What You See is Not What You Get: The Costs of Trading Market Anomalies

Andrew J. Patton and Brian M. Weller

Duke University

December 2018

Motivation

- ▶ Empirical asset pricing is a "factor zoo" (Cochrane, 2011 JF)
- Recent tallies put the number of expected return factors in the several hundreds
 - E.g., Harvey, Liu, and Zhu (2016 *RFS*), Harvey (2017 *JF*), and Hou, Xue, and Zhang (2017 *wp*)
- The world is probably not so complicated, so what gives?

Motivation

- ▶ Empirical asset pricing is a "factor zoo" (Cochrane, 2011 JF)
- Recent tallies put the number of expected return factors in the several hundreds
 - E.g., Harvey, Liu, and Zhu (2016 *RFS*), Harvey (2017 *JF*), and Hou, Xue, and Zhang (2017 *wp*)
- The world is probably not so complicated, so what gives?
 - Statistical accidents?
 - Misleading research practices?
 - Neglected implementation costs? ← This paper

- ► The idea that implementation costs might eliminate market anomalies dates at least to Fama (1970, JF)
- The challenge for nearly half a century: **measuring them!** Existing work takes two approaches to measuring costs:

- ► The idea that implementation costs might eliminate market anomalies dates at least to Fama (1970, JF)
- The challenge for nearly half a century: measuring them! Existing work takes two approaches to measuring costs:

1. Direct measurement using proprietary trading data

- Firms are not representative
- Factors are limited to what the firm is trading
- Trading decisions are endogenous (Frazzini, Israel, and Moskowitz (2015, wp) is one exception)

- ► The idea that implementation costs might eliminate market anomalies dates at least to Fama (1970, JF)
- The challenge for nearly half a century: measuring them! Existing work takes two approaches to measuring costs:

1. Direct measurement using proprietary trading data

- Firms are not representative
- Factors are limited to what the firm is trading
- Trading decisions are endogenous (Frazzini, Israel, and Moskowitz (2015, wp) is one exception)

2. Indirect measurement using market-level trading data

- Studies ignore non-proportional costs or depend heavily on a transaction cost model
- Whose costs are being measured?

- ▶ The idea that implementation costs might eliminate market anomalies dates at least to Fama (1970, *JF*)
- The challenge for nearly half a century: measuring them! Existing work takes two approaches to measuring costs:

1. Direct measurement using proprietary trading data

- Firms are not representative
- Factors are limited to what the firm is trading
- Trading decisions are endogenous (Frazzini, Israel, and Moskowitz (2015, wp) is one exception)

2. Indirect measurement using market-level trading data

- Studies ignore non-proportional costs or depend heavily on a transaction cost model
- Whose costs are being measured?
- → Unsurprisingly, there is mixed evidence on scalability of anomalies!

Our Contribution

We develop a new measure of implementation costs

Our Contribution

- We develop a new measure of implementation costs
- Advantages:
 - Does not use specialized trading data or parameteric cost functions
 - Does not require the user to take a stand on how factors are traded
 - Applies to a wide range of tradeable factors

Our Contribution

- We develop a new measure of implementation costs
- Advantages:
 - Does not use specialized trading data or parameteric cost functions
 - Does not require the user to take a stand on how factors are traded
 - Applies to a wide range of tradeable factors
- Drawbacks:
 - Provides only a lower bound on real-world costs
 - Requires some asset managers to load on the factor(s) considered
 - Cannot speak to costs of counter-factual factor exposures

1. Typical mutual funds face an annual implementation cost of 7.2%–7.6% for momentum, 2.6%–4.1% for value, and approximately zero for market and size factors

 Typical mutual funds face an annual implementation cost of 7.2%-7.6% for momentum, 2.6%-4.1% for value, and approximately zero for market and size factors

These costs:

Largely eliminate the momentum anomaly

 Typical mutual funds face an annual implementation cost of 7.2%-7.6% for momentum, 2.6%-4.1% for value, and approximately zero for market and size factors

- Largely eliminate the momentum anomaly
- ► Sharply reduce returns to value

1. Typical mutual funds face an annual implementation cost of 7.2%–7.6% for momentum, 2.6%–4.1% for value, and approximately zero for market and size factors

- Largely eliminate the momentum anomaly
- Sharply reduce returns to value
- ${\boldsymbol \cdot}$ Do not significantly impact performance for MKT and SMB

