size or power) at 5% nominal size in the optimal forecast revision regression test, and tests for UC and CC of value-at-risk forecasts. Results are computed
for 1,000 simulated datasets. Numerical standard errors are given within parentheses.

than 5% for φ2 = 0, reflecting the effect of errors in parameter
estimates. For the second optimal revision test, we do not have
evidence that the actual size deviates from 5%. The optimal
revision test again has greater power than the UC and CC tests.

In the optimal revision regression test in the AR(1) model
a very wrong value of σ̂ cannot be detected, since the value
of σ̂ does not affect the F-statistic. The UC and CC tests can
detect this, which stresses that the optimal revision regression
test should preferably be used in addition to different tests.

Finally, we discuss two other points. First, if we apply the
optimal revision regression test to an in-sample window for
which the model has been estimated, then a “generated regres-
sor/regressand problem” implies that the F-statistic does not
have the standard F-distribution under H0, even if the errors vt
are normally distributed. For example, in the AR(1) model we
have

Ŷt |t−1 = φ̂0 + φ̂1 Yt−1,

Ŷt |t−2 = φ̂0
(
1 + φ̂1

)+ φ̂2
1 Yt−2,

Ŷt |t−1 − Ŷt |t−2 = φ̂1
(
Yt−1 − φ̂0 − φ̂1 Yt−2

)
.

That is, Ŷt |t−1 − Ŷt |t−2 equals φ̂1 times the OLS residual, which
is obviously perpendicular to the AR(1) model’s regressors,
the constant term 1, and Yt−2, if we estimate the optimal re-
vision regression (with H = 2) for the same window as the
parameters φ0, φ1. Then the estimated coefficients ( ˆ̃α and ˆ̃γ 2)
and F-statistic are exactly equal to 0 for any data series. This
reflects that in general the critical values should be smaller
if one applies the optimal revision regression test to an in-
sample window (or a window that has overlap with an in-sample
window).

Bayesian inference may be a useful alternative for testing
inequalities of (co)variances or coefficients, which is the focus
of alternative tests proposed by Patton and Timmermann (2011),
especially for small or moderate data samples. Advantages are
that no asymptotic approximations need to be used, and that one
does not require “complicated” asymptotic distributions under
H0. A disadvantage is that one needs an explicit model for

the distribution, but this may anyway be required for reliable
inference in finite samples. We intend to investigate this pos-
sibility in further research, simulating from the involved (pos-
sibly highly nonelliptical) target distributions by the methods
of Hoogerheide, Kaashoek, and Van Dijk (2007), Hoogerheide
and Van Dijk (2010), and Hoogerheide, Opschoor, and Van Dijk
(2011).

Summarizing, Patton, and Timmermann (2011) have pro-
posed a set of interesting and useful tests for forecast rationality
or optimality under squared error loss, including an easily im-
plemented test based on a regression that only involves (long-
horizon and short-horizon) forecasts and no observations on the
target variable. We have discussed an extension, a simulation-
based procedure that takes into account the presence of errors in
parameter estimates. This procedure can also be applied in the
field of “backtesting” models for value-at-risk. Applications to
simple AR and ARCH time series models show that its power
in detecting certain misspecifications is larger than the power of
well-known tests for correct UC and CC.

[Received June 2011. Accepted September 2011.]
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Department of Economics, University of Wisconsin (kdwest@wisc.edu)

This comment proposes joint tests that are applicable when
the forecaster supplies forecasts for several horizons, for a given
variable. An example would be to predict quarterly GDP growth
one, two, three, and four-quarters ahead, producing a times se-
ries of quarterly observations on one-, two-, three-, and four-
quarter ahead forecasts. The tests focus on the target date, com-
paring short- and long-horizon forecasts of the same object.
Many of the tests are inequality based. The one that I will use
as an illustration in these comments is based on a familiar idea:
because of mean reversion, the variance of a forecast of a sta-
tionary variable falls with the horizon (technically, is weakly
decreasing in horizon). Specifically:

var(one step ahead forecast) ≥ var(two step ahead forecast)

≥ · · · ≥ var(H step ahead forecast). (1)

The authors examine Equation (1) and their other tests in
simulations, finding that the tests generally work reasonably
well.

