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Abstract

Equal compensation across assets for the same risk exposures is a bedrock of asset
pricing theory and empirics. Yet real-world frictions can violate this equality and create
high-Sharpe ratio opportunities. We develop new methods for asset pricing with cross-
sectional heterogeneity in compensation for risk. We extend k-means clustering to group
assets by risk prices and introduce a formal test for whether differences in risk premia
across market segments are too large to occur by chance. Using portfolios of US stocks,
international stocks, and assets from multiple classes, we find significant evidence of
cross-sectional variation in risk prices for all 159 combinations of test assets, factor
models, and time periods. Variation in risk prices is as important as variation in risk
exposures for explaining the cross-section of expected returns.
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I. Introduction

Academic models of asset prices often assume away complications like trading frictions and seg-
mented markets, but in practice these simplifying assumptions rarely hold. As the global financial
crisis made painfully apparent, arbitrage frictions matter and, even in ordinary times, institutional
and informational frictions impede investor participation across markets and make for good deals
in the markets’ dusty corners (Fama and French (2010), Hou, Xue, and Zhang (2017)). Frictions
such as these can generate heterogeneous prices of risk across market segments and the appearance
of very profitable trading strategies. Consequently, cross-sectional differences in average returns
may derive from differences in both risk exposures and risk premia.

In an idealized financial market, cross-sectional differences in risk prices are tamed by two
forces. First, risk sharing among market participants typically makes the consumption of a “re-
presentative” household the key determinant of risk prices for all assets. Second, sophisticated
arbitrageurs eliminate differences in compensation for risk that arise on account of short-lived de-
mand pressures. The global financial crisis broke both intuitions. In response, recent models such
as Brunnermeier and Pedersen (2009) and He and Krishnamurthy (2012) place intermediaries at
the heart of the pricing kernel—intermediaries’ rather than households’ constraints and marginal
value of wealth determine equilibrium prices of risk. Likewise, Gârleanu and Pedersen (2011) and
Gromb and Vayanos (2018), among others, develop theoretical cross-sectional asset pricing impli-
cations of arbitrageur borrowing frictions in exogenously segmented markets.1 We find empirically
that differences in risk prices are so pervasive that such limits to arbitrage must take a central role
in asset pricing within and across markets, in crises and in normal times.

Existing empirical work on asset pricing with heterogeneous risk premia proceeds by drawing
on a priori knowledge to conjecture groups of similarly priced assets (e.g. Fama and French (1993),
Foerster and Karolyi (1999), and Griffin (2002) among others). However, only in certain cases
do we know how to group assets ex ante, and moreover any conjectured market segments may be
incorrect or less informative than other dimensions of variation in risk prices. Further, given the
sensitivity of estimated risk prices to how assets are grouped together, a skeptical empiricist should
impose the same data-snooping hurdle on market segments as on factors in expected returns.

We propose a new approach to asset pricing with multiple prices of risk. Our methodology
extends existing clustering algorithms to “let the data speak” in identifying groups of assets with
similar risk prices. In so doing we address the empirical challenge of identifying segmented sets of
assets in a wide range of economic settings. We then build on recent work on panel data models, e.g.,
Lin and Ng (2012) and Bonhomme and Manresa (2015), to propose methods for formally testing
whether multiple risk prices are needed in a given data set, or whether frictionless frameworks
suffice to explain the cross-section of expected returns.

1Such markets are necessarily “incomplete,” that is, certain risks cannot be traded, and there does not exist a
unique stochastic discount factor.
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The core of our estimation technique consists of estimating group assignments and cross-
sectional slopes via the expectation-maximization (EM) algorithm. In brief, this algorithm cycles
between (1) estimating cross-sectional slopes given conjectured group assignments and (2) reallo-
cating portfolios to groups given estimated cross-sectional slopes. In the first step, our approach
generalizes standard cross-sectional techniques such as Fama and MacBeth (1973) regression to
settings with multiple risk prices, whereby we estimate cross-sectional slopes period-by-period and
group-by-group. The second step then reallocates each portfolio to the group whose cross-sectional
slopes best describe its return dynamics. Iterating these steps identifies progressively more im-
portant dimensions of heterogeneity in risk prices, and at convergence, the algorithm delivers an
optimal set of group assignments and cross-sectional slopes.2

The structure of our estimation problem prevents the use of popular, off-the-shelf clustering
technologies like k-means. In typical clustering applications, the algorithm groups assets using
characteristics that are not a function of other assets, or of the group assignment, and hence
can be taken as fixed. In our setting, the grouping attributes are cross-sectional slopes, i.e., our
estimates of risk premia for each factor and date. It is the fact that these grouping attributes are
not fixed for each asset and instead depend on the risk and return characteristics of other cluster
members that makes k-means inappropriate in our setting. Our new approach can be interpreted
as a generalization of k-means that accommodates this dependence.

To test whether a set of portfolios has segmented risk prices, we need to evaluate whether
the incremental explanatory power of multiple clusters warrants the additional parameters we
estimate in a multiple-cluster model. A naive test of whether risk prices differ across clusters fails
because cluster assignments are estimated in our approach, and standard tests for the significance
of risk-price differences across clusters severely over-reject in finite samples.3 We propose a simple
alternative to overcome this problem based on subsamples of the data: we estimate the cluster
assignments using one subsample, and we test for differences of estimated risk prices in a second
subsample using the group assignments from the first subsample. We then construct modified
F -statistics for equal risk prices across groups, and we obtain critical values using a permutation
method in which we shuffle group assignments to obtain the distribution of the test statistic under
the null (see, e.g., Lehmann and Romano (2005)).

The economics of our test differ in important ways from standard tests of asset pricing models
such as the GRS test of Gibbons, Ross, and Shanken (1989). Starting from a baseline factor model,
the GRS test evaluates whether adding test assets (or factors) improves Sharpe ratios enough to

2We pair this iterative approach with multi-start and genetic algorithm global search methods to locate the
global-best group assignments and corresponding cross-sectional slopes.

3By contrast, no such problems arise when cluster assignments are known ex ante, as in Foerster and Karolyi
(1999). In the leading example of testing a null of G = 1 cluster (i.e, no heterogeneity in risk prices) against G = 2
clusters with estimated assignments, we must consider the behavior of a model that allows for two clusters when the
true number of clusters is one. Existing work on inference for k-means clustering and related methods that takes into
account estimated assignments (e.g. Bonhomme and Manresa (2015)) assumes that clusters are “well separated,”
making such theory inapplicable to this hypothesis test.
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justify the additional flexibility granted in forming the in-sample mean-variance efficient portfolio.
Our test evaluates whether adding clusters improves model fit enough to justify the additional
flexibility allowed by group-specific slopes to explain the cross-section of returns (we use subsamples
with fixed groups to shut down flexibility in group assignments). Rejections in each test signifies
that a candidate factor model is incomplete—in not spanning priced risks in the GRS test and in
not capturing cross-sectional variation in risk prices in our test.

We apply these tools to analyze risk price heterogeneity in a variety of economic settings,
including domestic stock portfolios, international stocks portfolios, and cross-asset class portfolios.4

To these portfolio sets we apply leading factor models including the CAPM, the Fama and French
(1992) three-factor model; the Carhart (1997) four-factor model, the Fama and French (2015) five-
factor model, the He, Kelly, and Manela (2017) intermediary-capital factor model, and the Hou,
Xue, and Zhang (2015) q-factor model. Finally we split our data samples into subintervals to
evaluate segmentation over time within each market-model pair.

Our analysis delivers two new empirical facts on cross-sectional heterogeneity in risk prices.
First, we find segmented risk prices in almost every setting examined. We reject unified risk pricing
for all but one of 159 combinations of test assets, benchmark factor models, and time periods,
with a modal p-value of 0.000. By contrast, we find no evidence of segmentation in a set of
placebo portfolios, which are homogeneous by construction, beyond what is expected by chance.
Second, we find variation in risk prices contributes significantly to explaining the cross-section of
expected returns. Among US stock portfolios, where segmentation is least pronounced, adding
multiple clusters increases cross-sectional dispersion in average returns from 3% to 167%, with
25th and 75th percentiles increases of 16% and 76%, respectively. This increase in cross-sectional
explanatory power is comparable to replacing the Fama and French three-factor model with their
more recent five-factor model. Ex post Sharpe ratios of global factor models also increase markedly
when including factor variants local to each market segment; for domestic equity portfolios, the 25th
and 75th percentiles of changes in maximal annual Sharpe ratios are 0.26 and 0.83. Potential gains
from acknowledging multiple market segments are comparably large in our analyses of international
equity portfolios and portfolios of assets across multiple asset classes.5 We conclude that risk-price
heterogeneity is a pervasive and economically important feature of real-world financial markets.

While we successfully explain substantial additional variation in the cross section of average
returns, our paper fundamentally differs from empirical asset pricing papers that introduce new
candidate factors to accomplish the same objective. There, an empiricist selects factors from a
large and unobserved model space, and the many degrees of freedom in data mining the factor (and
its empirical implementation) carry no penalty.6 Our approach penalizes such fishing expeditions:

4We consider a wide range of portfolio sets in the spirit of Lewellen, Nagel, and Shanken (2010), who emphasize
the importance of considering a diverse set of test assets when evaluating asset pricing models.

5These improvements in Sharpe ratios can also be interpreted as a measure of the size of the investment frictions
among market segments.

6Harvey (2017) caricatures this search among candidate factors in the motivating example of the 2017 AFA
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once we have selected a conventional factor model, the freedom to choose group assignments and fit
additional cross-sectional slopes is explicitly accounted for in our statistical tests of unified versus
segmented pricing. Moreover, our market segments use the same risk factors as the posited factor
model, thereby imposing significant economic discipline relative to multifactor models in which new
global factors are mined from the data.

One drawback to our approach is that, like principal components analysis and other clustering
techniques, it does not assign labels to the segments identified. Nevertheless, labels can often be
intuited from estimated segments, as we find in the three representative settings we consider:

1. Domestic equity portfolios cluster predominantly by market capitalization into small-cap and
large-cap stock portfolios. We contribute to the longstanding debate on whether factors earn
differential compensation across stocks of different sizes—e.g., Hong, Lim, and Stein (2000),
Grinblatt and Moskowitz (2004), and Israel and Moskowitz (2013)—by identifying market
capitalization as the single most important determinant of differences in factor premia among
common US stock portfolios.

2. International stock portfolios segregate perfectly by geographic region. This analysis validates
our methodology by recovering international boundaries as a well-known source of market
segmentation (see, for example, Griffin (2002), Hou, Karolyi, and Kho (2011), Fama and
French (2012)).

3. Stock, commodity, bond, options, and currency portfolios cleave into (at least) five clusters,
each corresponding to one or two asset classes with similar risk prices. Here we contrast with
He, Kelly, and Manela (2017) by rejecting the null of equal pricing across asset classes in a
model with market and intermediary capital risk factors.

Another challenge we face is distinguishing between omitted clusters and omitted factors. In
much of our analysis, we take the factor models as given and complete, and we conduct inference
on whether the data support one or multiple prices of risk. However, as we show in Section VI.A,
omitted factors can manifest as clusters, and vice versa. Omitting factors creates an omitted
variable bias, and groups of assets with greater exposures on omitted factors may appear to have
different risk prices from assets with smaller exposures. As a case in point, prior-return sorted
portfolios differ from size-value sorted portfolios in earning negative compensation to value-factor
exposure in a Fama-French three factor model, whereas they do not in a Carhart four-factor model.
Similarly, omitting clusters generates a proliferation of apparent factors that capture the interaction
of included factors and group membership dummies; the absence of momentum compensation in
Japan can masquerade as a new, Japan-specific factor on which only Japanese stocks load, for
example.

Presidential Address.
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We use the model comparison test of Rivers and Vuong (2002) to distinguish between omitted
factors and fundamental heterogeneity in risk prices. We compare the “best” cluster-based model, as
selected by the Akaike information criterion (AIC), with a “best” extended-factor model containing
additional factors extracted via principal components from the residuals of the factor model. The
subsample approach used to formally test for multiple clusters serves double duty in allowing us
to select comparable models on one partition and evaluate their relative performance on the other
partition. Accounting for potential omitted factors leaves our main result intact: we find strong
evidence of risk price heterogeneity in almost every setting considered. New dimensions of return
variation call for new clusters rather than new factors.

In this vein, our work suggests a potential reason for the continual discovery of new factors in
expected returns. The “factor zoo” described by Cochrane (2011) is too crowded to be plausible,
standing at several hundred inhabitants according to Harvey, Liu, and Zhu (2016) and Hou, Xue,
and Zhang (2017)’s recent counts. Empirically, we find clusters even in the presence of potential
omitted factors, but the reverse may not be true. In general, any factor betas or characteristics
that are cross-sectionally correlated with omitted group membership dummies may appear to be
new priced factors. Moreover, given the discreteness of clusters in segmented markets, continuous
characteristics are unlikely to span group indicators, and several new “factors” may spuriously
appear from just a few dimensions of latent market segmentation.

II. Related Literature

Market Segmentation

Prior empirical work on segmentation in asset pricing falls into two broad categories. In the first
category, researchers consider whether anomalies are concentrated in particular segments of the US
stock market. These studies typically focus on transaction costs and heterogeneous market clientele
rather than geography as a source of market frictions. In the second category, researchers evaluate
integration across international markets. For both strands of research, two key implications of
market integration are (1) equality of risk prices across markets, that is, all assets should earn
the same compensation per unit risk, and (2) comparable time series pricing errors for local and
cross-segment factor models. Intuitively, perfect global risk sharing makes the addition of local risk
factors unnecessary.

To the best of our knowledge, no study systematically analyzes dimensions of segmentation
within US stocks. However, existing work proposes several independent dimensions of segmentation
among US-traded securities. In a seminal paper, Merton (1987) considers informational frictions
in which only some traders are aware of an investment opportunity. The absence of knowledge
effectively segments markets. Traders earn abnormal returns on their private information, but at
the same time, their concentrated holdings of relatively unknown securities adds to their portfolio
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risk. Empirically, Kadlec and McConnell (1994) and Foerster and Karolyi (1999) confirm Merton’s
“investor recognition hypothesis” in illiquid US stocks and in international stocks listed on US
exchanges, respectively.

Investor awareness, institutional ownership, and trading frictions vary with market capitaliza-
tion, and several studies consider whether stocks earn the same risk premia in large- and small-cap
segments. Hong, Lim, and Stein (2000) and Grinblatt and Moskowitz (2004) estimate a negative
interaction between momentum returns and market capitalization. Israel and Moskowitz (2013)
find this conclusion to be an artifact of the particular sample period, and they suggest instead that
momentum strategies earn compensation in large and small stocks alike.

