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Motivation

Uncertainty about macroeconomic variables such as GDP growth and
in�ation enters into the decision-making processes of governments,
�rms and individuals.

welfare implications of macroeconomic volatility, see Ramey and Ramey
(1995, AER)

irreversibility and lags in investment decisions, see Kydland and
Prescott (1982, Econometrica)

determination of asset prices, see Andersen et al. (2003, AER)

volatility and volume in asset markets, see Beber and Brandt (2006)

responsiveness of investment to information, see Bloom et al. (2007,
REStud)



Contributions of this paper

1 We use a rich data set containing survey forecasts of annual GDP
growth and in�ation, with forecast horizons ranging from 1 to 24
months, to shed light on:

1 How quickly agents learn about these GDP growth and in�ation

2 What factors a¤ect the accuracy of their forecasts

3 What factors might be behind the observed amount of disagreement
between individual forecasters

2 We analyse this data via a simple but �exible theoretical framework
for studying panels of forecasts containing multiple horizons.

1 This framework is designed to model both the consensus forecast and
the dispersion amongst forecasts, across many horizons.



Detailed description of the data

We have T = 14 years of data (1991-2004) from Consensus
Economics for real GDP growth and CPI in�ation.

In each year we have forecasts for H = 24 di¤erent forecast horizons.

We have consensus forecasts and the cross-sectional dispersion of
individual forecasts, but not the individual forecasts themselves.

The realization of the target variable is the value reported by the IMF
in the September of the following year.

Our measure of the target variable may be subject to measurement
error - we do not explicitly model this.



Sample root mean squared errors as a function of the
forecast horizon: GDP growth
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Sample root mean squared errors as a function of the
forecast horizon: GDP growth and In�ation
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Cross-sectional forecast dispersion as a function of the
forecast horizon: GDP growth
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Cross-sectional forecast dispersion as a function of the
forecast horizon: GDP growth and In�ation
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Outline of the talk

1 Introduction and brief description of the data

2 A theoretical model for the term structure of RMSE

1 Theoretical predictions

2 Estimation by generalised method of moments

3 Estimating the persistent components from GDP growth and in�ation
from the survey forecasts

3 A theoretical model for the term structure of forecast dispersion

1 Theoretical predictions

2 Joint estimation by simulated method of moments

3 A simple model for time-varying dispersion

4 Summary and conclusions



First: Are the survey forecasts unbiased?

Our use of the Consensus Economics survey forecasts in this study
relies on the assumption that

ẑt ,t�h = E
�
zt jF̃t�h

�
i.e., that the forecasts are optimal under quadratic loss,
L (z , ẑ) = (z � ẑ)2

We ran a battery of tests of forecast optimality: testing for bias,
Mincer-Zarnowitz regressions, and testing for weakly increasing MSE
as a function of the forecast horizon.

Almost all of these tests failed to reject the null of optimality
(unsurprising with T = 14) and so we proceed as though the
condition is satis�ed.



Bias and MZ tests of the consensus forecast

Bias MZ p-values
Horizon GDP growth In�ation GDP growth In�ation
1 0.11 0.01 0.99 1.00
2 0.07 0.02 0.99 1.00
3 0.03 0.04�� 0.99 1.00
6 0.05 0.08� 0.99 1.00
9 -0.06 0.01 0.98 0.99
12 -0.34 0.03 0.95 0.96
18 -0.06 0.29 0.99 0.98
24 -0.09 0.37� 0.98 0.98



Learning and uncertainty in our model

We assume that forecasters know the DGP and its parameters, thus
ruling out estimation error and learning as sources of forecast errors
and dispersion.

The primary source of uncertainty in the model concerns the future
value of the variable of interest

When we extend to allow for measurement error, uncertainty exists also
for current and past values of the variable of interest

Modelling the forecasters�learning about the DGP and/or its
parameters requires a long time series, whereas our sample is just
T = 14 years.