The key contribution of the article is to develop tests of fore-
casting models that only require data on forecasts, and do not
require data on realizations. Such tests allow one to sidestep
debates about whether forecasters are trying to predict current
or final vintages of data that are subject to revision. In addition,
by focusing on the target date, this “fixed event” approach is
more robust to changes in regime than are approaches that focus
on the date of prediction.

I will give the article high praise by stating that the idea of
using only data from forecasts is obvious. My praise is sincere:
ideas that are obvious once said, but nonetheless are only now
being said, are ideas with lots of potential.

Having stated my overall high opinion of the article, I will
take the remainder of my limited space to indicate some points
of possible disagreement. I am not sure that my interpretation
of the tests aligns very well with that of the authors.

Let me raise three questions. The first two are related. 1)
How powerful are the tests in detecting the possibility that the
forecaster is using a single internally consistent, though mis-
specified, model across all horizons? 2) How do we interpret
the tests if forecasts are constructed using the “direct” rather
than “iterated” methods, or more generally if we concede at the
outset that our forecasting model is misspecified? My answer
to these two questions is that perhaps the tests in this article
are better described as testing whether an internally consistent
forecasting method is being used, rather than as testing for flaws
in our forecasts. A final unrelated question is: 3) How does error
in estimation of parameters required to make forecasts affect the
performance of the tests? My answer to this question is that we
do not know, and that means we do not have reliable evidence
on how well these tests will work in practice.

1. Some of the paper’s inequalities hold—possibly weakly, as
equalities—if an AR(1) model is used, whether or not the AR(1)
model is correct. For example, suppose forecasts are generated
from a zero mean AR(1) with parameter ϕ, with |ϕ| < 1. Let Yt

denote the stationary variable under study, which may or may
not follow an AR(1); my only assumption is that Yt is stationary.
Then, the one step ahead forecast is of course ϕYt, the two step
ahead forecast is ϕ2Yt, and so on. For this AR(1) model, the
inequalities in my Equation (1) are

var(ϕYt−1) ≥ var(ϕ2Yt−2) ≥ · · · ≥ var
(
ϕHYt−H

)
. (2)

Note that since |ϕ| < 1, these inequalities hold regardless of
whether or not Yt is generated by an AR(1) model.

Let me hold off on further discussion until after I make my
second point.

2. To think about how the test (1) deals with iterated direct
forecasts, let us work through an example with a specific DGP.
Suppose that Yt follows an MA(2) of the following form:

Yt = εt + θεt−2, |θ | < 1, θ �= 0, εt ∼ white noise.

(3)

Note that lag 2 appears in the DGP, while lag 1 does not.
Let us contrast iterated and direct forecasts, supposing that

in each case the forecaster uses not the correct MA(2) model
but a model that relies on a single lag of Yt. Thus, we are
using a misspecified model for our forecasts. The iterated fore-
cast generates AR(1) forecasts. Because Yt is uncorrelated with
Yt−1, the AR(1) coefficient ϕ is 0. This means that for the iter-
ated method the inequalities in (1) are trivially satisfied (with
equality).

Now consider the direct forecast, in which the h step ahead
forecast of Yt is generated by projecting Yt onto Yt–h. The one
step ahead forecast is again zero. For two step ahead forecasts,
standard projection arguments yield Yt |t−2 = [θ /(1 + θ2)]Yt−2. It
is easily seen that the monotonicity in (1) fails:

var(one step ahead direct forecast) = 0 < [θ/(1 + θ2)]2var(Yt )

= var(two step ahead direct forecast). (4)

Since we are using a misspecified model, the direct method
is of course preferable to the iterated method by a mean squared
error criterion. Specifically, the two methods have identical fore-
casts and forecast errors one step ahead, but for two step ahead
forecasts, the variance of the forecast error for the direct method
is strictly smaller: var(two step ahead direct forecast error) <
var(two step ahead iterated forecast error). Yet, the test (1) re-
jects when the direct method is used and does not reject when
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the iterated method is used. [Of course, as the authors note, the
rejection under the direct method indicates that one can do bet-
ter. If the variance of the two step ahead forecast error is smaller
than that of the one step ahead, one can form the one step ahead
forecast by reusing the two step ahead forecast and then the
inequality will hold (weakly, as equality). But the fact remains
that the test rejects under the direct but not iterated method.]