Fama and French (1993) consider common factors in stocks and bonds, and they find mixed
support for integration of these markets: stock returns load on term-structure factors when other
stock factors are included, but bond returns (mostly) do not load on stock factors when other bond
factors are included. By contrast, He, Kelly, and Manela (2017) find that an intermediary-based
asset pricing model explains the returns on stocks, bonds, options, currencies, commodities, and
other asset classes, and with similar prices of risk. We note that with rare exceptions, conclusions
on the degree of segmentation within and across markets depend critically on the choice of asset
pricing model.

Turning to the international context, evidence is mixed on whether global factor models suffice
for pricing the cross-section of international portfolios. Fama and French (1998) argue for a parsi-
monious, global market and value-factor model to explain value in international markets. Griffin
(2002) rejects both local and global factor models using GRS tests of their in-sample mean-variance
efficiency (Gibbons, Ross, and Shanken (1989)), and smaller time series alphas from local factor mo-
dels favor a segmented-markets worldview. Hou, Karolyi, and Kho (2011) support Griffin (2002)’s
finding using an expanded cross-section of individual stocks in 49 countries. Less ambiguously, the
momentum factor performs well in most countries with the notable exception of Japan (Rouwen-
horst (1998), Griffin, Ji, and Martin (2003), and Fama and French (2012)). International variation
in the pricing of momentum exposure contradicts global factor models, as does the particularly
large Japanese value premium (Asness, Moskowitz, and Pedersen (2013)).

The international finance literature often measures market segmentation by correlation and
cointegration rather than by mean-variance spanning or equality of risk prices. For exceptions in
which heterogeneous risk prices feature prominently, Errunza and Losq (1985) propose a model of
“mildly” segmented markets in which asymmetric barriers to trade break the equality of risk prices
across countries. Bekaert and Harvey (1995) estimate a regime-switching model to consider time-
variation in the degree of cross-market integration. Regimes are characterized by homogeneous or
heterogeneous risk prices depending on the degree of segmentation at a particular date.

Representative of much of the international market segmentation literature, Bekaert, Hodrick,
and Zhang (2009) evaluate a large cross-section of country and industry portfolios and find models
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with both global and regional factors fit the data. The authors emphasize common factor como-
vements rather than common factor prices. Pukthuanthong and Roll (2009) critique cross-country
correlation measures and focus instead on integration as a high R2 from global factor models. Our
methodology draws on both interpretations of market integration; we recognize groups of assets
as stochastically segmented if cross-sectional R2s are low for cross-group factor models relative to
within-group factor models.

Financial Frictions and Asset Prices

Motivated by the global financial crisis, a number of recent studies consider equilibrium asset
prices in which frictions play a central role. Gârleanu and Pedersen (2011) show that margin
constraints combined with limited capital prevent potential arbitrageurs from eliminating violations
of the Law of One Price, much in the spirit of Shleifer and Vishny (1997)’s limits to arbitrage.
Gromb and Vayanos (2018) extend Gromb and Vayanos (2002) to consider arbitrage dynamics
across segmented markets when asset payoffs are not identical, and they obtain a similar result of
arbitrageurs investing to maximize alpha per unit of collateral. Much like our paper, the authors
focus on cross-sectional implications of constrained arbitrage, and like us, they assume that market
segmentation occurs for exogenous reasons, including “regulation, agency problems, or a lack of
specialized knowledge.” These rationales apply in all of the settings we consider, in addition to other
cross-region frictions considered by the international finance literature and applicable primarily in
our analysis of international equities.

Cross-sectional variation in risk prices requires both a segmentation mechanism to weaken
arbitrage forces and heterogeneous agents to generate differences in risk premia. New models
focusing on inequality and intermediation provide rationales for such differences. Greenwald, Let-
tau, and Ludvigson (2016) and Lettau, Ludvigson, and Ma (2018) build on a long tradition of
limited-participation models (e.g., Mankiw and Zeldes (1991) and Vissing-Jørgensen (2002)) in
which workers and shareholders have different ratios of capital income to labor income and do not
share risks. In these setups, the representative agent’s consumption does not price assets; rather,
capital share-adjusted income enters the stochastic discount factor. He and Krishnamurthy (2012,
2013), Adrian, Erkko, and Muir (2014), and He, Kelly, and Manela (2017) replace the representa-
tive household’s stochastic discount factor with that of marginal financial intermediaries to derive
an intermediary-capital factor. Both classes of models generate imperfect correlation between the
marginal value of wealth among households.

Related Statistical Techniques

Our approach combines the estimation of risk premia with the assignment of assets to latent
market segments. Correspondingly, we build on the work of others in statistics as well as finance.
On the statistics front, we extend seminal algorithms in machine learning and recent work on
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estimation of group effects in panel models. The core of our estimation technique relies on expecta-
tion maximization (EM) to jointly recover group assignments and cross-sectional slopes (Dempster,
Laird, and Rubin (1977)). EM is a powerful iterative technique for estimating parameters when full
likelihood functions are difficult or impossible to maximize. Algorithmically, our iteration between
risk-price estimation and group assignments also parallels Lloyd’s algorithm in k-means cluste-
ring (MacQueen (1967)). As discussed in the introduction, our methodology generalizes k-means
to group assets based on common within-group slopes in addition to within-group intercepts or
average values.

The econometric approach of this paper is related to recent work by Lin and Ng (2012), Sarafidis
and Weber (2015) and particularly to Bonhomme and Manresa (2015), who study a k-means
application in a panel setting with both N and T large. Su, Shi, and Phillips (2016) also consider a
panel setting with estimated group assignments, though they employ penalized estimation methods
(such as the “lasso”) rather than a clustering approach.

III. Detecting Heterogeneity in Risk Prices

A. Estimation of a Factor Model with Multiple Clusters

Economic Setting

The economy consists of N assets and K asset pricing factors over T dates. Let ft be a K × 1
vector of asset pricing factors and rt be an N × 1 vector of asset excess returns at time t. The
factors ft are known and observable (we relax the former assumption in Section VI). Each asset is
a member of one of G ≥ 1 groups, where G is fixed for now. We use γi ∈ {1, ..., G} to denote the
group membership of asset i and define Ii as a G×1 vector with a one in the γthi element and zeros
elsewhere. Deviations of the risk premia for each group from the factors ft are denoted Φt; these
deviations would be identically zero if the factors were tradeable and markets were integrated. The
true asset pricing model satisfies

rit = αtIi + βi (ft + ΦtIi) + εit, (1)

0 = E [εt] = cov (εt, fs) = cov (εt,Φs) = cov (Φt, fs) = cov (αt, fs) , ∀t, s

We set aside conformability of the zero matrices to streamline exposition. For simplicity we assume
that errors in (1) are i.i.d. normal with variance σ2

i . We can relax this assumption to allow for
more general return processes so long as the errors have finite fourth moments.

This model differs from a traditional return process in that different groups may have different
cross-sectional slopes at each date t and different risk prices on average. Rather than having a
scalar average excess return αt and a K × 1 vector of risk prices ft + φt for the entire set of assets,
we instead have a 1×G vector αt and a K ×G matrix Φt, both multiplied by the G× 1 selection
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vector Ii. Group-specific elements are distinguished by superscripts as α(g)
t for zero-beta rates and

as φ(g)
t for risk prices. If there is no segmentation, or if all investors can frictionlessly trade all

factors, then αt = α∗t × ι′G and Φt = φ∗t × ι′G, where ιG is a G × 1 vector of ones, and our model
reduces the typical one in which factor compensation is the same across all assets. Our model and
estimation technique also accommodate cases in which groups differ only in their (unconditional)
average risk premia Φ̄ or in which dynamics differ only for a single group, for example, momentum
behaves differently in Japan, but similarly elsewhere.

Mapping to Models of Market Segmentation

We do not take a stand on the particular market frictions that give rise to the cross-sectional
variation in risk prices in (1). However, as discussed in our literature review, we note that several
classes of economic models deliver such variation in risk premia. Here we map two of them to the
economic setting described above. More generally, the necessary ingredients are a source of market
segmentation or incompleteness and heterogeneous agents across market segments.

First, from the international asset pricing literature, Errunza and Losq (1985) consider markets
separated by “mild” segmentation in which all investors may trade in “eligible” securities (one seg-
ment), and a set of investors cannot trade in “ineligible” securities (another segment), e.g., because
of capital controls. The authors derive a two-factor model consisting of a global market factor
and a hedge-portfolio factor (comprised of the ineligible market portfolio return minus the best
approximating portfolio of only eligible securities). As in equation (1), segments earn different
compensation per unit of risk exposure: ineligible securities earn a larger premium on the global-
market factor, and only ineligible securities earn a risk premium for exposure to the hedge-portfolio
factor. Moreover, only the returns on ineligible securities covary with hedge-portfolio factor rea-
lizations, so the dynamics of realized factor premia are useful for identifying market segments (a
feature we exploit below).

More recently, Gromb and Vayanos (2018) introduce a model of financially constrained arbi-
trage. The authors consider two assets traded in different segmented markets. With the exception
of a capital-limited arbitrageur, investors are restricted to trade in their segment. For our purposes,
we can view these assets as factor-mimicking portfolios comprised of securities in each segment.
Even in the case of identical asset fundamentals, constrained arbitrageurs do not eliminate dif-
ferences in factor-mimicking portfolio returns induced by differences in hedging demands among
segments; consequently, factor-mimicking portfolio returns can differ from one another, and their
unconditional risk premia may differ, too. The authors also propose a model of risky arbitrage in
which segmented assets have both common factor exposures and idiosyncratic risk. All else equal,
assets with greater common factor exposures (betas) feature larger spreads in returns between seg-
ments, which in turn implies different slopes with respect to factor exposures between segments as
in equation (1).
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Generalized Cross-Sectional Estimation

In the spirit of Fama and MacBeth (1973) two-stage regressions, the empiricist starts with time
series regressions for each asset i,

rit = ai + βift + ηit. (2)

which delivers estimates of risk exposures and idiosyncratic volatility for each portfolio. We make
two assumptions to interpret the parameters of this regression. First, we require that the “group-
specific” factors Φ are orthogonal to f in the time series; in economic terms, the group-specific
distortions are uncorrelated with the factors themselves. This assumption is innocuous in that if
the group-specific components are not orthogonal to f , βi recovers the sensitivity of returns to
variation in the common stochastic component. Second, we assume that the time series dimension
of our panel is large relative to the cross-sectional dimension, and so the measurement error in
the estimated βs and σis is negligible, and we can treat them as known (formally, T/N → ∞ as
T,N →∞). This assumption is particularly benign in our empirical estimation given that we use
static betas for well-diversified portfolios,7 and have much larger time series than cross sections.

After computing risk loadings from the time series, the empiricist estimates factor realizations
for all factors and groups via cross-sectional regressions. Estimated slopes, λ(g)

t ≡ ft +φ
(g)
t , recover

(noisy) realizations around each the factor mean at each point in time.8 Estimating Λt is complica-
ted because we do not know group assignments ex ante; the empiricist concurrently must estimate
N group assignments, γ, or equivalently, the N ×G matrix of group assignment indicators, I. We
use expectation maximization to address this challenge.

To see why our setting requires a new solution method beyond traditional OLS or maximum-
likelihood estimation, consider the error term for asset i under (1) using the time series betas from
(2),

ε̂it = rit − αtIi − βiΛtIi = rit − α(g)
t − βiλ

(g)
t , for γi = g. (3)

Up to a constant, the associated log likelihood is

logL (α,Λ, I) = −1
2
∑
g

∑
γi=g

∑
t

1
σ2
i

(
rit − α(g)

t − βiλ
(g)
t

)2
, (4)

and maximizing (4) entails optimizing over (K + 1)× T ×G αs and λs and N group assignments.
Even holding fixed group assignments, attacking this maximization problem directly is difficult

because of the number of parameters involved. Direct maximization of (4) becomes computatio-
nally impossible when we optimize over the latent group-assignment parameters γ. The objective

7We use static betas to avoid complicating our approach with estimation error in the generated regressors. An
alternative would be to estimate conditional betas and carry the time series estimation errors into the cross-sectional
regressions. However this approach adds considerable computational expense because it requires replacing each cross-
sectional OLS regression—of which there may be millions in a typical run—with nonlinear regressions that account
for this measurement error.

8Our approach allows for constant or time-varying risk premia.
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function in (4) lacks differentiability with respect to discrete group assignments, which complicates
or invalidates standard solution techniques for smooth problems.9 An exhaustive search of group
assignments for a “small” problem with 75 portfolios and two groups entails searching over 1018

possible groupings just to solve the integer component of the mixed-integer programming problem.

Expectation Maximization Fortunately iterative conditional approaches such as expectation
maximization excel in situations in which conditional maximization problems are straightforward
but full-problem optimizations—often involving latent parameters—are difficult. In our applica-
tion the EM algorithm consists of two steps to recover model parameters (α and Λ) and group
assignments (γ). First, given the group assignments, we estimate the model parameters (“maxi-
mization”). Second, given the model parameters, we reestimate the group assignments (“expecta-
tion”). We then iterate between these steps until convergence.10,11 Both steps are straightforward
maximization problems:

1. Estimate α and Λ given γ. The first-order conditions of (4) with respect to α(g)
t and λ(g)

t

are

0 =
∑
γi=g

1
σ2
i

[
1
β′i

] (
rit − α(g)

t − βiλ
(g)
t

)
. (5)

Crucially, conditioning on γ delivers separability across time and across clusters. Equation
(5) presents the moment conditions of TG simple cross-sectional regressions with precision
weights 1/σ2

i ,

rit = α
(g)
t +

∑
k

βikλ
(g)
kt + εit, ∀i s.t. γi = g, for g = 1, . . . , G and t = 1, . . . , T. (6)

In short, this step reduces to separate Fama-MacBeth regressions for each group g.

9Replacing discrete group assignments with continuous group assignments is an alternative, potentially more
tractable modeling choice. However, we are not aware of asset pricing models that deliver partial group memberships,
nor is it clear how to incorporate partial memberships into cross-sectional regressions without applying ad hoc
observation weights.

10Dempster, Laird, and Rubin (1977) and Wu (1983) prove that this iteration achieves a local solution to the
full maximization problem under general conditions. In our setting, the proof of convergence in a finite number of
steps is almost immediate. Each step weakly improves the likelihood function, and a (local) maximum exists because
the number of possible group assignments is finite (albeit large). Hence the sequence of likelihoods converges to a
maximum by the monotone convergence theorem. The algorithm does not “cycle” because each step must weakly
improve upon previous steps. Putting these components together, the number of steps is bounded above by GN . In
our applications, the EM algorithm tends to converge far more rapidly, taking between 5 and 15 iterations for the
typical starting value and economic setting.