Notation

yt : monthly value of variable of interest

zt =
11

∑
j=0
yt�j : annual value of variable of interest

ẑt ,t�h : the consensus forecast of zt made at time t � h

F̃t�h : information available at time t � h

et ,t�h = zt � ẑt ,t�h : consensus forecast error



The benchmark model

zt =
11

∑
j=0
yt�j

yt = xt + ut
xt = φxt�1 + εt , jφj < 1

�
ut
εt

�
s iid

�
0,
�

σ2u 0
0 σ2ε

��
ẑt ,t�h = E [zt jFt�h ]
Ft�h = σ

�
fxs ,ysgt�hs=1

�



Optimal forecasts and MSE term structures

Prop 1 (ii): The mean squared error of the optimal forecast as a function
of the forecast horizon is:

E
�
e2t ,t�h

�
=

8>>>>>>>>>><>>>>>>>>>>:

hσ2u +
1

(1�φ)2

�
h� 2φ(1�φh)

1�φ +
φ2(1�φ2h)
1�φ2

�
σ2ε ,

for 1 � h < 12

12σ2u +
1

(1�φ)2

�
12� 2φ(1�φ12)

1�φ +
φ2(1�φ24)
1�φ2

�
σ2ε

+
φ2(1�φ12)

2
(1�φ2h�24)

(1�φ)3(1+φ)
σ2ε , for h � 12



RMSE term structures under the benchmark model, for
various levels of persistence.
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Measurement errors - a Kalman �lter approach

Our benchmark model assumed that both the predictable and
unpredictable components of the target variable are perfectly observed
by the forecasters.

This implies that the squared forecast errors converge to zero as the
horizon shrinks - this does not match the data.

We need to extend the model to allow for imperfect observation of
the variable(s) of interest.

A more realistic framework would allow both components to be
measured with noise. We use the Kalman �lter to handle such an
approach.



A state-space model

The state equation for this model is unchanged:�
1 �1
0 1

� �
yt
xt

�
=

�
0 0
0 φ

� �
yt�1
xt�1

�
+

�
ut
εt

�
�
ut
εt

�
s iid

�
0,
�

σ2u 0
0 σ2ε

��
The measurement equation is assumed to be:�

ỹt
x̃t

�
=

�
yt
xt

�
+

�
ηt
ψt

�
�

ηt
ψt

�
s iid

�
0,
�

σ2η 0
0 σ2ψ

��
This is a standard state-space form and can be studied using textbook
methods (see Harvey 1989 or Hamilton 1994).



Term structure of RMSE for various measurement errors

The mean squared error of the optimal forecast in this state-space
framework can be obtained analytically:

For h � 12 it is simply a function of the forecast errors for horizons of
di¤erent lengths

For h < 12 it is a (complicated) function of forecast, �nowcast�and
�backcast� errors

While these expressions can be obtained in closed-form, they are hard
to interpret directly (see technical appendix of the paper)



Term structure of RMSE for various measurement errors
Sig-psi = +in�nity, sig-eta = k*sig-u for various k
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Estimation method

Our vector of unknown parameters for the model of the �term
structure�of mean squared consensus errors is
θ =

�
σu , σε, φ, ση, σψ

�0
.

We estimate these parameters by GMM:

θ̂T � argmin
θ2Θ

gT (θ)
0WT gT (θ)

where gT (θ) � 1
T

T

∑
t=1

264 e2t ,t�1 �MSE1 (θ)
...

e2t ,t�24 �MSE24 (θ)

375
where MSEh (θ) is the model-implied mean-squared error for horizon
h.



Estimation method - details

The weight matrix used is the identity matrix: less e¢ cient, but
maintains focus on the entire term structure.

The model-implied covariance matrix of the moments, obtained via
simulation of 10,000 non-overlapping years of data, is used to
compute standard errors and the test of over-identifying restrictions.

After some experimentation we �xed ση = 2σu and set σψ ! ∞ to
improve the identi�cation of the model.

We initially used all 24 horizons for estimation, but in light of
�nite-sample studies of GMM estimators, we settled on estimating the
model with just six forecast horizons: h = 1, 3, 6, 12, 18, 24.