 Typical mutual funds face an annual implementation cost of 7.2%-7.6% for momentum, 2.6%-4.1% for value, and approximately zero for market and size factors

- Largely eliminate the momentum anomaly
- Sharply reduce returns to value
- ${\boldsymbol{\mathsf{P}}}$ Do not significantly impact performance for MKT and SMB
- 2. By contrast, small (large) mutual funds achieve net-of-costs returns to momentum of 3.4% (-2.5%) / year
 - We reconcile conflicting results from existing approaches by differentiating among mutual funds

 Typical mutual funds face an annual implementation cost of 7.2%-7.6% for momentum, 2.6%-4.1% for value, and approximately zero for market and size factors

- Largely eliminate the momentum anomaly
- Sharply reduce returns to value
- ullet Do not significantly impact performance for MKT and SMB
- 2. By contrast, small (large) mutual funds achieve net-of-costs returns to momentum of 3.4% (-2.5%) / year
 - We reconcile conflicting results from existing approaches by differentiating among mutual funds
- 3. We **decompose** the implementation costs faced in practice:
 - Short-selling restrictions
 - Restrictions on the investable universe for MFs
 - Departures from academic factors

Selected Related Literature

- Most existing literature on the trading costs of market anomalies focuses on momentum because of its relatively high turnover
 - Jegadeesh and Titman (1993 JF, 2001 JF) consider, but discard, a trading costs explanation
- Other studies reach different conclusions using different methods and data

Data

- Every existing study in this area uses market or firm-trading data
- Instead, we use CRSP stock and mutual fund data
- After filters, our sample consists of monthly gross returns for:
 - ▶ 4,267 unique U.S. domestic equity mutual funds
 - 22,121 unique stock PERMNOs
 - 269 diversified stock portfolios (mostly courtesy Ken French)
- Our sample runs from January 1970 to December 2016
 - A maximum of 564 months, though the median fund has 140 months of data
- ▶ Data Filter Details

Summary Statistics

Unit	Funds #	Lifetime Years	TNA, 1/1970 Million USD	TNA, 7/1993 Million USD	TNA, 12/2016 Million USD
Mean	1286	14.16	128.74	552.87	2590.70
Std. Dev.	917	10.50	302.83	1533.70	13254.00
25%	324	5.75	3.96	37.48	70.93
50%	1023	11.58	23.90	118.36	314.00
75%	2282	19.58	91.18	431.83	1421.30

Fama-MacBeth Estimates of

Implementation Costs

Baseline Fama-MacBeth Methodology

1. Run $N_S + N_{MF}$ time-series regressions to obtain factor exposures:

$$r_{it} = \alpha_i + \sum_k f_{kt} \beta_{ik} + \epsilon_{it}, \ i = 1, \dots, N_S, N_{S+1}, \dots, N_S + N_{MF},$$

Baseline Fama-MacBeth Methodology

1. Run $N_S + N_{MF}$ time-series regressions to obtain factor exposures:

$$r_{it} = \alpha_i + \sum_k f_{kt} \beta_{ik} + \epsilon_{it}, \ i = 1, \dots, N_S, N_{S+1}, \dots, N_S + N_{MF},$$

2. Run T cross-sectional regressions to obtain compensation for factor exposure for stocks and mutual funds:

$$r_{it} = \sum_{k} \lambda_{kt}^{S} \hat{\beta}_{ik} \mathbf{1}_{i \in S} + \sum_{k} \lambda_{kt}^{MF} \hat{\beta}_{ik} \mathbf{1}_{i \in MF} + \epsilon_{it}, \ t = 1, \dots, T.$$

Our cross-sectional regressions differ from standard cross-sectional regressions in that we allow "on-paper" stock portfolios to have different risk compensation from "real-world" mutual funds

	19	1970 – 2016 (Equal Weighted)						
N_S	MKT	HML	SMB	UMD				

λ^{S}	100	6.62***	7.09***	3.35***	8.37***
<i>t</i> -stat		(2.75)	(3.91)	(1.70)	(3.59)
λ^{S}	269	7.23***	5.93***	3.23	10.06***
<i>t</i> -stat		(3.02)	(3.03)	(1.56)	(4.17)