Let me now discuss my points 1 and 2. My point 1 was that
Equation (1) holds by construction if forecasts are generated by
an AR(1) model. But that is not true of all the article’s tests.
Indeed, the article gives a counterexample, in Section 4.3.2. In
this counterexample, the test used is one that examines whether
forecast error variances are weakly increasing. The DGP is an
AR(2). The parameters of the AR(2) are not, however, likely to
characterize economic data, because, as the authors state, the
autocorrelation at lag 2 is distinctly larger than that at lag 1. The
authors do not present other counterexamples. In terms of my
point 2, despite my simple example in Equation (3), there are
plausible scenarios in which one or more of the authors’ tests
will not reject when the direct method is being used.

Thus, my AR(1) and MA(2) examples are nothing but exam-
ples with uncertain generality. It is unclear how illustrative these
examples are about the behavior of this article’s tests when those
tests are applied to plausible forecasts and plausible DGPs. I do
think, however, that we need to be open to the possibility that
for a reasonable class of models, the tests in this article are
better described as testing whether the iterated method, or some
other internally consistent forecasting method, is being used,
rather than as testing for flaws in our forecasts.

3. My final comment relates to the simulations in the article.
These all assume that forecasts are made from population param-

eters. In practice, economic forecasts overwhelmingly rely on
estimated regression parameters rather than population param-
eters. This might seem a pedantic point, but in fact performance
of tests involving forecasts often is wildly sensitive to the use
of estimated rather than population parameters. Simulations in
West and McCracken (1998), for example, find that in univari-
ate Mincer-Zarnowitz regressions, nominal 5% tests sometimes
have actual size as large as 45% when estimated regression
parameters are used for prediction. I thus take the simulation
evidence in this article with a large grain of salt. I also note
that adjustments to produce better size are available for some
conventional tests (again see West 1996; West and McCracken
1998; Clark and West 2007; Hubrich and West 2011). I hope
that the authors will think about developing similar adjustments
for their tests.
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1. INTRODUCTION

We thank our discussants for their stimulating and thoughtful
comments on our article. Each of the five discussions raises an
interesting set of points, and across all of them a few key themes
arise. The following sections discuss each of these topics in
turn.

2. INSTABILITIES IN THE DATA GENERATING
PROCESS

Croushore and Rossi both raise the question of how tests of
forecast rationality fare in the presence of instabilities in the
data generating process for the target variable or the forecasts.
Croushore presents empirical results showing that the statisti-
cal significance of forecast bias varies greatly depending on the
choice of start and end dates for the sample period. Rossi out-
lines interesting work from Rossi and Sekhposyan (2011), which
allows the researcher to conduct tests of forecast rationality that
are robust to the presence of such instabilities, by computing
test statistics across a range of subsamples, and then obtaining
a critical value for some function (e.g., the sup) of these test
statistics. We view this as a very useful extension since the type
of macroeconomic variables often considered in forecast ratio-
nality tests are indeed subject to breaks, notably inflation. By
Proposition 3, instability in the target variable should not affect
the multi-horizon bounds we propose, provided that forecasters’
information set is expanding through time and the fixed-event
setup is adopted. However, the finite sample properties of the
bounds tests could well be affected by such instability, in which
case an approach like that of Rossi and Sekhposyan could be
useful.