GMM parameter estimates: consensus model

σu σε φ J p-val

GDP growth 0.06
(0.01)

0.05
(0.01)

0.94
(0.03)

0.40

In�ation 0.00
(��)

0.02
(0.01)

0.95
(0.05)

0.94



Term structures of RMSE for GDP growth and in�ation.
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Term structures of R2 for GDP growth and in�ation.
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Extracting the components of GDP and In�ation

Our simple framework for the monthly data generating process:

ξt �
�
yt
xt

�
=

�
0 φ
0 φ

�
| {z }

�F

�
yt�1
xt�1

�
+

�
ut + εt

εt

�

wt �
11

∑
j=0

ξt�j =

2664
11
∑
j=0
yt�j

11
∑
j=0
xt�j

3775



Extracting the components of GDP and In�ation

Optimal forecasts in this case are:

E
�
wt jF̃t�h

�
=

 
11

∑
j=0
F h�j

!
E
�
ξt�h jF̃t�h

�
, h � 12

E
�
wt jF̃t�h

�
=

11

∑
j=h+1

E
�
ξt�j jF̃t�h

�
+

 
h

∑
j=0
F h�j

!
E
�
ξt�h jF̃t�h

�
,

So optimal forecasts are a function of the �nowcast� and �backcast�
values of wt . Given an estimate of the parameters de�ning the DGP, it
is possible to extract �ltered and smoothed estimates of the persistent
(xt ) and transitory (ut ) components of the variable of interest.



Forecasters�implied persistent component of GDP growth
Recall y[t] = x[t] + u[t] ( total = persistent + transitory )
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Forecasters�implied persistent component of In�ation
Recall y[t] = x[t] + u[t] ( total = persistent + transitory )
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Summary of �ndings for the RMSE term structure

A simple model based on a persistent and a transitory decomposition
of the target variable �ts the data well

1 A simple AR(1) model for the persistent component was su¢ cient,
though our framework could be extended to handle more general
AR(p) or multiple component AR(pi ) models

2 Allowing for measurement error is important for GDP growth, though
not for in�ation. This is consistent with the �real time data� literature
in macroeconomics, see Croushore and Stark (2001) for example.

3 No �seasonal� component was needed (quarterly releases of �gures,
monthly announcements, etc): information appears to be smoothly
incorporated into consensus forecasts.



Outline of the talk

1 Introduction and brief description of the data

2 A theoretical model for the term structure of RMSE

1 Theoretical predictions

2 Estimation by generalised method of moments

3 Estimating the persistent components from GDP growth and in�ation
from the survey forecasts

3 A theoretical model for the term structure of forecast dispersion

1 Theoretical predictions

2 Joint estimation by simulated method of moments

3 A simple model for time-varying dispersion

4 Summary and conclusions



Dispersion among forecasters

Our second variable of interest is the degree to which agents disagree
about the expected value of the target variable. We measure this by

d2t ,t�h � 1
Nt ,t�h

Nt ,t�h

∑
i=1

(ẑi ,t ,t�h � z̄t ,t�h)2



Cross-sectional forecast dispersion as a function of the
forecast horizon: GDP growth and In�ation
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A model for dispersion

The �rst source of dispersion is di¤erences in signals:

ỹi ,t = yt + ηt + νi ,t�
ηt
νt

�
s iid

�
0,
�

σ2η 0
0 σ2ν

��
But as the forecast survey results are published (with a lag) we also
assume that the forecaster�s time t information set includes:

ỹt�1 = yt�1 + ηt�1

From these two measurement variables, the individual forecaster
computes the optimal forecast using the Kalman �lter:

ẑ�i ,t ,t�h � E
�
zt jF̃i ,t�h

�



Di¤erences in signals & dispersion as h grows

Allowing for di¤erences in signals is a natural starting point for
capturing dispersion, but it has an important counter-factual
implication:

As h! ∞, the value of any signal for predicting the target variable
goes to zero, and so all forecasts converge to the unconditional mean:

ẑ�i ,t ,t�h � E
�
zt jF̃i ,t�h

�
! E [zt ] as h! ∞

so d2t ,t�h � 1
Nt ,t�h

Nt ,t�h

∑
i=1

(ẑi ,t ,t�h � z̄t ,t�h)2 ! 0 as h! ∞

Yet we saw that d2t ,t�h ! δ̄ > 0 as h! ∞ for both variables in our
sample. So there must be another source of dispersion.



Di¤erences in beliefs about long-run values

One simple way of allowing for dispersion at long horizons is to allow
the forecasters to have di¤ering beliefs about the long-run average
values of GDP growth and in�ation.