T	564	564	564	564
\bar{N}_{MF}	1286	1286	1286	1286

^{*}*p* < .10, ** *p* < .05, *** *p* < .01

	1970 – 2016 (Equal Weighted)						
N_S	MKT	HML	SMB	UMD			

λ^{S}	100	6.62***	7.09***	3.35***	8.37***		
<i>t</i> -stat		(2.75)	(3.91)	(1.70)	(3.59)		
λ^{S}	269	7.23***	5.93***	3.23	10.06* [*] *		
t-stat		(3.02)	(3.03)	(1.56)	(4.17)		
λ^{MF}	_	6.98***	2.62	1.01	1.54		
t-stat		(2.86)	(1.51)	(0.59)	(0.63)		
T		564	564	564	564		
$ar{N}_{MF}$		1286	1286	1286	1286		
p < .10	*p < .10, ** p < .05, *** p < .01						

		1970 - 2016 (Equal Weighted)					
	N_S	MKT	HML	SMB	UMD		
λ^{Δ}	100	-0.36	4.47***	2.34**	6.83***		
t-stat		(-0.76)	(5.57)	(2.41)	(5.21)		
λ^{Δ}	269	0.25	3.31***	2.22**	8.51***		
t-stat		(0.5)	(3.58)	(2.05)	(6.19)		
λ^{s}	100	6.62***	7.09***	3.35***	8.37***		
<i>t</i> -stat		(2.75)	(3.91)	(1.70)	(3.59)		
λ^{S}	269	7.23***	5.93***	3.23	10.06***		
t-stat		(3.02)	(3.03)	(1.56)	(4.17)		
λ^{MF}	_	6.98***	2.62	1.01	1.54		
t-stat		(2.86)	(1.51)	(0.59)	(0.63)		
T		564	564	564	564		
$ar{N}_{MF}$		1286	1286	1286	1286		
*n < 10	** n /			1200	1200		

^{*}p < .10, ** p < .05, *** p < .01

1970 – 2016 (Value Weighted)					
N_S	MKT	HML	SMB	UMD	
100	-0.38	3.81***	0.26	7.18***	
	(-1.28)	(5.08)	(0.42)	(5.53)	
269	-0.21	2.59***	-0.07	7.30***	
	(-0.88)	(3.81)	(-0.14)	(5.54)	
100	6.60***	6.43***	1.27	8.72***	
	(2.75)	(3.51)	(0.75)	(3.74)	
269	6.77***	5.20***	0.94	8.85***	
	(2.82)	(2.84)	(0.56)	(3.80)	
_	6.98***	2.62	1.01	1.54	
	(2.86)	(1.51)	(0.59)	(0.63)	
	564	564	564	564	
	1286	1286	1286	1286	
	100 269 100 269	N _S MKT 100 -0.38	N_S MKT HML 100 -0.38 3.81*** (-1.28) (5.08) 269 -0.21 2.59*** (-0.88) (3.81) 100 6.60*** 6.43*** (2.75) (3.51) 269 6.77*** 5.20*** (2.82) (2.84) - 6.98*** 2.62 (2.86) (1.51) 564 564 1286 1286	N_S MKT HML SMB 100 -0.38 3.81*** 0.26 (-1.28) (5.08) (0.42) 269 -0.21 2.59*** -0.07 (-0.88) (3.81) (-0.14) 100 6.60*** 6.43*** 1.27 (2.75) (3.51) (0.75) 269 6.77*** 5.20*** 0.94 (2.82) (2.84) (0.56) — 6.98*** 2.62 1.01 (2.86) (1.51) (0.59) 564 564 564 1286 1286 1286	