Croushore also notes that some of the tests could wrongly
reject the null of forecast rationality due to changes in the defi-
nition of the target variable through time. As he acknowledges,
this is less of an issue when the test is based solely on the
forecasts, at least if changes to the definition of the target vari-
able happen after the target date. If it happens midstream, that
is, while forecasts for a given target date are still being pro-
duced, the results could of course be affected. This corresponds
to changing the definition of the target variable at some date,
t − hM , say, fromYt to

...
Yt , in which case the variances of the opti-

mal long-term and short-term forecasts, Ŷ ∗
t |t−hL = E[

...
Yt |Ft ] and

Y ∗
t |t−hL = E[Yt |Ft ], respectively, (for hS < hM < hL) need not

satisfy the mean squared forecast bounds of the article since they
apply to different variables. This can equivalently be thought of
as a violation of the assumption of an expanding information

set as time progresses, which is one of the key assumptions
underpinning the proposed tests.

3. PARAMETER ESTIMATION ERROR

Hoogerheide, Ravazzolo, and van Dijk present an interesting
application of our “optimal revision regression” [see Equation
(20) of the main article] to a Value-at-Risk forecasting appli-
cation. This application exploits the fact that no data on the
target variable are required, a desirable feature in volatility or
value-at-risk applications, where the target variable is latent. In
a simulation study for this application, these authors document
that the test is (somewhat) oversized when parameter estimation
error (PEE) is ignored (size of 0.12 or 0.08 for a nominal 0.05
test). West also raises concerns about the finite sample size of
our rationality tests in the presence of PEE, and notes that in
other applications PEE can lead to size distortions.

Hoogerheide et al. propose a simulation-based method for
obtaining critical values that take into account parameter es-
timation error, while West provides references for asymptotic
adjustments for PEE. In applications where the forecast eval-
uator is also the forecast producer, and so simulation-based
and asymptotic adjustments are feasible, we agree that this is
an improvement over simply ignoring PEE. For such cases,
it is also feasible to construct critical values for the sec-
ond moment bounds that account for the estimation scheme.
However, we note that survey or expert forecasts, such as
those in our empirical application, are typically based both on
(unknown) econometric models and also on subjective judg-
ment. In such applications, it is not clear how PEE should be
handled.

We should note that PEE may affect the critical values for
certain tests, but more important is whether such tests are even
applicable. For example, while Corollary 1 states that the mean
squared forecast error must be weakly increasing in the fore-
cast horizon, in the presence of PEE it has long been known
that this monotonicity property may break down, see Hoque,
Magnus, and Pesaran (1988), Theorem 2, and Magnus and Pe-
saran (1989), Theorem 1, for example, in the case of an AR(1)
model. Thus, a term structure of mean squared error (MSE)
values that is not weakly increasing need not be indicative of
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Table 1. Monotonicity bounds and regression results in the presence of parameter estimation error in an AR(1) model

φ = 0.1 φ = 0.5 φ = 0.95

Estimation sample size: 25 50 100 25 50 100 25 50 100

Tests
Inc MSE · · √ · √ √ √ √ √
Dec Cov · √ √ √ √ √ √ √ √
Cov bound

√ √ √ √ √ √ √ √ √

Dec MSF
√ √ √ √ √ √ · √ √

Inc MSFR
√ √ √ √ √ √ · √ √

Dec Cov, with proxy
√ √ √ √ √ √ √ √ √

Cov bound, with proxy
√ √ √ √ √ √ √ √ √

MZ on short horizon · · · · · · · · ·
Univar opt. revision regr. · · · · · · · · ·
Univar opt. revision regr., with proxy · · · · · · · · ·
Univar MZ, Bonferroni · · · · · · · · ·
Univar MZ, Bonferroni, with proxy · · · · · · · · ·
Vector MZ · · · · · · · · ·
Vector MZ, with proxy · · · · · · · · ·
NOTE: This table presents results on whether a given monotonicity bound or regression parameter result based on forecast optimality in the absence of estimation error continues to hold in
the presence of estimation error. If the result holds it is marked with “

√
,” otherwise it is marked with “·”. The model considered is a simple AR(1) with an intercept, yt = µ+ φyt−1 + εt ,