This approach is a special case of allowing for di¤erent subjective
probability densities across forecasters, see Pesaran and Weale (2005).

These di¤erences can be motivated in a number of ways:

Di¤erent models for equilibrium rates of GDP growth and in�ation

Di¤erent samples of data, based on di¤erent beliefs about previous
structural breaks, etc.

Di¤erent Bayesian priors, which a¤ect the forecasts issued.

The outcome of a �game�played between forecasters, see Laster, et al.
(1999) or Ottaviani and Sørensen (2006) for example
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A model for di¤erences in beliefs

Forecaster i�s prior belief about the average value of zt is denoted µi .

We assume that forecaster i �shrinks� the Kalman �lter forecast
towards his prior belief about the unconditional mean of zt . The
degree of shrinkage is governed by the parameter κ2 � 0

ẑi ,t�h,t = ωhµi + (1�ωh)E
�
zt jF̃i ,t�h

�
where ωh =

E
�
e�2i ,t ,t�h

�
κ2 + E

h
e�2i ,t ,t�h

i
e�i ,t�h,t � zt � E

�
zt jF̃i ,t�h

�



The degree of �shrinkage�

The weights, ωh, placed on the prior vary across h in a manner
consistent with standard forecast combinations: as the Kalman �lter
forecast becomes more accurate the weight attached to that forecast
increases.

For short horizons, h! 0, the weight attached to the prior falls,
while for long horizons the weight attached to the prior grows.

For analytical tractability, and for better �nite sample identi�cation of
κ2, we impose that κ2 is constant across all forecasters.



Model-implied dispersion

We normalise µ̄ = 0 since we cannot separately identify µ̄ and σ2µ
from our data. This is reasonable if the number of �optimistic�
forecasters is approximately equal to the number of �pessimistic�
forecasters.

Our model for dispersion is the unconditional expectation of d2t ,t�h.
We allow for a heteroskedastic residual term for our model of
dispersion, with variance related to the level of the dispersion.

d2t ,t�h = δ2h (θ) � λt ,t�h

where δ2h (θ) � E
�
d2t ,t�h

�
E [λt ,t�h ] = 1

V [λt ,t�h ] = σ2λ.



Model-implied dispersion as a function of Sig-mu
With Sig-nu=2*Sig-u, kappa=0.5*Sig-z, Sig-eta = 2*Sig-u.
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Estimation method

Our vector of parameters for the model of the mean squared
consensus errors and dispersion is θ =

�
σu , σε, φ, σν, σµ, κ, σλ

�0
. We

estimate these parameters by SMM:

θ̂T � argmin
θ2Θ

gT (θ)
0WT gT (θ)

where gT (θ) � 1
T

T

∑
t=1

26666666664

e2t ,t�1 �MSE1 (θ)
...

d2t ,t�1 � δ21 (θ)
...�

d2t ,t�1 � δ21 (θ)
�2 � σ2δ,h (θ)

...

37777777775
where MSEh (θ), δ2h (θ) and σ2δ,h (θ) are the model-implied MSE,
dispersion, and dispersion variance.



Estimation method - details

The value of δ2h (θ) cannot be obtained in closed-form; we simulate
N = 30 individual forecasters for T = 600 months of non-overlapping
data.

The weight matrix used is again the identity matrix, so all horizons of
RMSE and dispersion (and dispersion variance) get equal weight in
the estimation.

Standard errors and the test of over-identifying restrictions are again
based on the model-implied covariance matrix of the moments.

We again estimated the model with just six forecast horizons:
h = 1, 3, 6, 12, 18, 24.



GMM parameter estimates: consensus and dispersion
model

σu σε φ σν σµ κ J p-val

GDP growth 0.06
(0.01)

0.05
(0.01)

0.94
(0.03)

0.69
(1.00)

0.67
(0.39)

1.41
(0.94)

0.86

In�ation 0.00
(��)

0.02
(0.01)

0.95
(0.05)

0.05
(0.17)

0.51
(0.13)

0.49
(0.17)

0.00



Term structures of dispersion for GDP growth and in�ation
in the US.
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Interpreting the results from the dispersion model

The model for in�ation dispersion �ts well for h � 12, but for short
horizons it systematically under-estimates dispersion

why is observed in�ation dispersion is so high at short horizons?