^{*}p < .10, ** p < .05, *** p < .01

1993 – 2016 (Value Weighted)					
N_S	MKT	HML	SMB	UMD	
100	-0.11	3.12***	-0.24	4.27***	
	(-0.32)	(3.83)	(-0.29)	(2.64)	
269	0.28	2.09***	-0.97	5.04***	
	(1.25)	(3.31)	(-1.39)	(2.89)	
100	7.67**	5.43*	1.96	6.01	
	(2.35)	(1.93)	(0.81)	(1.60)	
269	8.06**	4.40	1.23	6.78*	
	(2.49)	(1.54)	(0.51)	(1.83)	
_	7.78**	2.31	2.20	1.73	
	(2.38)	(0.83)	(0.92)	(0.45)	
	282	282	282	282	
	2123	2123	2123	2123	
	100 269 100	N _S MKT 100 -0.11 (-0.32) 269 0.28 (1.25) 100 7.67** (2.35) 269 8.06** (2.49) 7.78** (2.38) 282	Ns MKT HML 100 -0.11 3.12*** (-0.32) (3.83) 269 0.28 2.09*** (1.25) (3.31) 100 7.67** 5.43* (2.35) (1.93) 269 8.06** 4.40 (2.49) (1.54) — 7.78** 2.31 (2.38) (0.83) 282 282	Ns MKT HML SMB 100 -0.11 3.12*** -0.24 (-0.32) (3.83) (-0.29) 269 0.28 2.09*** -0.97 (1.25) (3.31) (-1.39) 100 7.67** 5.43* 1.96 (2.35) (1.93) (0.81) 269 8.06** 4.40 1.23 (2.49) (1.54) (0.51) — 7.78** 2.31 2.20 (2.38) (0.83) (0.92) 282 282 282	

^{*}p < .10, ** p < .05, *** p < .01

- Our baseline regression works if mutual fund trading costs are constant across funds and time
- Now generalize to consider the case that mutual funds earn factor returns of

$$h_{it} = f_t - \eta_{it},$$

where η_{it} reflects deviations from the academic factor

- Our baseline regression works if mutual fund trading costs are constant across funds and time
- Now generalize to consider the case that mutual funds earn factor returns of

$$h_{it} = f_t - \eta_{it}$$

where η_{it} reflects deviations from the academic factor

• The η_{it} term has four components:

$$\eta_{it} = \eta_i + \eta_t \gamma_i + \tilde{\eta}_{it}.$$

- η_i : fixed, firm-specific costs of trading a factor
- $\eta_t \gamma_i$: common time-varying liquidity costs η_t , multiplied by fund-specific loadings of factors on these costs γ_i
- $ilde{\eta}_{it}$: idiosyncratic costs for firm i and date t

Plugging in our expression for fund returns into our factor model,

$$r_{it} = \alpha_i + h_{it}\beta_i + \epsilon_{it} = (\alpha_i - \eta_i\beta_i) + (f_t - \eta_t\gamma_i)\beta_i + (\epsilon_{it} - \tilde{\eta}_{it}\beta_i)$$

- An ideal test compares f_t and h_{it} , and we achieve this ideal if $h_{it}=ar{h}$

Plugging in our expression for fund returns into our factor model,

$$r_{it} = \alpha_i + h_{it}\beta_i + \epsilon_{it} = (\alpha_i - \eta_i\beta_i) + (f_t - \eta_t\gamma_i)\beta_i + (\epsilon_{it} - \tilde{\eta}_{it}\beta_i)$$

- An ideal test compares f_t and h_{it} , and we achieve this ideal if $h_{it}=\bar{h}$
- Two potential problems with our baseline analysis:

Plugging in our expression for fund returns into our factor model,

$$r_{it} = \alpha_i + h_{it}\beta_i + \epsilon_{it} = (\alpha_i - \eta_i\beta_i) + (f_t - \eta_t\gamma_i)\beta_i + (\epsilon_{it} - \tilde{\eta}_{it}\beta_i)$$

- An ideal test compares f_t and h_{it} , and we achieve this ideal if $h_{it}=\bar{h}$
- Two potential problems with our baseline analysis:
- 1. Trading costs may covary with factor realizations
 - \implies Omitted variable bias in β estimates
 - Solution: add variables to capture time-varying trading costs

Plugging in our expression for fund returns into our factor model,

$$r_{it} = \alpha_i + h_{it}\beta_i + \epsilon_{it} = (\alpha_i - \eta_i\beta_i) + (f_t - \eta_t\gamma_i)\beta_i + (\epsilon_{it} - \tilde{\eta}_{it}\beta_i)$$

- An ideal test compares f_t and h_{it} , and we achieve this ideal if $h_{it} = \bar{h}$
- Two potential problems with our baseline analysis:
- 1. Trading costs may covary with factor realizations
 - \implies Omitted variable bias in β estimates
 - · Solution: add variables to capture time-varying trading costs
- 2. Firms choose factor exposures, and h_{it} is likely correlated with β_i
 - \implies Omitted variable bias in λ^{MF} estimates
 - Solution: Firms with lower trading costs should invest more aggressively. λ^{MF} is thus biased up and so estimated "gaps" are biased down.