11Appendix A details multi-start and genetic algorithm techniques we use to obtain global optima. In practice we
find these techniques to be important. For the three leading examples of Section V.C, only in one case would a local
optimizer be likely to arrive at the global best group assignments, and in another case, most locally optimal group
assignments differ substantially from the global best.
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2. Estimate γ given α and Λ. Fixing the parameters from the conditional MLE, we can focus
on a single asset at a time. The maximization problem reduces to finding the group with the
smallest sum of squared errors,

γ̂i = arg min
g

∑
t

(
rit − α(g)

t − βiλ
(g)
t

)2
. (7)

This group assignment step is essentially immediate for each security, as it requires only the
comparison of a set of G readily computed constants (idiosyncratic variances are fixed and
factor out). Note that group memberships are determined by the entire T ×K matrix λ(g)

rather than by its time-series average λ̄(g). Factor realizations at every date are helpful for
identifying assets in a common cluster, and groups may be meaningfully distinct in their
cross-sectional dynamics regardless of whether their unconditional average risk prices are
similar.

This procedure has attractive economic properties. The first step generalizes Fama-MacBeth esti-
mation of risk premia to multiple market segments. The cross-sectional slopes λ(g)

t are the same
as those in standard, single-cluster Fama-MacBeth regression if risk premia are the same across
assets. More generally, they are the factor-mimicking portfolio returns obtained using the assets
within each cluster—for example, the best approximation of the global momentum factor using
North American stocks for one cluster and Japanese stocks for another.12 This step accommodates
error structures with more complex cross-sectional or time-series dependence with suitable updates
of the moment conditions for α and Λ.

The second step assigns assets to the clusters that minimize their pricing errors. Doing so
resembles selecting the cluster for each security based on similarity in risk prices, but it is more
economically robust because it weights cross-group differences in λs by asset betas; factors that
are unimportant for explaining variation in portfolio returns do not determine group membership.
This feature guards against grouping assets based on “junk” factors that explain little variation in
the panel of realized returns.

Clustering by average lambdas is an alternative to (7). Indeed, doing so is preferable if risk
premia are constant and factor realizations are uninformative about cluster membership, because
noisy factor realizations then obfuscate the key risk price heterogeneity among market segments.
Instead—motivated in part by Errunza and Losq (1985) and Gromb and Vayanos (2018)—our
clustering method allows for time-variation in risk prices and factor-induced comovements to help
identify cluster membership. Both models of market segmentation suggest that both mean and

12This feature assumes that the given factor model is complete; otherwise, omitted factors may contaminate
estimated risk prices (see, e.g., Giglio and Xiu (2017), for discussion). To address this concern, in our empirical
analysis we consider a factor model augmented by the first three principal components of the portfolio return residuals
(“Carhart+3”), much as those authors extract factors from test assets to clean their factor set. We also explicitly
analyze omitted factors as an explanation for our results in Section VI.
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covariance information should be useful. Notwithstanding that we use this information in clustering,
one of our tests (described below) uses only information on average risk prices to evaluate the
hypothesis that portfolios have common risk premia.

From step 1, we see that idiosyncratic volatility serves as observation weights in cross-sectional
regressions. Any well-behaved set of weights delivers a consistent estimate of α and Λ as N →∞, so
potential errors in σi are immaterial in large samples for this step. In addition, idiosyncratic errors
do not enter the second step. Hence the choice of σi has no effect asymptotically for parameter
estimation or group assignment. However, the way we estimate σi matters in practice in two
situations. First, in finite samples, σi estimated from the time-series residuals maintains efficiency
under the null of a single group, for which this choice of weights is optimal. In the worst case for
finite N , the estimates in (5) are inefficient under the alternative model of multiple groups, and
this inefficiency increases noise in λ estimates, decreases our ability to achieve dispersion among
groups, and decreases the probability of rejecting the null. Second, observation weights affect the
estimated maximized likelihood and the information-criterion selected number of groups. For this
reason, our tests do not rely on a particular choice of G∗(we instead consider a range of values), and
we use information criteria only when examining in detail the results from a specific multi-cluster
model.

B. Testing for Multiple Clusters

The question at the heart of our paper is whether there exist latent market segments with
different risk prices. In this section we develop a formal methodology to test the null of equal prices
of risk in the cross-section (i.e., a single cluster) against the alternative of varying risk prices (i.e.,
multiple clusters).

We use subsamples of the data to implement our tests for multiple clusters. We partition our
data into R and P samples, e.g., the first and second halves of the sample, or the odd- and even-
dated observations. Let R and P denote the number of observations in each of these samples. For
a fixed number of groups G, we estimate our cluster model on the R sample. This estimation
yields parameters for each group α̂(g)

R and λ̂(g)
R as well as group assignments γ̂R. In estimating these

parameters we make standard large-panel assumptions on each group: to estimate cross-sectional
slopes consistently we need R, N → ∞, and we also require the number of assets in each cluster,
denoted Ng, g = 1, 2, ..., G, to be such that mingNg → ∞, i.e. there are no small clusters. Using
the group assignments obtained from the R sample, γ̂R, we estimate Fama-MacBeth cross-sectional
regressions on the P sample, separately for each group, obtaining the parameters α̂(g)

P and λ̂
(g)
P ,

which we use for testing.
Our tests for multiple clusters take two forms. Our first test evaluates equality of average risk
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prices across groups for a total of (G− 1)K restrictions:

H0 : λ̄
(1)
k = λ̄

(2)
k = . . . = λ̄

(G)
k ∀k (8)

vs. H1 : λ̄
(g)
k 6= λ̄

(g′)
k for some k, g, g′.

where λ̄(g)
k ≡ E[λ̄(g)

kt ]. Our second test evaluates equality of cross-sectional slopes across groups at
each point in time for a total of (G− 1)KP restrictions:

H0 : λ
(1)
kt = λ

(2)
kt = . . . = λ

(G)
kt ∀k, t (9)

vs. H1 : λ
(g)
kt 6= λ

(g′)
kt for some k, g, g′, t.

The first test generalizes Fama-MacBeth style t tests to speak to differences in expected returns
across market segments. The second test enriches the first by adding the information embedded in
the dynamics of cross-sectional slopes to distinguish among groups of assets.13 Indeed, groups may
have different factor dynamics but identical unconditional risk prices. Intuitively, both tests assess
whether adding clusters beyond the first generates differences in risk prices beyond what we would
expect by chance. Note that neither test examines the equality of intercepts (ᾱ(g) or α(g)

t ) because
our focus is on risk price heterogeneity rather than on differences in zero-beta rates. However, both
tests can easily be extended to include tests of equality of intercepts, as well.

We define test statistics for (8) and (9) analogously to F statistics for tests of equality of
average slopes (“avg”) and slope dynamics (“dyn”). Doing so requires some auxiliary quantities.
First, let the estimated difference in cross-sectional slopes at date t for clusters g and g′ be ∆λ(g,g′)

t

and the time-series average of this quantity be ∆λ̄(g,g′). Second, define Σ̂λ(g) as the cross-sectional
covariance matrix of the parameter estimates at date t for cluster g, and define Σ̂λ̄(g) as the time-
series average of this value. Because cross-sectional slopes are estimated separately group-by-group
and date-by-date, the covariance matrices of ∆λ(g,g′)

t and ∆λ̄(g,g′) are simply Σ̂λ(g) + Σ̂
λ(g′) and

Σ̂λ̄(g) +Σ̂
λ̄(g′) , respectively. Combining these quantities into test statistics for differences in averages

and differences in dynamics between all groups and factors, we obtain

FAvg = 1
(G− 1)K

G−1∑
g=1

∆λ̄(g,g+1)′
(
Σ̂λ̄(g) + Σ̂λ̄(g+1)

)−1
∆λ̄(g,g+1), (10)

FDyn = 1
(G− 1)KP

G−1∑
g=1

∑
t∈P

∆λ(g,g+1)
t

′
(

Σ̂
λ

(g)
t

+ Σ̂
λ

(g+1)
t

)−1
∆λ(g,g+1)

t . (11)

Incidentally, both tests downweight between-group differences in factor premia on “junk” factors

13A stronger form of both tests applies if factors are tradeable, namely, under the null hypothesis of no segmentation,
the cross-sectional slopes for all segments should equal each other and the returns to the factor. We drop this latter
condition to accommodate non-tradeable factors such as intermediary capital ratio innovations.
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for which the dispersion in betas is low because the test statistics normalize differences in λs by
the precision of λ estimates—which themselves are proportional to the cross-sectional variation in
βs—on average or date-by-date.

The test statistics use estimated parameters from the P sample taking group memberships
estimated on the R sample as fixed. If the dependence between observations in the R and P
samples is limited, then the over-fitting problem that arises when the same sample is used for both
group membership estimation and testing is eliminated.14 In principle, we can then use standard
hypothesis testing methods to implement a test for multiple clusters: for example, the test of equal
average risk prices is a simple F test. However in simulation studies with realistic data generating
processes, we found poor size control using this approach. We instead adopt a permutation testing
approach (see, for example, Lehmann and Romano (2005)) to generate correct critical values for
the tests of hypotheses (8) and (9). The permutation tests randomly shuffle group assignments and
are particularly well-suited for evaluating whether groups differ in some coefficient(s) of interest,
e.g., the set of cross-sectional slopes.

We implement our permutation tests as follows. Given a set of group assignments γ̂R obtained
on the R sample, we draw random group assignments in which portfolios have the same Ng/N

probabilities of being in group g. We next calculate the statistics in equations (10)–(11) on the
P sample. We repeat this procedure M=5,000 times to obtain a distribution of test statistics.
Each permutation acts similar to a bootstrap draw, and generating many permutations fills out the
distribution of the test statistic under the null hypothesis.15 p-values then are computed simply
as the proportion of permutation statistics larger than the test statistics. The advantage of this
approach is that it adjusts for possible issues arising from departures from our assumptions, such
as finite group sizes and sample lengths, while requiring less structure than a traditional bootstrap
design.

Finally, the test for multiple clusters requires the researcher to specify the number of clusters
under the alternative, G. Rather than imposing a specific value, we instead implement the test for
a range of values G = 2, 3, 4, 5. We set the largest value under the alternative to five to balance the
requirement that each cluster be “large” against the possibility of many market segments in the
data. We account for the fact that this method implements four individual tests by using a simple
Bonferroni correction. In practice, this means we calculate the overall p-value as the minimum of
the individual p-values multiplied by four, and we then compare the overall p-value to desired size
of the test (e.g., 5%).

14To ensure that the dependence between our subsamples is negligible, we leave a gap of one year between the R
and P samples. If the number of years in our sample is odd, we use the middle year as the “gap,” otherwise we split
the sample evenly and then drop the last year of the R sample.

15It is possible to consider all possible permutations of the assets when N and G are very small, however, for
the values of N in our applications this approach is infeasible. As noted in Lehmann and Romano (2005), using a
randomly drawn subset of all possible permutations, as we do, also controls the level of the test.
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C. Finite Sample Properties of the Test for Multiple Clusters

We analyze the finite-sample properties of the above tests for multiple clusters via an extensive
simulation study. Ensuring that the proposed tests have satisfactory finite-sample properties is a
necessary condition for interpreting the test results that we present in the next section. We consider
a range of values of N, T, K and G, to match the various specifications that we consider in our
empirical analysis in Section V.

The DGP for the simulation study is obtained as follows, and it uses data described in detail
in the next section. We first estimate factor means, µf , and covariance matrices, Σf , for two
representative asset pricing models, the CAPM (K = 1) and Carhart (K = 4) factor models, at
daily and monthly frequencies. We next estimate time series betas and idiosyncratic volatilities
for each of 234 domestic equity portfolios (the portfolio set “P3” described in Section IV) for each
factor model at daily and monthly frequencies.

For each simulation s, we draw with replacement N=75 stocks or N=225 stocks, where each
draw consists of ({βi1, . . . , βiK} , σiε) pairs. Asset returns are obtained as rit = βift + εit, with
simulated factor returns f ∼ N (µf ,Σf ) and idiosyncratic returns εi ∼ N

(
0, σ2

iε

)
. We simulate

factor returns with two time-series dependency structures: factor returns are either i.i.d. or they
exhibit time-series dependence as in a GARCH(1,1) process. We include simulations with volatility
dependence to confirm that our procedure is robust to (1) heteroskedasticity and (2) long-range
volatility dependence that may introduce dependence between the R and the P samples. Our
GARCH processes use Zivot (2009)’s parameters of a = 0.18 and b = 0.78 for monthly simulations
and a = 0.09 and b = 0.89 for daily simulations estimated from S&P 500 data for 1986–2003, and
we impose constant conditional correlation among the factors (Bollerslev (1990)), with correlations
estimated for the Carhart model on the entire 1963–2016 sample.

For the “monthly” design, we set T=300, and for the “daily” design we set T=10,000. We
estimate the multi-cluster factor models using the methods described in Section III.A, using data
from our R sample (the first half minus a year at the end), and we implement tests on the P
sample (the second half). We report rejection frequencies for nominal 0.05 level tests,16 for a single
alternative G ∈ {2, 3, 4, 5}, and for a multiple comparison using G = 2, 3, 4, 5 and a Bonferroni
correction. We simulate under each design S=500 times. Due to computation constraints, we
reduce the number of permutations within each simulation from M=5,000 to M=500. A test of
correct size should reject 5% of the time, up to simulation variability.

Table I shows that the proposed testing procedure generally has rejection rates that are com-
parable to the nominal test sizes. For the “monthly” simulation design, in the left panel, rejection
frequencies are generally close to the nominal 0.05 level in the i.i.d. case, though they are sometimes
larger when N=225. In this case our assumption of T/N being “large” is less plausible. For the
“daily” simulation design, in the right panel, almost all rejection frequencies are between 0.03 and

16The size control for significance levels of 0.01 and 0.10 are very similar to the 0.05 results presented here.
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0.08. Rejection rates do not appear sensitive to the choice of factor model (CAPM or Carhart)
with the exception of the large N and small T design. Overall, we conclude that the test has
satisfactory size control in finite samples, though the simulations suggest caution in interpreting
borderline results in the monthly samples with larger factor models.

IV. Data

Our data consist of risk factors and well-diversified portfolios common throughout the empirical
asset pricing literature. To ensure that our conclusions on market segmentation are robust to choices
of a particular factor model, we include several leading factor models in our analysis. These models
include the CAPM; the Fama and French (1992) three-factor model (“FF3F”); the Carhart (1997)
four-factor model (“Carhart”); the Fama and French (2015) five-factor model (“FF5F”); the He,
Kelly, and Manela (2017) intermediary-capital factor model (“HKM”);17 the Hou, Xue, and Zhang
(2015) q-factor model (“HXZQ”); and the Carhart (1997) four-factor model augmented with the
first three principal components of return residuals (“Carhart+3”). Ken French’s website provides
the Fama and French factors and the momentum factor both in domestic and global versions (as
in Fama and French (2012)). Asaf Manela’s website provides the intermediary capital factor. Lu
Zhang shares his investment and return-on-equity factors for the q-factor model. We adjust the
time series length and sampling frequency of the factors to match the corresponding portfolio sets
described below.