GDP growth In�ation

h RMSE DISP ratio RMSE DISP ratio
1 0.56 0.08 0.15 0.05 0.07 1.45
3 0.61 0.14 0.23 0.08 0.11 1.29
6 0.67 0.21 0.31 0.17 0.16 0.91
12 1.18 0.41 0.35 0.47 0.33 0.70
24 1.52 0.48 0.32 0.74 0.45 0.60



A model for time-varying dispersion

There is a growing body of empirical and theoretical work on the
relationship between uncertainty (somehow de�ned) and the
economic environment.

We use the default spread on corporate bonds for this purpose - this
is known to be a strongly counter-cyclical variable.

We model increased uncertainty as an increase in the di¤erences in
beliefs about long-run values

log σ2µ,t = β
µ
0 + β

µ
1 log St

A positive coe¢ cient on log St will imply that higher default spreads
coincide with greater disagreement about long-run values of the
series, generating higher dispersion.



GMM parameter estimates: consensus and time-varying
dispersion model

σu σε φ σν κ β
µ
0 β

µ
1 J p-val

GDP growth 0.06
(0.01)

0.05
(0.01)

0.94
(0.03)

0.69
(0.87)

1.41
(0.74)

-0.56
(1.10)

3.08
(1.83)

0.91

In�ation 0.00
(��)

0.02
(0.01)

0.95
(0.05)

0.05
(0.17)

0.49
(0.17)

-1.32
(0.55)

0.18
(2.37)

0.00



Term structures of dispersion for GDP growth and in�ation
in the US.
Conditional on the level of the default spread
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Summary of results: the RMSE term structure

Main �nding: A simple model of GDP and in�ation dynamics is
su¢ cient to accurately describe the complete term structure of
consensus mean squared forecast errors.

The estimated persistence parameters are consistent with estimates
obtained using lower-frequency data.

Measurement error is an important part of the model for GDP growth,
though not for in�ation

The forecasters in this panel appear to have taken several years to
adjust their forecasts to re�ect the higher GDP growth and lower
in�ation �gures during the 1990s



Summary of results: the dispersion term structure

Di¤erences in prior beliefs about long-run averages explain almost all
of the observed dispersion for both GDP growth and in�ation
forecasts.

Important di¤erences in the properties of forecast dispersion for these
two variables emerged:

The GDP forecast dispersion �t the data well, while the in�ation
dispersion model failed at short horizons

In�ation dispersion is high relative to the RMSE of the consensus
forecast, while GDP dispersion is only a fraction of the RMSE

Dispersion in GDP forecasts varies counter-cyclically in a signi�cant
fashion, while in�ation forecast dispersion appears unrelated to the
business cycle



Extensions

1 Formally model learning by forecasters: allow them to update
estimates of parameters rather than assume them known.

2 Consider the impact of other non-stationarities in the data: structural
breaks in GDP variance or the level of in�ation, for example.

3 Combine our panel of forecasts with samples of data on the target
variables over a longer sample but at a lower frequency.



The form of the target variable

Our analysis in the previous sections take the target variable, zt , as
the December-on-December change in the log-level of US real GDP
or the Consumer Price Index

In the Consensus Economics survey, however, the target variables are
de�ned as:

zGDPt � P̄t
P̄t�1

� 1

z INFt � P t

P t�1
� 1,

where P̄t � 1
4

3

∑
j=0
PGDPt�3j , and P t �

1
12

11

∑
j=0
P INFt�j



The form of the target variable, cont�d

For reasonable values of yt , the variables zGDPt and z INFt can be
shown to be accurately approximated as a linear combination of
(yt , yt�1, ..., yt�23) :

zt (w) �
23

∑
j=0
wjyt�j

wGDPj =

8<:
1+b j3 c
4 , 0 � j � 11

3�b j�123 c
4 , 12 � j � 23

, j = 0, 1, ..23

w INFj =

� j+1
12 , 0 � j � 11
23�j
12 , 12 � j � 23 , j = 0, 1, .., 23

w �j =

�
1, 0 � j � 11
0, 12 � j � 23 , j = 0, 1, ..23



The weights for GDP growth
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The weights for in�ation
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