Time-Varying Trading Cost Proxies

- Problem: There are many potential liquidity proxies, and it's not clear which are the most relevant
 - We require only 24 months of mutual fund returns, so including even a few is problematic

Time-Varying Trading Cost Proxies

- Problem: There are many potential liquidity proxies, and it's not clear which are the most relevant
 - We require only 24 months of mutual fund returns, so including even a few is problematic
- Approach 1: Principal components
 - + first PC of market liquidity proxies
 - Amihud illiquidity, Pastor-Stambaugh liquidity, CBOE VIX/VXO, and average Corwin-Schultz (2012 JF) bid-ask spreads
 - + first PC of funding liquidity proxies
 - Frazzini and Pedersen's "betting against beta" factor, HKM's intermediary capital ratio, the BAA-10Y spread, and the TED spread

Time-Varying Trading Cost Proxies

- Problem: There are many potential liquidity proxies, and it's not clear which are the most relevant
 - We require only 24 months of mutual fund returns, so including even a few is problematic

Approach 1: Principal components

- + first PC of market liquidity proxies
 - Amihud illiquidity, Pastor-Stambaugh liquidity, CBOE VIX/VXO, and average Corwin-Schultz (2012 JF) bid-ask spreads
- + first PC of funding liquidity proxies
 - Frazzini and Pedersen's "betting against beta" factor, HKM's intermediary capital ratio, the BAA-10Y spread, and the TED spread
- Approach 2: Lasso (Appendix, very similar results)
 - Use all proxies, and let the data select which factors are most relevant for each mutual fund
 - We use 10-fold cross-validation to choose our penalty parameters

Risk Premia estimates for Stocks and Mutual Funds — Liquidity PCs

	1970 – 2016 (Value Weighted)					
	N_S	MKT	HML `	SMB	UMD	
λ^{Δ}	100	-0.44	4.07***	0.35	7.49***	
t-stat		(-1.45)	(5.17)	(0.57)	(5.71)	
λ^{Δ}	269	-0.22	2.83***	-0.02	7.55***	
t-stat		(-0.92)	(3.87)	(-0.03)	(5.70)	
λ^{S}	100	6.55***	6.71***	1.26	8.77***	
t-stat		(2.74)	(3.63)	(0.74)	(3.76)	
λ^{S}	269	6.77***	5.47***	0.89	8.84***	
<i>t</i> -stat		(2.83)	(2.94)	(0.53)	(3.78)	
λ^{MF}	_	6.99***	2.64	0.90	1.28	
<i>t</i> -stat		(2.87)	(1.51)	(0.53)	(0.52)	
T		564	564	564	564	
$ar{N}_{MF}$		1286	1286	1286	1286	

Risk Premia estimates for Stocks and Mutual Funds — Liquidity Lasso

	1970 – 2016 (Value Weighted)					
N_S	MKT	HML	SMB	UMD		
100	-0.22	4.97***	0.09	8.71***		
	(-0.71)	(6.16)	(0.14)	(6.14)		
269	-0.06	3.71***	-0.30	8.57***		
	(-0.24)	(4.88)	(-0.54)	(6.14)		
100	6.70***	6.96***	1.11	8.61***		
	(2.80)	(3.64)	(0.64)	(3.67)		
269	6.86***	5.70***	0.72	8.47***		
	(2.86)	(2.99)	(0.42)	(3.60)		
_	6.92**	1.99	1.02	-0.10		
	(2.83)	(1.01)	(0.58)	(-0.04)		
	564	564	564	564		
	1286	1286	1286	1286		
	100 269 100	N _S MKT 100 -0.22	N_S MKT HML 100 -0.22 4.97*** (-0.71) (6.16) 269 -0.06 3.71*** (-0.24) (4.88) 100 6.70*** 6.96*** (2.80) (3.64) 269 6.86*** 5.70*** (2.86) (2.99) 6.92** 1.99 (2.83) (1.01) 564 564	N_S MKT HML SMB 100 -0.22 4.97*** 0.09 (-0.71) (6.16) (0.14) 269 -0.06 3.71*** -0.30 (-0.24) (4.88) (-0.54) 100 6.70*** 6.96*** 1.11 (2.80) (3.64) (0.64) 269 6.86*** 5.70*** 0.72 (2.86) (2.99) (0.42) 6.92** 1.99 1.02 (2.83) (1.01) (0.58) 564 564 564		