εt ∼ N(0, 1). Three in-sample estimation samples are considered (25, 50, and 100 observations) and three levels of persistence are considered (φ = 0.1, 0.5, 0.95) .

forecast suboptimality, rather it may simply reflect PEE. Fur-
thermore, the regression parameter restrictions (such as those
from the Mincer–Zarnowitz regression or the “optimal revision
regression,” MZ and ORR) may also fail to hold in the presence
of PEE. For example, a finite sample bias in the estimation of
the lag coefficients in AR models is well known, and this will
inevitably lead to deviations of the population MZ and ORR
parameters from their hypothesized values. In general, as the
regression-based tests are based on equality restrictions rather
than inequality restrictions, one might suspect that these are
more sensitive to the presence of PEE.

To study whether this is an issue in applications similar
to those considered in our Monte Carlo study, we conducted
the following study: consider a simple AR(1) with intercept
as in Section 5 of the article, with autoregressive coefficient
φ ∈ {0.1, 0.5, 0.95} . We consider rolling window estimation
of this model based on R ∈ {25, 50, 100} observations. (The
results for R = 1000 are very close to the R = 100 case and
so are not reported.) Table 1 records a “

√
” if the monotonicity

results established in the article hold across forecasting horizons
h = 1, 2, . . . , 8 in the presence of estimation error, and records
a “·” if this is violated. This table shows that for estimation
sample sizes of 100 or more, all of the monotonicity and bounds
results in the article continue to hold, at least for this popular
data generating process. For an estimation sample of size
50, consistent with the results in Magnus and Pesaran (1989,
Table 1), all results in the paper hold, except for a single result
(MSE) for the least predictable case (φ = 0.1) . It is only when
the sample size is 25 observations that we see scattered evidence
of PEE leading to breakdowns in the monotonicity results of
the article. This is in contrast with the regression-based results,
all of which fail to hold in the presence of PEE, even with
large estimation samples due to the finite sample biases in the
parameter estimates. This confirms the intuition above that tests

based on inequality restrictions are likely to be less sensitive to
PEE than those based on equality restrictions.

In Table 2, we present the results of a simulation study of the
finite sample size of the proposed tests in the presence of PEE.
These results can be compared to those in Table 1 of the article
for H = 8 and zero measurement error. The results confirm
that the bounds-based tests (in the top seven rows) are largely
robust to PEE. It is only when persistence is low (φ = 0.1) and
the sample size is very short (25 observations) that we see some
evidence that these tests are oversized. The regression-based
tests, on the other hand, are all grossly oversized, which is
consistent with the theoretical results in Table 1, and with
the findings reported in Table 1 by Hoogerheide et al., which
showed that the parameter restrictions that hold under the
absence of PEE do not, in fact, hold in general.

The results in Tables 1 and 2 are specific to the simple AR(1)
data generating process (DGP). The effect of PEE will generally
depend on both the complexity of the model used to compute
forecasts, larger effects likely associated with large-scale multi-
variate models, and on the true DGP, both of which are typically
unknown. It will also depend on the estimation method and the
scheme used to update the parameter estimates (fixed, rolling,
or expanding window). Another issue is that most results are
limited to forecasts based on plug-in estimators which ignore
the effect of estimation error and so could be improved, for
example, through a bias-adjustment procedure, in a way that
depends on the forecast horizon.

4. FINITE SAMPLE PERFORMANCE

Because samples used to evaluate forecast rationality are
typically quite small, we agree with the observation made by
Croushore that forecast rationality tests can be quite sensitive
to the sample at hand. Figure 1 in Croushore’s analysis
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Table 2. Monte Carlo simulation of size of tests of forecast optimality in the presence of parameter estimation error in an AR(1) model

φ = 0.1 φ = 0.5 φ = 0.95

Estimation sample: 25 50 100 25 50 100 25 50 100

Tests
Inc MSE 23.3 20.4 18.4 3.7 4.2 4.3 0.0 0.0 0.0
Dec Cov 6.4 10.1 17.4 1.5 2.4 6.8 0.3 0.3 0.3
Cov bound 24.5 17.3 18.4 0.3 0.7 1.6 5.5 4.6 4.2