Throughout our analysis we use value-weighted portfolios as test assets. While in principle our
approach can be applied to individual stocks, at extreme computational cost, we use portfolios
rather than individual securities for the usual reasons: (1) to increase the stability of security risk
characteristics over time; (2) to decrease the measurement error in betas through diversification
of idiosyncratic risk;18 and (3) to reduce the sparsity of the matrix of realized returns. A focus
on portfolios rather than individual assets also follows from Merton (1973)’s intertemporal CAPM,
in which all multifactor-minimum variance efficient investments are spanned by K + 1 factor-
mimicking portfolios. Importantly, risk premia estimates obtained using portfolio returns do not
generally apply to portfolio constituents because comovements between securities strongly influence

17The intermediary capital factor is available monthly from January 1970 and daily from January 2000. For
sample periods in which daily data are available for portfolio returns but not for the intermediary capital factor, we
use monthly intermediary capital factors and monthly portfolio returns to estimate betas and idiosyncratic volatilities,
and we convert monthly volatility estimates to daily estimates by dividing by

√
21. In periods for which both data

frequencies are available, the cross-sectional correlation in betas and idiosyncratic volatilities estimated using daily
and monthly intermediary capital factors is about 90%, with slight variation depending on the portfolio set considered.

18A related benefit of using portfolios rather than individual stocks is that idiosyncratic risk cannot drive differences
in apparent risk prices. Well-diversified portfolios eliminate such risk, so differences in risk prices across these test
assets are a violation of the (approximate) arbitrage pricing theory (e.g., Chamberlain and Rothschild (1983)) up
to transaction costs. By contrast, small and finite cross-sectional differences in risk prices are allowable under the
approximate APT, and idiosyncratic risk may prevent such differences from disappearing (Pontiff (2006) surveys this
literature in discussing “Myth 5” of rational arbitrage).
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Table I: Finite Sample Rejection Rates

This table reports the proportion of simulations in which we reject a single cluster in favor of
multiple clusters using the two F tests described in Section III.B when the data comes from a
single cluster model. We consider 16 simulation designs: N=75 and N=225 simulated portfolios;
CAPM (K=1) and Carhart (K=4) factor models; i.i.d. and GARCH(1,1) factor realizations; and
T=300 months (left columns) and T=10,000 days (right columns). We use S=500 simulations of
each design. GARCH processes for the factors use parameters a = 0.18 and b = 0.78 for monthly
simulations and a = 0.09 and b = 0.89 for daily simulations (both from Zivot (2009)), and factors
have constant conditional correlation (Bollerslev (1990)). All tests are at the 0.05 nominal level. We
report rejection frequencies for a single alternative G = 2, 3, 4, or 5, and for a multiple comparison
G ∈ {2, 3, 4, 5} using a Bonferroni correction.

Design T = 300 Months T = 10,000 Days
N K GARCH G=2 =3 =4 =5 ∈2–5 G=2 =3 =4 =5 ∈2–5

Panel A: Tests for Equality of λ̄k Across Groups
75 1 No 0.04 0.04 0.07 0.07 0.07 0.05 0.07 0.07 0.05 0.06
75 4 No 0.07 0.06 0.06 0.05 0.07 0.06 0.06 0.04 0.05 0.07
225 1 No 0.05 0.05 0.05 0.06 0.06 0.04 0.06 0.06 0.07 0.07
225 4 No 0.08 0.08 0.11 0.08 0.10 0.04 0.03 0.07 0.07 0.06
75 1 Yes 0.04 0.05 0.07 0.07 0.07 0.06 0.08 0.07 0.05 0.07
75 4 Yes 0.06 0.06 0.06 0.04 0.07 0.05 0.05 0.04 0.05 0.07
225 1 Yes 0.04 0.05 0.05 0.03 0.05 0.04 0.06 0.07 0.06 0.05
225 4 Yes 0.07 0.09 0.09 0.08 0.11 0.06 0.06 0.06 0.06 0.08

Panel B: Tests for Equality of λkt Across Groups
75 1 No 0.03 0.03 0.03 0.10 0.06 0.08 0.04 0.03 0.08 0.08
75 4 No 0.06 0.04 0.03 0.05 0.05 0.04 0.01 0.04 0.08 0.07
225 1 No 0.04 0.05 0.07 0.06 0.06 0.05 0.11 0.09 0.09 0.08
225 4 No 0.10 0.12 0.09 0.06 0.12 0.08 0.07 0.06 0.03 0.07
75 1 Yes 0.05 0.05 0.05 0.13 0.08 0.09 0.04 0.01 0.08 0.07
75 4 Yes 0.06 0.03 0.02 0.05 0.04 0.04 0.01 0.03 0.07 0.04
225 1 Yes 0.06 0.06 0.05 0.06 0.06 0.07 0.08 0.09 0.08 0.08
225 4 Yes 0.13 0.13 0.12 0.07 0.17 0.07 0.08 0.07 0.04 0.06

18



portfolio dynamics.
We obtain characteristic-sorted equity portfolio data from Ken French’s website. Our domestic

equity data are daily for 1963 to 2016. The domestic equity portfolios are formed using a standard
sorting characteristics including market capitalization, book-to-market ratios, prior returns, inves-
tment rates, operating profitability, market beta, and industry group. We also use double-sorted
portfolios based on market capitalization and market beta, book-to-market ratio, prior return,
investment rate, and operating profitability. In addition to these standard equity portfolios, we
construct a set of 100 placebo equity portfolios to evaluate whether we detect segmentation where
none exists. Our base assets are US common stocks (sourced from CRSP) from 1963 to 2016
to parallel our domestic equity portfolios. Rather than sorting by characteristics, we instead as-
sign each stock a portfolio number in 1 to 100 with equal probability and value-weight returns to
obtain a portfolio return. Because these portfolios are large and formed at random, we expect their
characteristics and risk prices to be the same up to sampling variation.19

The international stock portfolio data are monthly and run from 1991 to 2016.20 They consist of
double-sorted size-book-to-market and size-prior return portfolios for developed markets in North
America, Europe, Japan, and Asia Pacific (excluding Japan) regions. Details on the underlying
data and security set are provided in Fama and French (2012). In our analysis we pair these
portfolios with global versions of the Carhart factors, and we substitute the global market factor
for the US market factor in the intermediary-capital factor model. Because return on equity is
constructed using accounting data that varies across countries and is not readily accessible, we
drop the q-factor model in studying risk price heterogeneity for these portfolios.

The cross-asset class sample is mainly courtesy of Asaf Manela, and our data is monthly for
1986 to 2010. In addition to domestic equities, these data include commodities, US Treasuries and
corporate bonds, sovereign bonds, options, and currencies.21 Unlike the domestic and international
stock portfolios, the diverse He, Kelly, and Manela (2017) portfolios necessarily start and end
at different dates as new asset classes come into being and database availability changes. While
Manela’s data include some asset classes from 1970, to maintain a near-balanced panel, we initialize
the sample at the start of the year that commodity and options data begin (1986) and end the
sample at the end of the year that foreign exchange data end (2010). He, Kelly, and Manela (2017)
describes portfolio construction and primary sources for these data in greater detail.

Table II summarizes the seven collections of standard portfolios. The first component of each
subtable marks the constituents of each portfolio set. Our smallest and largest portfolio sets consist
of 75 (P1) and 234 (P3) domestic equity portfolios, respectively. All portfolio sets sort on at least

19To ensure that results are robust to a particular set of random draws, we repeat this procedure to produce five
sets of placebo portfolios. Results are similar across placebo portfolios throughout, so we report for only the first set.

20We use monthly data rather than daily data to avoid confusing asynchronous returns with segmented pricing. In
a previous version of this paper we used daily data and obtained nearly identical results.

21We exclude credit default swaps and sovereign bonds from our analysis because data for these asset classes are
available only in the second half of our sample period (2001–2012 and 1995–2011, respectively).
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three variables (e.g., region, size, and book-to-market ratio) to ensure coverage of several potential
dimensions of market segmentation. The second component of each subtable reports summary
statistics for each set of sorted portfolios or asset class. We report the first and second moments
of average returns and return volatility for each grouping. Dispersion in average returns and
volatility within each portfolio set is on the order of several percent per year, indicating considerable
variation in factor exposures or risk prices within each group. These quantities also vary across
sorts, indicating that different sorting variables capture different dimensions of heterogeneity. We
omit summary statistics for the placebo portfolios because by construction they have no natural
grouping dimensions.

For each factor model-portfolio set combination, we repeat our analysis using both the full time
series and shorter subsamples. Just as the risk characteristics of portfolios may change over time,
so too may the market frictions that separate portfolios into segments with different risk prices. We
split the data into two halves for international equity and cross-asset class analyses, and we increase
the number of splits to three for domestic equity and placebo portfolio analyses because domestic
equity data are available for a longer time period. Splitting the sample allows our methodology
to accommodate time-varying risk characteristics and segmentation without incurring the extreme
computational costs of rolling estimation of group assignments. At the same time it allows us to
evaluate stability in these characteristics, as we do in Appendix B.

V. Segmentation Everywhere

A. Testing for Market Segmentation

Table III presents our main empirical finding of strong and pervasive evidence of segmentation
across choices of test assets, benchmark factor models, and time periods. Focusing first on the
left columns of Table III, we find evidence of differing average prices of risk across clusters for
most domestic equity portfolio sets and factor models, and for almost all international equity and
multi-asset class portfolio sets and factor models. The main exceptions to this strong evidence
of multiple clusters are portfolio set P1, which is comprised of the most common double-sorted
domestic equity portfolios, and the CAPM factor model. P1 is not sufficiently diverse to feature
meaningful heterogeneity in average risk prices, and the CAPM is too poor a model of cross-sectional
variation in expected returns for differences in average risk prices to be detected.22 Differences in
unconditional risk premia are important for almost all other environments with richer cross-sections
of assets or better factor models for returns.

Tests of equal risk dynamics in the right columns make much stronger statements about seg-

22Economically, we would also worry if the market factor alone consistently led to rejections of equal risk prices for
domestic equity portfolios. Presumably most US investors can trade the market factor at low cost, particularly in
the most recent period. If so, differences in risk prices would lead to on-paper arbitrage opportunities among market
segments.

22
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mentation. We find that every test except one (out of 159 in total) rejects the null hypothesis of
a single cluster at the 5% significance level, and all p-values are less than 0.1% for portfolio sets
P2–P8 (excluding the placebo set, P4).23 In addition, of the 54 segmentation tests applied to the
placebo portfolio set, we reject unified pricing at the 5% level in just three of them, or 5.6% of our
tests. This rate is quite similar to what we observe in the simulation study of Section III.C. We
conclude that where segmentation does not exist, we do not find evidence against unified pricing
different from what we would expect by chance.

From these strong rejections we conclude that cross-sectional variation in risk prices is ubiqui-
tous. In addition to the international and cross-asset class contexts, where we may have anticipated
segmentation a priori, even one of the world’s most-developed and liquid markets such as US stocks
exhibits significant variation in compensation to factor exposure. Given the large size of our ty-
pical panels, these statistical rejections of the null of unified risk prices may not correspond with
economically meaningful differences in cross-sectional dispersion of realized returns and expected
returns. The next subsection confirms that they do.

Despite the strong rejections of integrated markets, our results are conservative in several re-
spects. First, our ability to identify market segments depends on whether the selected factors have
heterogeneous risk prices. In this respect our paper joins most others in the segmentation literature
in depending on the choice of factor model. We address this issue in part by evaluating market
segmentation with a battery of leading factor models and diverse portfolio sets. Second, the Bonfer-
roni adjustment for penalizing multiple tests is too severe if tests are correlated, as our tests likely
are. Third, to the extent that group assignments are time-varying, our subsample approach for
testing for multiple clusters will have lower power, as using the “wrong” clusters for the P sample
decreases the improvement in model fit with multiple clusters relative to a single cluster. Evidence
of segmented markets comes through strongly in Table III despite these features.

B. The Economic Importance of Market Segmentation

To assess the economic contribution of heterogeneous risk-price models of expected returns, we
first define two measures of the dispersion in expected returns explained by a particular model.
Perhaps of greatest academic interest is the estimated explanatory power for the cross-section of
expected returns. Our first measure of economic importance is the variation in returns explained
by our model, measured as the model-implied variance of unconditional average returns across test
assets:

σ2
G∗ (r̄) ≡ vari

(
1
T

T∑
t=1

(
α

(g)
t + βiλ

(g)
t

))
, (12)

23Our simulation study suggests that these tests somewhat over-reject for monthly data with larger factor models,
but the p-values reported here are far from borderline cases that warrant statistical caution.
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where we select the number of clusters G∗ ∈ {2, 3, 4, 5} as the value that minimizes the AIC. We
calculate the variance in expected returns analogously for the one-cluster model using standard,
full-sample Fama-MacBeth estimates for αt and λt, and we report the ratio of σ2

G∗ (r̄) /σ2
1 (r̄).

Our second measure of economic importance quantifies the Sharpe ratio improvements from
using factors constructed from multiple clusters rather than from one. This measure is the difference
in maximal in-sample Sharpe ratios achievable using factor-mimicking portfolios from all clusters
and from a single combined cluster,

∆SRG∗ ≡
√
µ′ΛΣ−1

Λ µΛ −
√
µ′λΣ−1

λ µλ. (13)

If the factors are tradeable,
√
µ′λΣ−1

λ µλ is simply the maximal in-sample Sharpe ratio achievable
using the factors alone,

√
µ′fΣ−1

f µf .
The second measure takes the perspective of an arbitrageur able to frictionlessly invest in all

portfolio sets. To the extent that risk prices vary in the cross-section, investing across clusters
improves the maximal in-sample Sharpe ratio by enabling (1) tilts toward “local” factors with
particularly high compensation per unit risk and (2) diversification of risk across imperfectly cor-
related mimicking portfolios. ∆SRG∗ answers how much better our hypothetical unconstrained
investor can do in mean-variance terms by recognizing risk price heterogeneity. Equivalently, from
a no-arbitrage perspective, it represents the magnitude of segmentation frictions in the size of gains
remaining despite the activities of sophisticated potential arbitrageurs. In this respect, ∆SRG∗
measures cross-sectional limits of arbitrage described by Gromb and Vayanos (2018).