 We now estimate the fractions of our implementation costs attributable to:

We now estimate the fractions of our implementation costs attributable to:

1. Short selling constraints

Use "long only" factors

 We now estimate the fractions of our implementation costs attributable to:

1. Short selling constraints

- Use "long only" factors
- 2. Investability frictions (no "micro-caps" constraints)
 - Exclude all stocks in the bottom quintile of market cap (Fama and French, 2008)

 We now estimate the fractions of our implementation costs attributable to:

1. Short selling constraints

- Use "long only" factors
- 2. Investability frictions (no "micro-caps" constraints)
 - Exclude all stocks in the bottom quintile of market cap (Fama and French, 2008)
- 3. Tracking errors and departures from academic factors
 - Look at performance of funds with high 4-factor R^2 values

The Role of Mutual Fund Shorting Constraints

- What part, if any, of the estimated implementation gap is due to shorting constraints?
- We define two variations of the original factors to address this
 - 1. "Long only" factors:

$$HML^+ \equiv H - R_f$$

2. "Tilt" factors:

$$HML^{\#} \equiv H - MKT$$

- And the same for SMB and UMD.
- The "tilt" factors: mutual funds have a large baseline market exposure, so increasing exposure to "H" can be financed by reducing market exposure (not actually shorting the market).

Risk Premia Estimates with Long Only Factors

		19	970 – 2016 (V	alue Weight	ed)
	N_S	MKT	HML ⁺	SMB ⁺	UMD^+
λ^{Δ}	100	-0.61*	2.56***	0.52	3.09***
t-stat		(-1.94)	(4.05)	(1.00)	(4.52)
λ^{Δ}	269	-0.29	1.60***	0.02	2.85***
<i>t</i> -stat		(-1.21)	(2.72)	(0.04)	(4.25)
λ^{s}	100	6.22***	12.25***	9.19***	11.69***
t-stat		(2.59)	(4.33)	(2.85)	(4.11)
λ^{S}	269	6.54***	11.29***	8.68***	11.46***
t-stat		(2.73)	(3.95)	(2.68)	(4.02)
λ^{MF}	_	6.83***	9.69***	8.66***	8.60***
<i>t</i> -stat		(2.81)	(3.25)	(2.60)	(2.85)
T		564	564	564	564
\bar{N}_{MF}		1286	1286	1286	1286
*n < 10) ** n <	05 *** n <	. 01		

Risk Premia Estimates with Tilt Factors

		1970 – 2016 (Value Weighted)					
	N_S	MKT	HML [#]	SMB [#]	UMD#		
λ^{Δ}	100	-0.61*	3.17***	1.13*	3.70***		
<i>t</i> -stat		(-1.94)	(4.34)	(1.77)	(5.08)		
λ^{Δ}	269	-0.29	1.89***	0.31	3.15***		
t-stat		(-1.21)	(3.06)	(0.58)	(4.81)		
λ^{s}	100	6.22***	6.03***	2.97*	5.47***		
t-stat		(2.59)	(4.19)	(1.94)	(4.57)		
λ^{S}	269	6.54***	4.75***	2.15	4.92***		
t-stat		(2.73)	(3.28)	(1.42)	(4.18)		
λ^{MF}	_	6.83***	2.86*	1.83	1.77		
t-stat		(2.81)	(1.92)	(1.17)	(1.47)		
T		564	564	564	564		
$ar{N}_{MF}$		1286	1286	1286	1286		
*p < .10, ** p < .05, *** p < .01							

Risk Premia Estimates with No Microcaps

		1970 – 2016 (Value Weighted)						
	N_S	MKT	HML	SMB	UMD			
λ^{Δ}	80	-0.37	2.85***	0.70	6.14***			
<i>t</i> -stat		(-1.39)	(3.84)	(1.24)	(4.66)			
λ^{s}	80	6.61***	5.47***	1.71	7.68***			
t-stat		(2.74)	(3.03)	(1.07)	(3.31)			
λ^{S}	100	6.60***	6.43***	1.27	8.72***			
<i>t</i> -stat		(2.75)	(3.51)	(0.75)	(3.74)			
λ^{MF}	_	6.98***	2.62	1.01	1.54			
t-stat		(2.86)	(1.51)	(0.59)	(0.63)			
T		564	564	564	564			
\bar{N}_{MF}		1286	1286	1286	1286			