Dec MSF 0.6 2.2 8.4 0.2 1.1 5.5 3.2 3.1 3.3
Inc MSFR 0.0 0.5 1.9 0.4 2.0 3.1 0.0 0.0 0.0
Dec Cov, with proxy 0.2 2.1 8.8 0.2 1.7 6.2 0.2 0.3 0.3
Cov bound, with proxy 2.3 6.2 12.4 0.8 2.4 5.1 5.4 4.9 4.5

MZ on short horizon 94.0 58.8 33.2 22.5 4.1 5.9 38.7 15.4 14.6
Univar opt. rev. regr. 61.6 36.4 26.5 35.8 24.0 21.9 36.6 23.9 15.8
Univar opt. rev. regr., with proxy 31.1 26.1 23.8 50.4 32.8 26.3 45.2 26.6 17.9

Univar MZ, Bonf. 85.5 56.8 38.4 83.9 64.0 53.9 80.7 60.5 37.6
Univar MZ, Bonf., with proxy 53.1 41.6 43.0 81.0 64.1 24.5 79.7 60.0 36.9
Vector MZ 99.8 97.3 92.4 97.8 93.9 89.3 73.2 57.8 37.2
Vector MZ, with proxy 57.8 54.3 67.5 80.8 83.2 87.3 67.5 48.5 30.0

Bonf, using actuals 40.1 22.7 21.9 17.5 10.8 9.6 18.1 8.3 6.1
Bonf, using forecasts only 12.5 10.2 12.1 25.2 13.4 11.5 21.4 8.6 6.0
Bonf, all tests 34.5 17.0 18.7 21.2 11.1 9.0 18.2 6.3 4.9

NOTES: This table presents the outcome of 1,000 Monte Carlo simulations of the size of various forecast optimality tests, corresponding to Table 1 of the article. Data are generated
by a first-order autoregressive process with persistence parameter φ of 0.1, 0.5, or 0.95. Three rolling window estimation samples are considered (25, 50, and 100 observations). The
maximum forecast horizon is assumed to be eight periods. The simulations assume an out-of-sample size of 100 observations and a nominal size of 10%. The inequality tests are based
on the Wolak (1989) test and use simulated critical values based on a mixture of chi-squared variables. Tests labeled “with proxy” refer to cases where the one-period forecast is used in
place of the predicted variable.

illustrates that the finite sample power of the test is an important
consideration. For the graph with a fixed end date (2006), the
length of the evaluation sample expands as one moves to the
left along the x-axis, thereby increasing the power of the test
and the probability of detecting any biases that may be present
in the forecasts. This does not, however, help explain why the
evidence against the null of no bias is weaker to the right in the
graph that conditions on the starting date (1971) and expands
the evaluation window as time moves forward. In this case, the
test in fact rejects short evaluation windows.

In principle, using information on several forecast horizons
should help improve power. For example, the optimal revision
regression

Yt = α + βH Ŷt |t−hH +
H−1∑
j=1

βjdt |hj ,hj+1 + ut , (1)

tests for biases in the individual forecast revisions as well as in
the long-run forecast. This allows us to decompose any biases
into the individual forecast horizons, which is more difficult if
only a single forecast horizon is considered. For comparison, the
regressions proposed in Nordhaus (1987) and Lahiri and Sheng
(2008)

dt |hS,hM = βdt |hM,hL + ut or (2)

et |t−hS = γ dt |hS,hL + ut , (3)

are equality tests of covariances for a given horizon although
they exploit multi-horizon information through use of forecast
revisions.

The empirical work reported by Lahiri suggested that fore-
casters revise their forecasts in a nonsmooth way as a func-

tion of the forecast horizon which can cause problems such as
ill-behaved regressors in the optimal revision regression. This
observation suggests that one could increase the finite sample
power of the tests by carefully selecting a subset of horizons
and focusing on the associated moments.