Table IV reports these measures for all combinations of test assets, benchmark factor models,
and time periods. Despite not being the optimization objective, dispersion in average returns
increases almost everywhere, and often considerably. Starting with the domestic portfolios and
setting aside outlier CAPM and He, Kelly, and Manela (2017) (HKM) rows, increases in cross-
sectional dispersion in average returns range from 3% to 167%, with with 25th and 75th percentiles
increases of 16% and 76%, respectively. These improvements are on par with adding additional
factors to standard asset pricing models; for example, augmenting the Fama-French three-factor
model with investment and profitability factors, as in the Fama-French five-factor model, increases
cross-sectional dispersion in average returns by 49% for P1 portfolios, 16% for P2 portfolios, and
28% for P3 portfolios. Performance gains are much larger for the CAPM and HKM models because
(1) both models perform quite badly in explaining cross-sectional variation in average returns,
and (2) additional clusters likely pick up omitted factors, a possibility we address in Section VI.
Conversely, while our statistical tests reject the null of a single cluster for all portfolio sets, the
improvement in likelihood from adding additional clusters is sometimes small. The AIC selects a
single cluster in several instances for portfolio set P1. This portfolio set is sufficiently homogeneous
that the four- and five-factor models we consider capture most of the economically interesting
cross-sectional variation in returns, and additional clusters do not add much in terms of explained
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Table IV: Contribution of Clusters to Expected Return Variation and Sharpe Ratio Improvements

Table reports the ratio of cross-section variance in expected returns explained by multiple-cluster
models to single-cluster models and the difference in maximal in-sample Sharpe ratios between
multiple-cluster models and single-cluster models. We construct these measures as follows. First
we estimate group assignments, risk prices, and likelihoods for models with G = {1, 2, 3, 4, 5}
groups using the entirety of each sample period. Next, we select the number of groups using the
AIC. ‘*’ indicate instances in which the AIC selects a single cluster. For the one-cluster and G∗

cluster models, we then calculate the cross-sectional variance in average returns (var(r̄)) as well
as the maximal in-sample Sharpe ratio attainable using the mimicking portfolios (

√
µ′ΛΣ−1

Λ µΛ).
We tabulate the ratio of cross-sectional variances var(r̄)(G∗)/var(r̄)(1) as “Var(r̄)” and increases
in annualized Sharpe ratios

√
µ′ΛΣ−1

Λ µΛ −
√
µ′λΣ−1

λ µλ as “∆SR.” We repeat this procedure for all
combinations of portfolio sets, risk models, and sample periods. Portfolios and models are described
in the text. We omit results for the placebo portfolio set (P4) because multiple clusters are selected
only twice of 27 models for these portfolios. For the He, Kelly, and Manela (2017) factor model, we
use daily data for the most recent time period and monthly data for earlier time periods. We do
not have sufficient coverage for their intermediary capital factor for 1963–1980 to include it in the
domestic equity portfolio analysis. The q-factor (HXZQ) model is excluded from the international
portfolio analysis because we do not have global return-on-equity factor data.

(a) Domestic Equity Portfolios

1963–2016 1963–1980 1981–1998 1999–2016
Portfolios Model Var(r̄) ∆SR Var(r̄) ∆SR Var(r̄) ∆SR Var(r̄) ∆SR

P1

CAPM 3.77 0.26 55.78 1.04 2.31 0.77 161.88 0.15
FF3F 1.81 0.74 1.19 0.26 1.44 0.70 1.80 -0.09
Carhart 1.03 0.10 * * 1.03 0.13 1.38 0.16
FF5F * * * * 1.95 1.41 1.10 0.15
HKM 8.25 0.33 34.85 1.18 5.30 0.38
HXZQ 1.16 0.67 * * * * 2.67 0.29
Carhart+3 * * * * * * * *
Median 1.81 0.33 28.49 0.65 1.95 0.77 2.23 0.16

P2

CAPM 6.48 0.55 80.02 1.61 1.02 0.20 52.70 0.32
FF3F 2.15 0.69 1.40 0.40 2.67 1.93 2.48 0.74
Carhart 1.05 0.07 1.17 0.29 1.17 0.95 1.30 0.61
FF5F 1.61 0.53 1.15 0.27 1.71 0.79 1.05 0.24
HKM 2.60 0.17 7.72 0.68 4.16 0.35
HXZQ 1.23 0.47 0.97 0.25 1.76 2.11 2.31 0.68
Carhart+3 * * 1.01 0.15 1.12 1.41 1.07 0.27
Median 1.88 0.50 1.16 0.28 1.71 0.95 2.31 0.35

P3

CAPM 2.75 0.17 22.66 0.84 1.22 0.46 6.16 0.48
FF3F 1.67 0.82 1.41 0.96 1.67 1.57 1.75 0.47
Carhart 1.41 0.86 1.16 0.35 1.07 0.49 1.55 0.85
FF5F 1.49 0.54 1.29 0.84 2.57 1.79 1.22 0.14
HKM 6.25 0.08 55.58 1.49 10.42 0.72
HXZQ 1.51 0.69 1.03 0.11 1.20 1.90 2.39 0.69
Carhart+3 1.20 0.51 1.15 0.70 1.39 1.63 1.23 0.32
Median 1.51 0.54 1.22 0.77 1.39 1.57 1.75 0.48
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Table IV: Contribution of Clusters to Expected Return Variation and Sharpe Ratio Improvements
(Continued)

(c) International Equity Portfolios

1991–2016 1991–2003 2004–2016
Portfolios Model Var(r̄) ∆SR Var(r̄) ∆SR Var(r̄) ∆SR

P5

CAPM 7.20 0.55 11.10 0.23 1.34 0.06
FF3F 5.00 0.51 2.91 0.60 1.25 0.13
Carhart 5.61 1.31 3.17 0.74 1.07 0.25
FF5F 1.33 0.54 1.41 1.00 1.11 0.92
HKM 4.15 0.40 7.84 0.30 1.30 0.48
HXZQ
Carhart+3 2.22 0.64 1.29 1.11 1.12 0.77
Median 4.57 0.54 3.04 0.67 1.18 0.36

P6

CAPM 3.98 0.89 368.25 0.66 1.21 0.71
FF3F 3.06 1.13 1.75 0.44 1.46 0.93
Carhart 4.07 1.62 1.14 1.05 1.37 0.75
FF5F 2.10 1.27 2.43 1.45 1.07 0.70
HKM 3.62 1.16 17.59 0.62 1.23 0.79
HXZQ
Carhart+3 2.34 1.61 1.20 1.49 1.08 0.99
Median 3.34 1.21 2.09 0.85 1.22 0.77

(d) Cross-Asset Class Portfolios

1986–2010 1986–1997 1998–2010
Portfolios Model Var(r̄) ∆SR Var(r̄) ∆SR Var(r̄) ∆SR

P7

CAPM 11.97 1.03 1.12 0.48 69.22 1.70
FF3F 1.33 0.55 1.05 0.19 1.84 0.87
Carhart 0.81 0.61 0.97 0.11 1.13 0.68
FF5F 1.15 0.42 1.22 0.24 2.15 0.93
HKM 7.48 0.79 1.03 0.33 19.69 1.40
HXZQ 1.05 0.44 1.33 0.25 2.69 1.06
Carhart+3 0.90 0.56 1.87 0.72 0.97 1.12
Median 1.15 0.56 1.12 0.25 2.15 1.06

P8

CAPM 4.93 1.11 1.23 1.00 5.95 0.68
FF3F 1.27 0.80 1.03 0.48 1.34 1.26
Carhart 1.08 0.87 1.10 0.46 2.48 1.80
FF5F 1.23 0.95 1.18 0.39 2.80 1.93
HKM 4.47 0.87 0.95 0.50 2.40 1.02
HXZQ 1.21 0.90 1.28 0.47 1.56 1.41
Carhart+3 1.18 1.47 1.84 1.40 1.08 1.37
Median 1.23 0.90 1.18 0.48 2.40 1.37
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expected-return variation and increased ex post Sharpe ratios. For the placebo portfolio set, the
AIC selects more than one cluster in only 2 of the 27 settings considered (results not tabulated).
Even for those two cases, we find improvements to maximal Sharpe ratios of only 0.03 and 0.08,
respectively. Our large Sharpe ratio improvements for our non-placebo portfolio sets do not arise
mechanically.

Turning attention to the second and third panels, we see larger improvements in cross-sectional
dispersion in model-implied average returns. The smallest increase in the international setting is
7%, and the largest increases are several hundred percent, again excluding the global CAPM and
HKM models from consideration because of clearly omitted factors. As we discuss in a detailed
example in the next section, international markets have region-specific risk prices that make global
factor models problematic. Intriguingly, by both metrics, we observe declines in inter-regional
segmentation, suggesting that barriers to international arbitrage have decreased over time. Finally,
in the cross-asset class context, we see comparable gains in performance for explaining the cross-
section of average returns, even though with the exception of HKM we limit ourselves to models
designed with only domestic equities in mind. However, in this panel we also observe occasional
reductions in cross-sectional explanatory power when adding clusters to the Carhart and augmented
Carhart models. This situation can occur if portfolios with relatively extreme betas belong to groups
with low compensation for risk, as in Frazzini and Pedersen (2014), who find that high-market beta
stocks have particularly low compensation for risk.

Perhaps of greater practical interest are increases in Sharpe ratios that can be attained by
unconstrained arbitrageurs who use “local” versions of the factors. As with the dispersion in
expected returns metric, using multiple clusters is as important for expanding the mean-variance
frontier as using cutting-edge factor models. Returning to the domestic portfolios of the first panel
of Table IV, typical improvements in annual Sharpe ratios are comparable to the market’s Sharpe
ratio of approximately 0.4, and some are as large as the maximal Carhart model Sharpe ratio of 1.3.
Moving to the second and third panels, Sharpe ratio improvements of the multiple-cluster models
are comparable with those of the first panel. Large improvements to attainable Sharpe ratios for
international portfolios reinforce Asness, Moskowitz, and Pedersen (2013)’s point that cross-region,
multi-factor strategies have highly desirable risk-return characteristics, even when compared with
similar strategies within a single region. However, our implications contrast with theirs in that
rather than investing in factor strategies everywhere, it may be even more profitable to trade the
basis between factor strategies in different segments, e.g., to go long North American momentum
and short Japanese momentum.

Taken together, Tables III and IV reveal segmentation everywhere. Cross-sectional differences
in factor compensation represent an important new dimension of heterogeneity that is absent from
standard asset pricing models. This dimension is as important as differences between risk models,
even in the low-friction setting of US equity markets, and especially so in more challenging inter-
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national and cross-asset class settings. Of course, evidence for segmentation everywhere begs the
question of from whence it comes.

C. Risk Price Heterogeneity in Common Economic Settings: Detailed Examples

In this section we investigate the dimensions of cross-sectional heterogeneity in risk prices in
three representative settings: domestic portfolios with the Carhart four factors; international equity
portfolios with the global Carhart factors; and cross-asset class portfolios with the market and He,
Kelly, and Manela (2017) intermediary capital factors. The portfolios correspond to P3, P6, and
P8, respectively, in Table II.

Up to this point, our statistical tests and economic interpretation have focused on whether one
or multiple sets of risk prices obtain in the data. Here we are more interested in interpreting levels
and cross-group differences in average cross-sectional slopes, and a different underlying theory is
needed. Specifically, to interpret results from Fama-MacBeth tests for differences in average slopes
from zero and from each other, we must account for the impact of estimated group memberships
on the cross-sectional slopes.

Bonhomme and Manresa (2015) provide general conditions for problems related to ours under
which the parameter estimates based on estimated group memberships have the same limiting
distribution as the (infeasible) parameter estimates based on true group memberships. A critical
condition for the asymptotic negligibility of the error in estimated group memberships is that the
clusters are “well separated,” that is, that there are indeed multiple clusters in the data. Table III’s
strong rejection of a single cluster for these examples indicates that this separation condition is
met. In our application, this equivalence of the limiting distributions implies that we can estimate
the group memberships (γ) and Fama-MacBeth parameters (α and Λ) using the EM algorithm
described in Section III.A and then conduct inference on the Fama-MacBeth parameters using
standard methods (e.g., t- and F -tests on the time series of the estimated coefficients).

Domestic Equity Portfolios

Table V reports Fama-MacBeth regression estimates from one- and two-cluster models. The top
panel reports p-values associated with tests of G clusters against one cluster (the null hypothesis).
Tests of equality of average risk prices rejects the null against alternatives of G = 2, G = 5, and,
more generally, G > 1 clusters with Bonferroni-adjusted p-values.24 Tests of equality of all cross-
sectional slopes strongly reject the null for all G ∈ {2, 3, 4, 5}. The top panel also reports the log
likelihoods and AICs associated with G-cluster models in the full sample. We select two clusters
using the AIC on this full sample.

24Intriguingly our test does not reject equality of means for G = 3 and G = 4 clusters. In these cases the optimal
group assignments consist of clusters with smaller dispersion in average factor premia, at least for the typical cluster
pair. Maximizing (4) in the three- and four-cluster cases generates groups that instead differ more in their factor
dynamics than in their average risk premia.
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Table V: Domestic Equity Portfolios (P3) Example: Domestic Carhart, 1963–2016

The top table reports p-values from F tests described in Section III.B for comparing a multiple-
clusters model to a single-cluster model. The underlying factor model is the Carhart four-factor
model, and our sample period is 1963–2016. The bottom table reports full-sample Fama-MacBeth
estimates of average cross-sectional slopes and associated t-statistics for each group in a model with
one cluster (“All”) and in a model with G∗ = 2 clusters selected by the full-sample AIC. Standard
errors are Newey-West with 252 daily lags. ρf,λ(g) are the correlations of the factor return and the
factor-mimicking portfolio return for cluster g. pF

(
λ̄ =

)
is the p-value associated with equality of

factor means for the particular factor assuming fixed group memberships. Average cross-sectional
R2s are reported both within each cluster (R2

G) and across clusters (R2
Combined).

Sample # Clusters 1 2 3 4 5

P pF
(
λ̄k
)
: 1 vs. G – 0.000 0.487 0.490 0.000

pF (λkt): 1 vs. G – 0.000 0.000 0.000 0.000

Full LL (×10−6) 6.438 6.508 6.525 6.538 6.553
AIC (×10−6) -12.813 -12.887 -12.858 -12.820 -12.785

One-Cluster Model Two-Cluster Model
All Group 1 Group 2 pF

(
λ̄ =

)
λ̄MKT -1.13 -0.52 2.33 0.20
t-stat (-0.44) (-0.16) (1.02)
ρf,λ(g) [0.83] [0.75] [0.77]

λ̄HML 3.79 2.12 8.12 0.00
t-stat (2.26) (1.35) (3.66)
ρf,λ(g) [0.95] [0.92] [0.82]

λ̄SMB 1.60 2.21 -2.54 0.03
t-stat (0.98) (1.21) (-0.86)
ρf,λ(g) [0.98] [0.78] [0.59]

λ̄UMD 7.11 5.57 10.43 0.00
t-stat (3.46) (2.91) (4.01)
ρf,λ(g) [0.99] [0.96] [0.92]

R2
G 0.91 0.90 0.94

R2
Combined 0.91 0.92

ME 1-3 81 0 81
ME 4-5 54 54 0
Industry 49 44 5
Other 50 50 0
NG 234 148 86
T 13469 13469 13469
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The bottom panel presents standard Fama-MacBeth regression estimates in the leftmost column
(“All”), as well as group-specific Fama-MacBeth estimates in columns for each group (“Group 1”
and “Group 2”). ρ rows report the time-series correlation of factor-mimicking portfolio returns
(cross-sectional slopes) and factor realizations, and the last column reports standard F tests in the
style of Fama-MacBeth for equality of average risk prices across groups.25 We also report average
within- and across-cluster R2s for the one- and G∗-cluster models.