^{*}p < .10, ** p < .05, *** p < .01

Risk Premia Estimates by Four-Factor Model R²

		_			
			Value V	Veighted	
	$ar{R}^2$	MKT	HML	SMB	UMD
λ_5^{MF}	94.2%	6.50***	3.60**	1.78	4.59*
t-stat		(2.69)	(1.99)	(1.04)	(1.68)
λ_4^{MF}	89.9%	6.91***	2.93*	2.67	0.73
<i>t</i> -stat		(2.82)	(1.70)	(1.57)	(0.26)
λ_3^{MF}	86.0%	7.31***	3.00*	0.09	3.23
<i>t</i> -stat		(2.96)	(1.68)	(0.05)	(1.20)
λ_2^{MF}	79.9%	7.29***	2.66	1.15	-0.81
<i>t</i> -stat		(2.98)	(1.48)	(0.64)	(-0.31)
λ_1^{MF}	55.4%	7.00***	2.93	-0.98	2.08
<i>t</i> -stat		(2.80)	(1.52)	(-0.49)	(0.72)
λ^{MF}	81.1%	6.98***	2.62	1.01	1.54
<i>t</i> -stat		(2.86)	(1.51)	(0.59)	(0.63)
λ_5^{Δ}	_	0.27	1.60**	-0.84	4.26***
<i>t</i> -stat		(1.17)	(2.02)	(-1.45)	(2.80)
$\lambda = 0$		0.00***	0.41	0.00***	0.02**
$\lambda =$		0.00***	0.83	0.00***	0.01***

0.27

0.08*

0.79

0.68

 Our baseline results suggested approximately zero costs for MKT and SMB, and so we focus on HML and UMD.

	Baseline	No shorts	No micros	Track error	TOTAL
HML	3.81	1.25	0.96	2.21	4.42
UMD	7.18	4.09	1.04	2.92	8.05
HML	100%	33%	25%	58%	116%
UMD	100%	57%	14%	41%	112%

 Our baseline results suggested approximately zero costs for MKT and SMB, and so we focus on HML and UMD.

	Baseline	No shorts	No micros	Track error	TOTAL
HML	3.81	1.25	0.96	2.21	4.42
UMD	7.18	4.09	1.04	2.92	8.05
HML	100%	33%	25%	58%	116%
UMD	100%	57%	14%	41%	112%

- The largest sources of costs for the average mutual fund are:
 - HML: Tracking error. MFs may deviate from the academic value factor and instead pursue an alternative, worse performing, version.
 - UMD: Short sales constraints. Momentum profits accrue roughly equally from both the long and short positions (Israel and Moskowitz, 2013, JF).

Cost Estimates Across Funds and Time

Selected Versus Representative Mutual Funds

• We can also examine subsets of the mutual fund universe. Just slice the cross-sectional regression into parts:

$$r_{it} = \sum_{k} \lambda_{kt}^{MF,g} \hat{\beta}_{ik} + \epsilon_{it}, \ t = 1, \dots, T, \ g = 1, \dots, 5.$$

- This allows us to distinguish between
 - "Special" asset managers (Frazzini, Israel, Moskowitz (2015 wp))
 - "Representative" asset managers (Lesmond, Schill, Zhou (2004 JFE) and Korajczyk, Sadka (2004 JF))
- We split funds into total net asset (TNA) groups for an initial examination because size matters for α
 - Berk and Green (2004 JPE), Pastor, Stambaugh, and Taylor (2015 JFE), Berk and van Binsbergen (2015 JFE)