One way to study the finite sample performance of the new
forecast rationality tests is to use the bootstrap reality check
of White (2000) or the refinement proposed by Hansen (2005),
rather than rely on asymptotical critical values. Table 3 illus-
trates the outcome of 1,000 Monte Carlo simulations used to
study the size and power of a subset of the variance bounds.
Compared with the tests based on the Wolak method, these tests
are more undersized under the White approach, but slightly less
so using the Hansen refinement when H = 8. The power of the
tests is comparable across the three methods, with a slightly
better performance under the asymptotical critical values. The
bootstrap approach is likely to outperform by a greater margin
as the number of forecast horizons, H, gets larger.

5. INTERPRETATION OF THE TESTS

Lahiri and West both raise the point that the tests proposed in
our article will fail to detect certain deviations from rationality,
that is, they are not consistent tests. West makes this point in
the context of a mis specified AR(1) forecasting model applied
to a MA(2) data-generating process, while Lahiri considers a
correctly specified MA(q) model based on incorrect parameters.
This is a valid concern, and is one that applies not only to our
bound-based tests but also to the familiar Mincer–Zarnowitz
tests, forecast error autocorrelation tests, our proposed optimal
revision regression, etc. Consistent regression-based tests of
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Table 3. Comparison of asymptotic- and bootstrap-based tests

Size Equal noise Increasing noise

Asymp White Hansen Asymp White Hansen Asymp White Hansen

Tests
Inc MSE 5.2 0.3 6.3 14.4 8.6 11.3 0.4 1.3 1.7
Dec Cov 4.7 0.0 6.2 13.8 8.6 11.6 11.2 10.5 10.3
Cov bound 0.0 1.5 1.3 78.9 74.8 76.0 91.6 93.3 88.9

Dec MSF 0.7 0.1 2.4 18.2 8.7 12.3 100.0 56.0 61.2
Inc MSFR 4.4 0.0 6.9 16.7 9.8 12.5 0.0 0.5 0.6
Dec Cov, with proxy 6.0 0.1 5.0 15.5 11.8 14.7 13.9 13.0 12.0
Cov bound, with proxy 0.0 5.9 5.1 99.2 98.7 98.5 100.0 100.0 100.0

NOTES. This table presents the outcome of 1,000 Monte Carlo simulations of the size and power of various forecast optimality tests, corresponding to Tables 1 and 2 of the article. All
tests have a nominal size of 10%. The forecast horizon is assumed to be eight periods, the level of measurement error is assumed to be “medium,” and the out-of-sample period is assumed
to be 100 observations. The first column of each panel presents results based on the Wolak (1989) test and uses simulated critical values based on a mixture of chi-squared variables.
These values are repeated from column 5 of Table 1 and columns 5 and 11 of Table 2 in the article (reported here for ease of comparison). The second and third columns present results
based on a bootstrap implementation based on White (2000) and Hansen (2005), respectively.

forecast rationality were considered by Corradi and Swanson
(2002), though to the best of our knowledge the multi-horizon
equivalent of the tests in that article are not available in the
literature. Moreover, practice tests with power against generic
alternatives can be difficult to interpret and are unlikely to have
much power in any given direction, given the short evaluation
samples that are typically available.

While we acknowledge that each of our bounds has power
only against certain deviations from rationality, when used as
a suite of tests they cover a variety of deviations. Further, our
simulation study suggests that combining these tests via a Bon-
ferroni approach does not lead to an overly conservative test,
and provides power in a (finite) variety of directions.