The clusters have unequal sizes of 148 portfolios in Group 1 and 86 portfolios in Group 2.
Comparing the columns for Groups 1 and 2, Group 2 has larger factor premia for the market,
value, and momentum factors, and a smaller factor premium for the size factor. Between-group
differences in risk premia for non-market factors are economically large, at about 5%–6%, and
these differences are highly significant statistically as judged by F tests for equality of average
premia. Both clusters approximate the time series factors for the market, value, and momentum
reasonably well, with factor correlations ranging from 75% to 96% for these factors. Group 2’s
SMB-mimicking portfolio only achieves a correlation of 59% with the SMB factor; by comparison,
Group 1’s SMB-mimicking portfolio achieves a correlation of 78%.

From the portfolio counts for the two groups reported at the bottom of Table V, we see that
Group 2 contains all 81 single- and double-sorted portfolios in which market equity is below the
60th percentile of NYSE stocks, as well as five industry portfolios. Group 1 contains all double-
sorted portfolios in the largest and second-largest market-capitalization groups as well as single-
sorted market-capitalization decile portfolios 7–10 and 44 of the 49 industry portfolios. Because
our portfolios are value-weighted, the single characteristic-sorted portfolios behave similarly to
the highest market capitalization stocks, and they generate similar premia to the high market
capitalization portfolios of Group 1. In short, the most important dimension of heterogeneity
within our collection of US stock portfolios is that of market capitalization, whereby small stocks
earn greater risk premia than large stocks on all but the size factor.

Figure I illustrates our group-specific Fama-MacBeth regressions graphically. As these regres-
sions have multiple (correlated) regressors, we cannot simply plot returns against betas. Instead,
we plot the time series averages of residual returns against residual betas, where residual re-
turns are the error term in rit = η0t +

∑
j 6=k ηjtβij + r̃it and residual betas are the error term

in βik = δ0 +
∑
j 6=k δjβij + β̃ik. Both regressions are estimated group-by-group as in Section III.A,

and the line of best fit for each group has slope E
[
λ

(g)
k

]
.26 This plot highlights the key economic

25Namely, the F statistic is constructed as the sum of squared between-cluster differences in average λs normalized
by the inverse covariance matrix of the time series of λs. This F statistic equals the square of the usual Fama-MacBeth
t-statistic in the case of a single factor and pair of clusters.

26In the Fama-MacBeth procedure, we run multivariate regressions for each date t, rit = αt +
∑

k
βikλkt + εit.

By the Frisch–Waugh–Lovell theorem, the coefficient λkt in each multivariate regression is identical to the coefficient
in the univariate regression, r̃it = β̃ikλkt + εit, where r̃it and β̃ik are residuals from cross-sectional regressions,
βik = δ0 +

∑
j 6=k

δjβij + β̃ik and rit = η0t +
∑

j 6=k
ηjtβij + r̃it. Averaging across dates, and letting T → ∞,

E [r̃i] = E
[
β̃ikλk

]
= β̃ikE [λk] . Plotting average residual returns against residual betas delivers the same average
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Figure I: Domestic Equity Portfolios (P3) Example: Domestic Carhart, 1963–2016

Figure presents cross-sectional slopes of returns on factor exposure by cluster. The underlying
factor model is the Carhart four-factor model, and our sample period is 1963–2016. We select
the number of groups as G∗ = 2 using the minimum AIC criterion, where AICs are tabulated in
Table V. We vary residual betas on the x-axis because slopes in the multivariate cross-sectional
regressions are identical to the slopes on residual betas. Portfolios are color coded by segment and
identified with abbreviated portfolio names next to each point. Cluster sizes are in parentheses.
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differences in average risk premia between small- and large-cap stock portfolio clusters.
Our findings agree with Hong, Lim, and Stein (2000), Grinblatt and Moskowitz (2004), and

Israel and Moskowitz (2013) in identifying market capitalization as an important determinant of
cross-sectional differences in risk prices. Unlike these studies, we let the data inform us that size
matters for anomaly compensation, and the split between the small and large size quintiles we
identify is exactly that determined by previous studies. Notably, the existence of heterogeneity in
risk prices is not sample dependent, as Israel and Moskowitz (2013) caution, although other time
periods may see more or less heterogeneity in risk prices along the size dimension: we reject equal
risk prices across all sets of domestic equity portfolios and across all time periods. Moreover, with
the possible exception of the earliest sample period, the P3/Carhart group assignments are stable
over time, as discussed in Appendix B; 86% of the group assignments agree between the first and
second subsamples, and more than two-thirds of assignments in the first and third and second and
third subsamples agree with one another.

While Group 1 and Group 2 portfolios differ in their risk premia for all non-market factors, the
momentum factor provides the strongest evidence of between-group segmentation. Both groups’
mimicking portfolios nearly span the dynamics of the momentum factor, but the average compensa-
tion differential between portfolios is nearly 5% per year. Other factor-mimicking portfolios covary
less across groups and have smaller compensation differentials per unit β, and hence going long one
group and short the other has a worse risk-return trade-off.

The significant gap between large-cap and small-cap momentum compensation signals either
high-Sharpe ratio opportunities (“good deals”) or arbitrage frictions (a duality that permeates our
paper). If arbitrageurs were aware of the differential return to momentum across market segments
and could frictionlessly trade both portfolio sets or a portfolio set and the factor itself, these
differences would be driven to zero. Given the considerable prior attention paid to cross-sectional
differences in momentum premia, a friction-based rationale seems more likely: either real-world
market participants suffer large implementation costs in replicating the momentum factor, as Novy-
Marx and Velikov (2016) and Patton and Weller (2018) argue, or trading long-short momentum
factor portfolios is especially costly in certain parts of the domestic equity universe (as Lesmond,
Schill, and Zhou (2004) and others suggest).

We caveat these results with a drawback to our approach: more than half of our portfolios are
sorted on the dimension of market capitalization, so our methodology has high resolution to detect
differences in compensation among portfolios with different average market capitalizations. While
we use a relatively expansive portfolio set, these sets only include portfolios that have previously
appeared in the literature, and so we are equipped only to detect heterogeneity in pricing along the
sorting dimensions analyzed by other researchers. The study of other domestic equity test assets
may find dimensions along which risk premia vary even more strongly.

cross-sectional slope E [λk] for the line of best fit as we obtain using Fama-MacBeth in the multivariate regressions.
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International Equity Portfolios

Table VI and Figure II present Fama-MacBeth regression estimates for the global Carhart model
and 200 size-value and size-momentum sorted portfolios. The top panel of Table VI indicates
that the AIC selects four clusters of risk prices as striking the best balance between model fit
and parsimony. From the rightmost column, the greatest differences in risk prices are found for
momentum. In particular, the fourth cluster has a small and statistically unreliable momentum
premium, whereas the second and third clusters earn more than 12%/year per unit of momentum
exposure. By contrast with the previous example, between-group factor dynamics are quite different
among portfolios: for example, Group 1’s mimicking portfolio returns are between 62% and 94%
correlated with the global factors, whereas Group 2 and 4’s mimicking portfolio returns are only
45%–63% correlated with these factors. Allowing for heterogeneous factor dynamics also contributes
to a 17% improvement in average cross-sectional R2s, suggesting that each cluster has strong within-
cluster or local factor structures.

The estimated assignments tabulated in Table VI clusters assets perfectly by geographic region:
North America (Group 1), Asia-Pacific excluding Japan (Group 2), Europe (Group 3), and Japan
(Group 4). There are no portfolio clusters that include out-of-region portfolios. In the bottom-
right plot, we see the well-documented failure of momentum in Japan (e.g., Rouwenhorst (1998) and
Griffin, Ji, and Martin (2003)) set against the larger momentum premia of the other three regions.
Likewise, we see a greater value premium in Japan than in North America or Europe, consistent with
Asness, Moskowitz, and Pedersen (2013)’s argument that a combined value-momentum strategy
performs well across all major international regions.

This analysis inverts the standard asset pricing paradigm of selecting regions and comparing
risk premia or mean-variance efficient portfolios, as in Griffin (2002), Hou, Karolyi, and Kho (2011),
Fama and French (2012). Instead, we confirm that the cross-section of portfolio returns itself suffices
to identify the region to which assets belong. That our estimated group boundaries coincide with
geographic ones, taken by others previously as given because of institutional barriers to arbitrage,
serves as reassurance that our methodology can detect important sources of segmentation, and
encourages us to apply it in settings for which the critical dimensions of segmentation are not
known ex ante.

Cross-Asset Class Portfolios

Table VII and Figure III report results from our clustering methodology applied to the He, Kelly,
and Manela (2017) market-intermediary capital factor model with 148 cross-asset class portfolios
(P8). In conducting this exercise we use the authors’ monthly data and a similar set of test assets.
However, rather than finding support for unified factor pricing, we instead find (at least) five clusters
in the data, as selected by the AIC. We stop at five clusters to reduce the chance of an estimated
cluster having a small number of members.
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Table VI: International Equity Portfolios (P6) Example: Global Carhart, 1991–2016

The top table reports p-values from F tests described in Section III.B for comparing a multiple-
clusters model to a single-cluster model. The underlying factor model is the Carhart four-factor
model with global factors described in Fama and French (2012), and our sample period is 1991–2016.
The bottom table reports full-sample Fama-MacBeth estimates of average cross-sectional slopes
and associated t-statistics for each group in a model with one cluster (“All”) and in a model with
G∗ = 4 clusters selected by the full-sample AIC. Standard errors are Newey-West with 12 monthly
lags. ρf,λ(g) are the correlations of the factor return and the factor-mimicking portfolio return for
cluster g. pF

(
λ̄ =

)
is the p-value associated with equality of factor means for the particular factor

assuming fixed group memberships. Average cross-sectional R2s are reported both within each
cluster (R2

G) and across clusters (R2
Combined).

Sample # Clusters 1 2 3 4 5

P pF
(
λ̄k
)
: 1 vs. G – 0.000 0.000 0.000 0.000

pF (λkt): 1 vs. G – 0.000 0.000 0.000 0.000

Full LL (×10−4) 5.498 6.003 6.195 6.318 6.328
AIC (×10−4) -10.852 -11.718 -11.958 -12.060 -11.935

One-Cluster Model Four-Cluster Model
All Group 1 Group 2 Group 3 Group 4 pF

(
λ̄ =

)
λ̄MKT 4.24 -1.57 -12.06 -0.55 2.03 0.12
t-stat (0.73) (-0.33) (-2.38) (-0.14) (0.26)
ρf,λ(g) [0.47] [0.62] [0.53] [0.66] [0.46]

λ̄HML 1.07 2.86 9.09 4.38 6.48 0.11
t-stat (0.42) (1.22) (2.36) (1.35) (2.22)
ρf,λ(g) [0.76] [0.89] [0.55] [0.85] [0.60]

λ̄SMB 0.05 2.82 -0.55 0.73 2.93 0.61
t-stat (0.02) (1.64) (-0.16) (0.37) (1.02)
ρf,λ(g) [0.83] [0.78] [0.44] [0.73] [0.51]

λ̄UMD 8.07 5.79 18.69 12.16 4.00 0.00
t-stat (2.79) (1.96) (3.59) (3.70) (0.93)
ρf,λ(g) [0.98] [0.94] [0.60] [0.87] [0.63]

R2
G 0.76 0.94 0.89 0.95 0.94

R2
Combined 0.76 0.93

NA 50 50 0 0 0
AP 50 0 50 0 0
EU 50 0 0 50 0
JP 50 0 0 0 50
NG 200 50 50 50 50
T 312 312 312 312 312
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Figure II: International Equity Portfolios (P6) Example: Global Carhart, 1991–2016

Figure presents cross-sectional slopes of returns on factor exposure by cluster. The underlying
factor model is the Carhart four-factor model with global factors described in Fama and French
(2012), and our sample period is 1991–2016. We select the number of groups as G∗ = 4 using
the minimum AIC criterion, where AICs are tabulated in Table VI. We vary residual betas on
the x-axis because slopes in the multivariate cross-sectional regressions are identical to the slopes
on residual betas. Portfolios are color coded by segment and identified with abbreviated portfolio
names next to each point. Cluster sizes are in parentheses.
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Table VII: Cross-Asset Class Portfolios (P8) Example: He, Kelly, and Manela (2017) Factors,
1986–2010

The top table reports p-values from F tests described in Section III.B for comparing a multiple-
clusters model to a single-cluster model. The underlying factor model is the He-Kelly-Manela
two-factor model with the intermediary capital factor from He, Kelly, and Manela (2017), and our
sample period is 1986–2010. The bottom table reports full-sample Fama-MacBeth estimates of
average cross-sectional slopes and associated t-statistics for each group in a model with one cluster
(“All”) and in a model with G∗ = 5 clusters selected by the full-sample AIC. Standard errors are
Newey-West with 12 monthly lags. ρf,λ(g) are the correlations of the factor return and the factor-
mimicking portfolio return for cluster g. pF

(
λ̄ =

)
is the p-value associated with equality of factor

means for the particular factor assuming fixed group memberships. Average cross-sectional R2s are
reported both within each cluster (R2

G) and across clusters (R2
Combined).