Slopes for Stocks and Mutual Funds — TNA Splits

		Value V	Veighted	
	MKT	HML	SMB	UMD
λ_{mega}^{MF}	6.66***	3.11*	1.89	-2.53
<i>t</i> -stat	(2.74)	(1.67)	(1.05)	(-0.75)
$\lambda_{\mathit{large}}^{\mathit{MF}}$	6.85***	2.78	0.90	0.86
<i>t</i> -stat	(2.78)	(1.54)	(0.52)	(0.31)
λ_{medium}^{MF}	7.02***	2.45	0.90	2.36
<i>t</i> -stat	(2.87)	(1.41)	(0.52)	(0.92)
$\lambda_{\mathit{small}}^{\mathit{MF}}$	7.36***	2.94	1.20	3.40
<i>t</i> -stat	(2.98)	(1.64)	(0.72)	(1.25)
λ_{micro}^{MF}	7.18***	2.60	-2.68	-0.24
<i>t</i> -stat	(2.94)	(1.11)	(-1.32)	(-0.06)
λ_{small}^{Δ}	-0.59	2.26**	-0.26	5.45***
<i>t</i> -stat	(-1.59)	(2.22)	(-0.34)	(3.32)
λ^{MF}	6.98***	2.62	1.01	1.54
<i>t</i> -stat	(2.86)	(1.51)	(0.59)	(0.63)
$\lambda = 0$	0.01***	0.46	0.56	0.11

0.81

0.28

0.46

0.20

0.13

0.01***

0.13

0.01***

Rolling performance diff b/w stocks and MFs: MKT

Rolling performance diff b/w stocks and MFs: SMB

Rolling performance diff b/w stocks and MFs: HML

Rolling performance diff b/w stocks and MFs: UMD

Conclusion

- We develop new tools to estimate the costs of factor investing.
- Our approach is distinguished by its:
 - 1. **Generality:** applicable to any tradable factor.
 - Light data requirements: only CRSP, and public, data required. No proprietary or hard-to-handle microstructure data needed.
 - No parametric models: no parametric transaction costs models (though FMB is parametric, of course).
- For typical mutual funds, real-world implementation costs:
 - Do not affect the returns to holding the market or size factors
 - Eliminate returns to momentum
 - Sharply reduce returns to value
 - → Major anomalies are less anomalous!

Data Filters Pack

- Fill missing names with the same fund number group. Drop funds without defined fund names
- 2. Fill missing expense ratios with the nearest values. Set to missing expense ratios >50%. Convert fees from net to gross by adding expense ratios / 12
- Linearly interpolate log TNA values. Set to missing TNAs less than \$0 or exceeding \$1T
- 4. Drop observations with absolute returns exceeding 100%
- 5. Drop ETFs, ETNs, VAU funds
- 6. Value-weight returns within a fund group using lagged TNA
- 7. Drop observations before a fund reaches a TNA of \$10M
- 8. Filter non-US domestic equity funds

Comparison with Profitability Estimates from Prior Work

		HML	SMB	UMD
	λ^{MF}	2.64	0.90	1.28
Cross-Sectional Slopes w/ PCA	t-stat	(1.51)	(0.53)	(0.52)
1970-2016	λ_{small}^{MF}	2.55	1.37	2.62
	t-stat	(1.37)	(0.82)	(0.97)
	α_{gross}			6.84***
	t-stat			(4.54)
Korajczyk and Sadka (2004)	$lpha_{\it net}^{\it espr.}$			5.40***
1967–1999	t-stat			(3.59)
	$lpha_{\it net}^{\it qspr.}$			4.80***
	t-stat			(3.17)
	r _{gross}			7.83***
	t-stat			(6.22)
Lesmond et al. (2004)	r_{net}^{LDV}			0.13
1980–1998	t-stat			(0.07)
	r_{net}^{direct}			2.24
	t-stat			(1.22)

^{*}p < .10, ** p < .05, *** p < .01

Comparison with Profitability Estimates from Prior Work

		HML	SMB	UMD
	λ^{MF}	2.64	0.90	1.28
Cross-Sectional Slopes w/ PCA	<i>t</i> -stat	(1.51)	(0.53)	(0.52)
1970-2016	λ_{small}^{MF}	2.55	1.37	2.62
	<i>t</i> -stat	(1.37)	(0.82)	(0.97)
	r _{gross}	4.86	7.98***	2.26
Frazzini et al. (2015)	<i>t</i> -stat	(1.12)	(3.01)	(0.40)
1986–2013	r _{net}	3.51	6.52**	-0.77
	t-stat	(0.80)	(2.48)	(-0.14)
	r _{gross}	5.64***	3.96*	15.96***
Novy-Marx and Velikov (2016)	<i>t</i> -stat	(2.68)	(1.66)	(4.80)
1963–2013	r_{net}	5.04**	3.36	8.16**
	t-stat	(2.39)	(1.44)	(2.45)
* 40 ** 0- ***	0.1			

^{*}p < .10, ** p < .05, *** p < .01