5.1 Improving Imperfect Forecasts

One of the benefits of using tests with power in a specific di-
rection is that they offer clues to how suboptimal forecasts can
be improved. Croushore raises the point that unlike more stan-
dard regression-based tests of forecast rationality, the bounds
tests proposed in our article do not naturally provide an “im-
proved” forecast as an output. For example, consider a standard
Mincer–Zarnowitz regression

Yt = βh0 + βh1 Ŷt |t−h + ut |t−h. (4)

If the test that
[
βh0 , β

h
1

] = [0, 1] is rejected, one can immediately
use Ŷ ct |t−h ≡ β̂h0 + β̂h1 Ŷt |t−h as a (linear) bias-corrected forecast.
Along similar lines, our proposed optimal revision regression in
Equation (1) may also be used to generate an improved forecast

Ŷ ct = α̂ + β̂H Ŷt |t−hH +
H−1∑
j=1

β̂j dt |hj ,hj+1 . (5)

It is true that the bounds tests we propose do not immediately
lead to an improved forecast. However, considering what types
of mis-specification will be detected by the various bounds tests
does offer the possibility of improving the forecasts. We next
illustrate how the rationality tests can be interpreted using two
examples of suboptimal forecasts.

5.2 The Lazy Forecaster

Consider the case of a lazy forecaster, who, in constructing a
short-horizon forecast, Ỹt |t−hS , does not update his long-horizon
forecast, Ỹt |t−hL,with relevant information, and hides this lack of
updating by adding a small amount of zero-mean, independent
noise to the long-horizon forecast. In that case

Ỹt |t−hS = Ỹt |t−hL + ut−hS , ut−hS ∼ iid
(
0, σ 2

u

)
. (6)

We then have

V
[
et |t−hS

] = V
[
Yt − Ỹt |t−hL − ut−hS

] = V
[
et |t−hL

]
+V [

ut−hS
]
> V

[
et |t−hL

]
. (7)

Thus, such a forecaster will be revealed via a violation of the
MSE bounds. This forecaster will also violate the bound on the
variance of the forecast revision

V
[
Ỹt |t−hS −Ỹt |t−hL

] = V
[
ut−hS

]
>cov

[
Ỹt |t−hS −Ỹt |t−hL, Yt

]
= cov

[
ut−hS , Yt

] = 0. (8)

As shown in Corollary 4, the variance of the optimal forecast
revision is bounded above by twice its covariance with the target
variable. When the forecast is “updated” with pure noise, this
bound is violated and in this case the long-horizon forecast is
better than the short-horizon forecast, even when the latter is
available.

5.3 Overreacting to News

As a second example, consider a forecaster who overreacts to
new information about the target variable. We will model this
as a forecast given by

Ŷt |t−h = Ŷ ∗
t |t−h−1 + γ d∗

t |h,h+1, γ ≥ 1. (9)

When γ = 1, we have Ŷt |t−h = Ŷ ∗
t |t−h−1 + d∗

t |h,h+1 = Ŷ ∗
t |t−h,

and thus the forecast is optimal, but when γ > 1 the forecaster
updates her forecast by more than what is optimal. Consider
now what this does to the observed forecast revisions

dt |h,h+1 = Ŷt |t−h − Ŷt |t−h−1 = γ d∗
t |h,h+1 + (1 − γ )d∗

t |h+1,h+2.

(10)



40 Journal of Business & Economic Statistics, January 2012

Notice that unlike optimal forecast revisions, which are uncor-
related, these forecast revisions will be negatively correlated

cov
[
dt |h,h+1, dt |h+1,h+2

] = γ (1 − γ )V
[
d∗
t |h+1,h+2

]
≤ 0 for γ ≥ 1 (with equality when γ = 1). (11)

This implies that mean squared forecast revisions (MSFR)
can violate the weakly increasing property established in
Corollary 1

V
[
dt |h,h+2

] = V
[
dt |h,h+1 + dt |h+1,h+2

]
= V

[
dt |h,h+1

] + V
[
dt |h+1,h+2

]
+ 2cov

[
dt |h,h+1, dt |h+1,h+2

]
� V

[
dt |h,h+1

]
. (12)

Only when γ = 1 does the third term drop out and we are
ensured that the left-hand side is weakly greater than the right-

hand side. Thus, a violation of the MSFR condition, as found in
our empirical application for GDP growth forecasts, illustrated
in Figure 2, may indicate overreaction to news arriving between
the release dates of forecasts.
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