Sample # clusters 1 2 3 4 5

P pF
(
λ̄k
)
: 1 vs. G – 0.000 0.000 0.000 0.000

pF (λkt): 1 vs. G – 0.000 0.000 0.000 0.000

Full LL (×10−4) 5.194 5.463 5.546 5.614 5.661
AIC (×10−4) -10.302 -10.754 -10.834 -10.881 -10.893

One-Cluster Model Five-Cluster Model
All Grp 1 Grp 2 Grp 3 Grp 4 Grp 5 pF

(
λ̄ =

)
λ̄MKT 7.14 45.85 10.18 10.57 -2.39 7.33 0.00
t-stat (2.22) (4.77) (1.30) (2.53) (-0.48) (2.10)
ρf,λ(g) [0.98] [0.33] [0.55] [0.75] [0.66] [0.98]

λ̄HKM 9.30 -48.38 22.84 14.43 -8.47 9.91 0.06
t-stat (1.18) (-1.34) (1.75) (1.15) (-0.87) (1.14)
ρf,λ(g) [0.62] [0.16] [0.36] [0.45] [0.51] [0.56]

R2
G 0.74 0.98 0.58 0.85 0.91 0.84

R2
Combined 0.74 0.88

Options 18 18 0 0 0 0
Commod. 23 0 14 5 0 4
US Bonds 20 0 16 0 0 4
FX 12 0 0 11 0 1
Stocks 75 2 0 16 46 11
NG 148 20 30 32 46 20
T 300 300 300 300 300 300
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Figure III: Cross-Asset Class Portfolios (P8) Example: He, Kelly, and Manela (2017) Factors,
1986–2010

Figure presents cross-sectional slopes of returns on factor exposure by cluster. The underlying
factor model is the He-Kelly-Manela two-factor model with the intermediary capital factor from
He, Kelly, and Manela (2017), and our sample period is 1986–2010. We select the number of
groups as G∗ = 5 using the minimum AIC criterion, where AICs are tabulated in Table VII. We
vary residual betas on the x-axis because slopes in the multivariate cross-sectional regressions are
identical to the slopes on residual betas. Portfolios are color coded by segment and identified with
abbreviated portfolio names next to each point. Cluster sizes are in parentheses.
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Estimates of the equity premium range from -2.4% per year in cluster Group 4 to 45.9% per year
in cluster Group 1, with a full-sample average equity premium of 7.14% per year. The intermediary
capital factor price varies from -48.4% per year in Group 1 to 22.8% per year in Group 2. This
large variation is not due to the clusters being too small to estimate λs well—our smallest group
has 20 portfolios, and our most extreme risk prices come from clusters of 20 and 30 portfolios (by
comparison five of the eight asset classes analyzed individually in He, Kelly, and Manela (2017)
have 20 or fewer portfolios). An test for equality of average risk premia across clusters rejects
equality for both factors with p-values of 0.00 and 0.06.

Table VII also reveals important differences in the dynamics of risk premia across clusters, and
these differences in dynamics are missed by the test of differences in average risk prices. While the
market factor is highly correlated with market factor-mimicking portfolios for each cluster other
than the first (similar to the international equities portfolio example), the intermediary capital
factor looks very different from its mimicking portfolios. Three of the five clusters’ local variants
are less than 50% correlated with the global factor. This finding reinforces the main point of
Haddad and Muir (2018), who discover important cross-asset class differences in the time-variation
in risk premia as a function of barriers to direct participation by households (equivalently in their
model, the degree of intermediation).

Figure III illustrates that stark differences in risk prices align roughly with asset class bounda-
ries. The estimated cluster assignments—also tabulated in Table VII—reveal that Group 1 consists
of all US options along with two stock portfolios; Group 2 is evenly split between commodities and
US bonds; Group 3 includes all but one foreign exchange portfolio, along with 16 small-cap stock
portfolios, and five commodities; Group 4 is comprised exclusively of US stock portfolios; and Group
5 has a mix of large-cap stock portfolios, commodity, US bond, and foreign exchange portfolios.
Some of these splits might be readily conjectured ex ante, for example, options and stocks look
different from bonds and commodities, but some of these splits are not, for example, commodities
and US bonds are priced similarly. Our approach is uniquely positioned to find such unconventional
partitions of the data by risk prices. That pricing approximately segments by asset class suggests
that either the HKM measure does not capture intermediaries’ pricing kernel, or that intermediary
asset pricing fails to unify risk prices.
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VI. Omitted Factors or Fundamental Heterogeneity?

A. Clusters as Factors and Factors as Clusters

In this section we consider the possibility of omitted factors manifesting as differences in risk
prices and vice versa.27 To start, consider two simple models:

Model 1: rit = α
(1)
t 1 (γi = 1) + α

(2)
t 1 (γi = 2) + εit, (14)

Model 2: rit = α̃t + βiηt + ε̃it. (15)

The first model consists of two clusters, with cluster memberships determined by γi ∈ {1, 2},
each with time-varying average returns, α(g)

t , within the cluster. The second model consists of a
single cluster with time-varying average returns and factor realizations as well as heterogeneous risk
exposures βi. Note that βi can be a time series beta or a characteristic. To complete our notation,
let Ni be the number of assets in cluster i, and define ∆αt ≡ α(1)

t − α
(2)
t .

Omitted Clusters as Apparent Factors Suppose that the true data-generating process (DGP)
is (14), but we instead estimate (15). To simplify this case, assume εit ⊥ βi at each date. Within
each cross-section, the OLS estimate for ηt is

η̂t = cov (rit, βi)
var (βi)

=

(
α

(1)
t − α

(2)
t

)
cov (1 (γi = 1) , βi) + cov (εit, βi)

var (βi)

= ∆αt
var (1 (γi = 1))

var (βi)
(E [βi|γi = 1]− E [βi|γi = 2]) . (16)

The time series average of η̂t replaces ∆αt with ∆ᾱ. If average returns in each cluster are different,
i.e. ᾱ(1) 6= ᾱ(2), then η̄ 6= 0, and any characteristic that varies on average across groups will appear
to be priced. This expression is readily extended to a multivariate context, and it extends to more
than two clusters by replacing (16) with a G− 1 set of indicators corresponding to membership in
each cluster other than the last one.

Omitted Factors as Apparent Clusters Now suppose that the true DGP is (15), but we
instead estimate (14). We assume E [ε̃it|i ∈ G1] = 0 to keep the exposition as simple as possible.
Within each cross-section, the OLS estimate for ∆αt is

∆̂αt = cov (rit,1 (γi = 1))
var (1 (γi = 1)) = cov (βiηt,1 (γi = 1)) + cov (ε̃it,1 (γi = 1))

var (1 (γi = 1))
= ηt (E [βi|i ∈ G1]− E [βi|i ∈ G2]) . (17)

27An in-depth analysis of clusters as a source of the proliferation of factors in the cross-section of expected returns
is the subject of ongoing research.
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Hence, so long as (a) the factor exposure or characteristic βi has different conditional means across
clusters, and (b) the factor realization is not precisely zero, the difference in cross-sectional means
∆̂αt is also nonzero. Moreover, if the factor is priced with η̄ 6= 0, then the difference in average
returns across clusters, ∆α , will appear to be nonzero. By parallel with the “clusters as factors”
case, this expression can also be extended to a multifactor model with one or more omitted factors.

B. Economic Restrictions of a Segmented-Markets Model

To link the stylized example in the previous subsection to our empirical analysis below, we
now show that an asset pricing model with K factors and G clusters is a special case of a larger,
single-cluster, asset pricing model with GK factors. To show this equivalence, we rewrite (1) as

rit = α
(1)
t +

∑
k

βik
(
fkt + φ

(1)
kt

)
+ εit

+
G∑
g=2

[(
α

(g)
t − α

(1)
t

)
+
∑
k

βik
(
φ

(g)
kt − φ

(1)
kt

)]
1 (γi = g) , (18)

The first line of (18) is a standard realized-return model for assets in an integrated market (the
presence of φ(1)

kt allows for the true factor to differ from the observable factor), with the first cluster
serving as the reference cluster. When the assets are homogeneous and all clusters are identical, the
second line of (18) vanishes. Market segmentation adds group-specific zero-beta rates α(g)

t as well
as group-specific factor disturbances φ(g)

t .28 The coefficients on the group-specific factors take one
of two values. For assets in segment g, the loadings on group-specific factors, φ(g)

kt , are the same as
those on the corresponding global factors (βik). For assets in other segments, the loadings on φ(g)

kt

are zero. Thus φ(g)
kt can be interpreted as a “local” factor with a specific pattern in its loadings.

The factor-mimicking portfolio interpretation of Fama-MacBeth cross-sectional slopes helps to
clarify differences between segmented-market and extended-factor models. Equation (5) delivers
factor-mimicking portfolio returns group by group, that is, the cross-sectional slopes are each
segment’s approximation of the global factor return given the assets only in that segment. In
the international example of Section V.C, these factor-mimicking portfolios are the approximations
to global value, momentum, etc., using each region’s size-value and size-momentum portfolios.
Imposing the redundant-or-zero structure on betas in (18) maintains this feature. By contrast, in
global models with unrestricted betas on all factors, the cross-sectional slopes take on a different
interpretation. The second-stage slopes on βik represent the mimicking portfolio return using all
assets, regardless of market segment, and zeroing out the local components.

28The focus of our analysis is on factor premia, so we assume for discussion that zero-beta rates are the same across
groups.
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C. Empirically Distinguishing Between Factors and Clusters

As the preceding examples make clear, it is challenging to distinguish between omitted factors
and multiple clusters without imposing structure on what omitted factors might look like and how
numerous they might be. Further, as shown in the previous section, factor models of arbitrary
length nest cluster-based models as a special case. For this reason, we compare omitted-factor and
cluster-based models of comparable size (defined in a variety of ways).

Rivers and Vuong (2002) provide our framework for model comparison. Specifically, for two
non-nested models that minimize in-sample (weighted) squared errors, e.g., using linear regression,
Rivers and Vuong (2002) demonstrate that the models can be compared using their (weighted)
cross-sectional mean squared errors (MSE) date-by-date. Under the null that the models M1 and
M2 are equally accurate, they show that,

1√
T

∑
t

(
MSE

(M1)
t −MSE

(M2)
t

)
∼ N (0, V ) , (19)

where V is the asymptotic variance of the difference in MSEs, which is easily computed using a
HAC estimator, e.g. Newey and West (1987). Hence given a particular choice of cluster and factor
model, we can use a simple t test on the difference in (weighted) MSEs to evaluate the null of equal
fit against the alternative of unequal fit. Importantly, this test does not require either model to
be correct. It may be that neither a multiple-cluster model nor an extended-factor model capture
the richness of cross-sectional variation in returns, but the test reveals which approximation better
describes the data. As in our estimation, we use idiosyncratic variance as weights in the MSE.

The challenge is how to choose the cluster and factor models to compare. For this purpose, we
retain the R and P partitions described in Section III.B. We first use the in-sample AIC on the
R subsample to select the “best” cluster model and fix group assignments. We then estimate this
model on the P subsample, using the group assignments from the R sample. Next, we retain the
time-series regression estimates of factor betas and residual variation, and we extract additional
factors from these residuals on R using principal components analysis. These additional factors
maximize explanatory power of the variation in returns not spanned by the included factors, and
they serve as our candidate omitted factors; in this respect our methodology mimics Giglio and
Xiu (2017)’s approach for extracting omitted factors that may bias second-stage estimates of risk
premia.29 We retain factor loadings (βs) estimated on the R subsample to fix factor identities and
employ them in the cross-sectional regressions on the P subsample.

Because we wish to speak to a large range of possible omitted-factor models, we consider three

29As noted previously, the interpretation of Fama-MacBeth slopes as factor-mimicking portfolio returns requires
that a given factor model be complete. Throughout our main analysis, we assume that posited factor models are
correct up to the number of market segments. Here, we explicitly relax this assumption and extract additional
factors from the residuals. In so doing, estimated cross-sectional slopes are cleaned of omitted-variable bias, and the
mimicking-portfolio interpretation is restored.
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choices for the “best” omitted-factor model rather than a single one. We enumerate these models
on the basis on the number of additional included principal components, K∗1 , K∗2 or K∗3 . In the
K∗1 models, we consider factor models augmented with the first three principal components of the
panel of residual returns on the R partition. Our choice of three PCs is ad hoc and intended only
to provide a uniform omitted-factor benchmark. In the K∗2 models, we consider G∗ − 1 additional
factors, where G∗ is the number of clusters selected by the AIC on R. We make this choice of
the number of additional factors to give both cluster and factor models similar flexibility in fitting
the data. A model with G∗ clusters adds G∗ − 1 partitions of the data on which to fit K-factor
models, and a model with a single cluster and K+K∗2 factors also has an G∗−1 additional degrees
of freedom to fit each cross section. The K∗3 models give maximum flexibility to extended-factor
models to fit the data; just as we choose the number of clusters using the in-sample AIC, so too do
we let the AIC on the R partition dictate the number of factors. We impose one restriction to make
the selection process comparable, that is, much as we do not allow the AIC for the cluster models to
select G∗ > 5, we do not let the number of additional factors selected exceed (G∗ − 1) (K + 1)− 1.
This upper bound is one less than the number of additional variables that allow a factor model to
perfectly replicate a cluster model. In settings with large N and large T , factor models with so much
additional flexibility cannot “lose” to cluster models, making the model comparison uninformative
and violating the non-nestedness condition of Rivers and Vuong (2002).

Equipped with models chosen on the R partition, Table VIII reports discretized t statistics for
the hypothesis of equal mean squared errors on P for factor models augmented with additional
clusters and our three choices of additional factors. We code p-values below 0.1, 0.05, and 0.01
with one, two, or three – or +, respectively. Positive entries signify that the cluster model performs
better, and negative entries signify that the extended-factor model performs better. We use Newey-
West standard errors with 252 daily or 12 monthly lags to allow for serial dependence in squared
errors.

Focusing first on the domestic equity portfolios, we obtain mixed results on the importance of
clusters versus factors depending on the breadth of the portfolio set considered. For the narrowest
portfolio set, P1, model comparisons are roughly split between favoring multiple-cluster models and
multiple-factor models. This result parallels Table IV in that we again find that this portfolio set
is too limited in variety for risk price heterogeneity to be the dominant consideration for explaining
variation in returns, and this feature is reinforced by the fact that the R-partition AIC in some
cases only chooses a single cluster. Progressing to P2 and P3, for which domestic equity portfolios
become more diverse, so too does the importance of clusters relative to omitted factors increase:
both portfolio sets point strongly to clusters as more important than missing factors for explaining
variation in returns. There are two exceptions to this finding. First, for the CAPM rows, we see
in both cases that omitted factors are still more important than risk price heterogeneity for P2.
This result is unsurprising given the CAPM’s limited ability to explain cross-sectional variation in
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expected or realized returns—clearly other factors are missing, and risk price heterogeneity on the
market is less vital than for other factors. Second, our tests favor omitted-factor models relative
to multiple-cluster models with K∗3 additional factors in the most recent time period. We interpret
this finding as evidence of increased capital-market integration across US stocks, perhaps associated
with the sharp decline in transactions costs during this time. Nevertheless, risk price heterogeneity
still dominates omitted-factor explanations with comparably sized models (K∗2 ) and for models
with only a small number of omitted factors (K∗1 ).

Like the diverse domestic equity portfolios, the international equity and cross-asset class set-
tings unambiguously favor heterogeneous risk prices over richer factor models. This feature echoes
the strong rejections of equal risk prices for P5–P8 documented in Table III. We conclude that
any analysis of the cross-section of expected returns in such settings requires consideration of seg-
mentation across asset classes, notwithstanding recent evidence of integrated intermediation across
markets or reduced barriers to trade across global regions.

One notable feature shared with the domestic equity portfolios is that more diverse portfolios
more strongly favor risk price heterogeneity over missing factors. Nothing in our analysis mechani-
cally generates this result, and broader portfolio sets could well have required additional factors to
explain other cuts of the investible universe (consider, for example, the additional factors and sorted
portfolios of Fama and French (2015)). Rather, more exotic corners of the market or nonstandard
portfolio formations illuminate pricing discrepancies even among the factors included in relatively
parsimonious models. As empirical asset pricing continues to examine increasingly diverse portfolio
sets in response to greater data availability and data-mining concerns, we anticipate heterogeneous
risk pricing models to become commensurately more important.

VII. Conclusion

We present new methods for detecting and estimating heterogeneous risk prices in a cross-
section of assets. Our approach marries traditional asset pricing methods for risk price estimation
and machine learning methods for clustering data. Using this methodology, we find statistically
significant and economically important evidence of market segmentation across all portfolios, factor
pricing models, and time periods. Arbitrage frictions matter universally, not just in highly speci-
alized assets or during crisis periods: even within low-friction, high-participation markets, we find
that compensation per unit risk varies significantly across assets.

Segmented risk prices challenge leading models of risk and return. At best, segmentation
implies that these factor models are incomplete and miss important cross-sectional variation in
expected returns. However, our contribution is not simply another attack on commonly used factor
models in finance. Rather, our findings give fresh motivation to consider limits to arbitrage in
security markets. We offer a structured alternative for how, not just whether, frictionless factor
models might be improved upon in empirical applications. In doing so we suggest a promising new

47



direction for the study of the cross-section of expected returns.
Our findings have important practical implications. Given the ability to invest across groups of

assets, sophisticated investors should direct their capital to markets with the highest compensation
per unit risk. We offer concrete guidance for identifying these groups of assets. Likewise, potential
arbitrageurs across segments can earn the difference between risk prices net of implementation costs.
While such long-short strategies are not true arbitrage opportunities—there are too few market
segments to be well-diversified, and local factors are imperfectly correlated across segments—they
nonetheless represent “good deals” in the sense of Cochrane and Saá-Requejo (2000) and contribute
to substantial improvements in ex post Sharpe ratios.

Risk price heterogeneity also provides a novel explanation for the “factor zoo” of Cochrane
(2011) and Harvey, Liu, and Zhu (2016). The examples of Section VI.A indicate that any factor
whose loadings align with different segments may appear to be priced. Our analysis suggests
that missing clusters are more important than omitted factors for most combinations of factor
models and portfolio sets, with the possible exception of US equities in the most recent period.
The natural follow-up question, and the subject of ongoing work, is the extent to which so-called
expected return factors in US stocks are instead proxies for membership in market segments with
different risk prices.
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A. Finding Global Optima

A. Numerical Issues and Equivalence with Generalized k-Means

We face three related optimization challenges in implementing the EM algorithm: selecting
starting values; achieving global rather than local optima; and avoiding empty clusters. The choice
of starting values for γ matters because expectation maximization finds local solutions, and final
group assignments may depend heavily on initial group assignments. Likewise, we need a procedure
to escape local basins of attraction on the likelihood surface in order to achieve the global maximum
likelihood. Finally, clusters may depopulate to fewer than K elements as portfolios are reshuffled
after λs are set. However, such collections of group assignments cannot be global optima because
repopulating these clusters with (at least) K elements increases the likelihood function unless all
portfolios are perfectly fit.

While we apply EM as the solution method to our maximization problem (4), our procedure
closely resembles Lloyd’s algorithm in k-means clustering. Like our algorithm, Lloyd’s algorithm
consists of update and assignment steps. Typically the update step consists of generating “cen-
troids” by averaging characteristics within a group. This step is equivalent to minimizing squared
errors within each group using a model with only a constant term. Linear regression also minimizes
squared errors within each group, but it accommodates multi-factor models. Hence the first step
of our methodology is a straightforward extension of k-means in which group “characteristics” are
slopes for each date t and factor k. The assignment step of our methodology—choosing the cluster
that minimizes errors given slopes—is exactly the same as in standard k-means in the sense of
selecting the group that minimizes squared errors. However, in contrast with standard k-means,
the importance of each characteristic for group assignment varies across observations in proportion
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with betas; the larger βik in absolute value, the more important λks are for determining asset i’s
cluster.

Because of the similarity of our approach to k-means, we borrow and extend a common ini-
tialization method, known as “k-means++” (Arthur and Vassilvitskii (2007)). k-means++ is an
algorithm designed to choose cluster centers such that Lloyd’s algorithm achieves a clustering so-
lution that is competitive with the global optimum. We discuss our extension of k-means++ in
Appendix A.C. While proving the desirable properties of this algorithm is beyond the scope of our
paper, we do find significant reductions in squared errors at the solution relative to initialization by
choosing cluster memberships at random, suggesting that our variant inherits some of k-means++’s
desirable properties.

We take two approaches to find global solutions. First, we initialize our version of k-means++
at 2N starting group assignments. We then run the EM algorithm from each assignment to find
local optima. If our initializations cover the most promising basins of attraction, this step alone will
suffice to locate the global maximum likelihood and corresponding group assignments. However,
searching over γ is a high-dimensional problem requiring at least N group assignments to G groups,
and 2N starting points may be insufficient to find global solutions. For this reason, we couple our
multi-start approach with an explicit global optimizer able to accommodate integer problems.

In particular we use MATLAB’s mixed-integer programming implementation of the genetic
algorithm based on Deb (2000) and Deep et al. (2009). We initialize the population of the genetic
algorithm with the 2N solutions of the EM algorithm as well as with N non-optimized initializations
of our variant of k-means++. In so doing we cover a large number of local optima while allowing
the algorithm to search new combinations and mutations toward a global solution. Note that we
only need to search over γs, because the group assignments imply αs and Λs and likelihoods, and
at the global best choice of groups, no groups need to be reassigned once αs and Λs are estimated.
Once we have the final population from the genetic algorithm, we take the 2N highest likelihood-
values from the local and global procedures and apply the EM algorithm to each to ensure that
near-optima from the genetic algorithm are (at least) local optima. We select the highest-likelihood
solution from this procedure and retain the corresponding group assignments and cross-sectional
slopes.

In addition to using global optimization techniques directly, we also make a minor modification
to the standard EM algorithm to avoid suboptimal assignments in which at least one cross-section
is too small to obtain slopes. In particular, if after reassignment a cluster would have fewer than
K + 1 elements, we introduce a likelihood hurdle for moving portfolios. Elements can only be
reassigned if the improvement in likelihood is greater than c, and we choose the smallest c such
that no cluster after reassignment would have fewer than K+1 elements. Only then do we reassign
portfolios to groups. Such a c always exists because in the worst case we can set c equal to the
maximal change in likelihoods across observations to ensure no changes in group assignments occur.
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Once a group has K + 1 elements it will not depopulate in the subsequent iteration because all
portfolios are perfectly fit, and c may return to 0. This step avoids convergence to dominated local
optima with vanishing groups.

B. Comparisons of Local and Global Solutions

Figure A.I compares local solutions to the global best solution to (4) using the EM–genetic
algorithm–EM procedure described in the preceding section. To illustrate possible optimization
outcomes, we analyze the detailed examples described in V.C: domestic equity portfolios with a
Carhart four-factor model; international equity portfolios with a global Carhart four-factor model;
and cross-asset class portfolios with a two-factor intermediary capital factor model.

As a preliminary step, we define two measures for summarizing the distance between two opti-
mizations. The first distance uses group assignments. Let the group assignment of the global best
solution be γ∗, and the group assignment of a candidate alternative solution be γ′. Because groups
are only known up to a permutation of their labels—there’s no difference between 1-2 and 2-1 in a
two-asset economy, for example—we need our distance measure to be robust to relabelings. To en-
force this robustness, given cluster assignments γ∗ and γ′, we iterate over all possible permutations
of the group labels for γ′ and retain the permutation with the maximum number of groups in com-
mon. We define our first distance as one minus this proportion in common. The second distance
uses the root mean squared error (RMSE), a standard measure of model quality. This metric is
especially appropriate in our setting because the MSE is a linear function of (hard-to-interpret) log
likelihoods, the optimizer maximand. We compare RMSEs to assess whether the optimizer reaches
solutions of similar quality, even though the group assignments associated with those solutions may
be quite different.

The first figure depicts a case in which all initial values converge to the same solution. Distances
are zero for both metrics for all of the 2N final values of our procedure. This outcome suggests
that our first setting is so well-behaved that EM converges to the global best solution from a wide
range of starting values. The second figure indicates a large number of local maxima. Each point
away from the global best represents group assignments different from γ∗ and a higher associated
RMSE. In this case the local solutions appear to populate a continuum in which distances gradually
increase in group-space and RMSE-space. Here a local optimizer has a low chance of finding the
global best solution, but many local solutions are “close” to the global solution. The third figure
similarly suggests many local maxima. However, in this case, we see no clustering around the best
solution. From an optimization standpoint, most runs fall into other basins of attraction with
disparate group assignments, and a local optimizer would be highly unlikely to stumble upon group
assignments near the global best. This said, despite the moderate-to-large differences in assignment
distances, other partitions capture risk price heterogeneity almost as well as the segments described
in V.C (as judged by the RMSE). Multiple dimensions of risk price heterogeneity are important in
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Figure A.I: Comparison of Local and Global Solutions

Figure plots the distribution of optimizer solutions at the conclusion of the EM–genetic algo-
rithm–EM procedure described in Section III.A. We analyze the detailed examples described in
V.C: domestic equity portfolios (P3) with a Carhart four-factor model (top left); international
equity portfolios (P6) with a global Carhart four-factor model (top right); and cross-asset class
portfolios (P8) with two-factor intermediary capital factor model (bottom). In each case we use
the AIC to select the number of groups, G∗ = arg minG AICG. Each subfigure displays two plots.
The top plots are histograms of distances of the final 2N points from the likelihood-maximizing
group assignment γ∗. Given cluster assignments γ∗ and γ′, we iterate over all possible permutations
of the group labels for γ′ and retain the permutation with the maximum number of groups in com-
mon. The histogram reports the distribution of this one minus proportion to obtain a “distance.”
The bottom of each subfigure plots z-scores of the 2N log-likelihoods against these distances. We
mark the best optimization—on the y-axis with a γ∗ distance of 0—with a red x.
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Figure A.I: Comparison of Local and Global Solutions (Continued)

(b) International Equity Portfolios: Global Carhart, 1991-2016
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(c) Cross-Asset Class Portfolios: He, Kelly, and Manela (2017) Factors, 1986–2010
Distances with G=5 Groups

0 0.1 0.2 0.3 0.4 0.5 0.6

distance from *

0

0.05

0.1

0.15

0.2

0.25

0.3

fr
e

q
u

e
n

c
y

0 0.1 0.2 0.3 0.4 0.5 0.6

distance from *

0.011

0.0115

0.012

0.0125

0.013

R
M

S
E

57



the cross-asset class setting, and the null hypothesis of unified risk pricing is likely to be rejected
along more than one of them.

C. Extension of k-means++ to Cross-Sectional Slopes

The k-means++ algorithm of Arthur and Vassilvitskii (2007) proceeds as follows:

1. Choose the first cluster center at random among the existing data points.

2. For the c centers that have already been chosen, calculate distances of all data points to all
cluster centers. Define D (x) as the distance of data point x to the nearest center.

3. Choose a new center from the data points with probabilities proportional to squared distance.

4. Repeat steps (2) and (3) until the desired number of clusters have been chosen.

This initialization ensures that all clusters are well spaced, and this spacing alone dramatically
reduces squared errors (and often, the run time) of the k-means algorithm.

Adapting k-means++ requires only a change in how we define our data points. Because our
characteristics are cross-sectional slopes, we require at least K+1 assets to define each “data point.”
We add two preliminary steps A1–A2 to the algorithm to accommodate this difference:

A1. Draw H = NM groups of size M = b1.5 (K + 1)c from the N assets.

A2. For each group h = 1, . . . ,H, estimate α(h)
t and λ(h)

kt for all k and t.

Note that if the only factor is a constant (K = 0) we are back to the k-means++ case up to using
random draws of portfolios rather than the set of portfolios itself.

The first step (A1) lets the number of potential cluster locations grow with the number of port-

folios and factors. To precisely parallel k-means++ would require picking all
(
N

M

)
combinations

of groups for candidate cluster centers, but this number of groups grows exponentially with K and
is too large to be implementable. The second step (A2) obtains the characteristics (α and Λ) that
determine cluster centers and cluster distances. Armed with these quantities we can proceed with
k-means++ as before using α and Λ for each group in place of the underlying return data. In a
zero-factor model, α is the underlying return data, and our algorithm again reduces to k-means++.

We also add a final step (B1) to k-means++ to prevent situations in which we obtain outlier
(very small) or empty initial clusters:

B1. Drop the first selected cluster, and assign portfolios to the remaining clusters to obtain initial
γs. Go back to step A1 if the size of the smallest cluster is too small relative to the size of
the largest cluster, Nmax/Nmin > 6.
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This modification ensures that we satisfy the theoretical requirement that the smallest cluster
be large enough to use large-N asymptotics for the cross-sectional step. The first part makes a
dominant first cluster less likely. The second part restarts the modified k-means++ algorithm from
scratch when some clusters are too small.

B. Stability of Group Assignments

Our testing procedure assumes that group assignments are fixed over our sample period. Ho-
wever, just as the risk characteristics of portfolios may change over time, so too may the market
frictions that separate portfolios into segments with different risk prices. We evaluate the sta-
bility of group assignments by comparing assignments across different sub-windows for the same
factor models and portfolio sets. Our stability measure is the proportion of groups assignments in
common, where we take the highest proportion of common assignments over all permutations of
group labels (as in our distance measure of Appendix A.B). We use the number of clusters with
the smallest AIC from the full sample.

Table A.I reports the proportions in common for all pairs of sub-windows for all sets of factor
models and portfolio sets for which multiple sub-windows are available. Generally stability is high
throughout: the average and median stability value is 0.7, and 27% of values exceed 0.8. In rare
cases, stability is quite low for the domestic equity portfolios, such as for the Fama-French five-factor
model applied to the widest domestic equity set. This limited stability suggests that segmentation
indeed changes over time, at least for some risk factors and economic settings. Overall we interpret
Table A.I as indicating that full-sample analysis should be complemented by sub-window analyses
to capture the dimensions of risk-price heterogeneity most relevant during any particular time
period.
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