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S.A.1: Extensions of Theorem 1

To streamline exposition, in this appendix we focus on the case that d � dim (Yit) = 1 and

G = 2. All of the results below hold for any �nite value of d and G:

We present a simpli�ed version of Theorem 1 for d = 1; G = 2. In this instance, it is more

natural to consider a t-test of the di¤erence in cluster means.

Corollary 1 Assume G = 2 and dim (Yit) = 1: Let ̂NR be the estimated group assignments

based on sample R, and let ~�NP (̂NR) be the estimated group means from sample P using group

assignments ̂NR: De�ne the t-statistic for the di¤erences in the estimated means as

tstatNPR =

p
NP

�
~�1;NP (̂NR)� ~�2;NP (̂NR)

�
!̂NPR

(2)

where !̂2NPR � 1

NP

NX
i=1

X
t2P

�
Yit � �YiP

�2 �
�̂�21;NR1

�
̂i;NR = 1

	
+ �̂�22;NR1

�
̂i;NR = 2

	�
(3)

�YiP � 1

P

X
t2P

Yit (4)

�̂g;NR � 1

N

NX
i=1

1
�
̂i;NR = g

	
, for g = 1; 2 (5)

(a) Under Assumptions 1 and 2,

tstatNPR
d�! N (0; 1) , as N;P;R!1 (6)

(b) Under Assumptions 1 and 20,

jtstatNPRj
p�!1, as N;P;R!1 (7)
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First, we consider allowing for general time series dependence up to some lag M . To do so, we

de�ne Gt as the information set �
�
fYisgNi=1 ; s � t

�
; and modify Assumption 1 to:

Assumption 100: (a) The data come from Yit = mi + "it, for i = 1; :::; N; and t = 1; ::; T;

where mi 2 [m; �m] � R and V ["it] � �2i 2
�
�2; ��2

�
� R+ 8 i; E ["it] = 0 and E

h
j"itj4+�

i
< 1

8 i for some � > 0, (b) "it??"js 8 t; s; for i 6= j (c) "it??X for all X 2 Gt�M ; for 8 i; t and (d)

N;P;R!1.

Assumption 100(a) allows for cross-sectional heteroskedasticity, and heterogeneity more generally,

in the distribution of residuals, subject to them being mean zero and having �nite fourth moments.

Assumption 100(b) imposes cross-sectional independence, and 100(c) allows for general time series

dependence up to lag M; but imposes independence beyond M lags. The main change required

when allowing for time series dependence is that the formation of subsamples now requires some

structure. We suggest using R = f1; 2; :::; R�Mg and P = fR+ 1; :::; R+ P � Tg :

Theorem 6 Let ̂NR be the estimated group assignments based on sample R, and let ~�NP (̂NR)

be the estimated group means from sample P using group assignments ̂NR: De�ne the t-statistic

for the di¤erences in the estimated means as

tstatNPR =

p
NP

�
~�1;NP (̂NR)� ~�2;NP (̂NR)

�
!̂NPR

where !̂2NPR �
NX
i=1

�0P "̂i"̂
0
i�P

�
�̂�21;NR1

�
̂i;NR = 1

	
� �̂�22;NR1

�
̂i;NR = 2

	�
"̂iP = YiP � �P �YiP

and �̂g;NR � 1

N

NX
i=1

1
�
̂i;NR = g

	
, for g = 1; 2

and YiP � [Yi1; :::; YiP ]0 and �P is a P � 1 vector of ones.

(a) Under Assumptions 100 and 2,

tstatNPR
d�! N (0; 1) , as N;P !1

(b) Under Assumptions 100 and 20,

jtstatNPRj
p�!1, as N;P;R!1
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Proof of Theorem 6. (a) We �rst �nd the limiting distribution of
p
NP

�
~�1;NP (̂NR)� ~�2;NP (̂NR)

�
conditional on FR. Note that

~�g;NP (̂NR) =
1

N̂g;NR

NX
i=1

 
1
�
̂i;NR = g

	 1
P

TX
t=R+1

Yi;t

!

� 1

NP

NX
i=1

TX
t=R+1

Yi;t�̂
�1
g;NR1

�
̂i;NR = g

	
Then

p
NP

�
~�1;NP (̂NR)� ~�2;NP (̂NR)

�
=

1p
NP

NX
i=1

TX
t=R+1

Ẑi;NR"it

where Ẑi;NR � �̂�11;NR1
�
̂i;NR = 1

	
� �̂�12;NR1

�
̂i;NR = 2

	
: We now verify that we can invoke a

CLT for
p
NP 1

NP

PN
i=1

PP
t=R+1 �it;NR, where �it;NR � Ẑi;NR"it: Note that conditional on FR; the

sequence
�
�it;NR

	
is heterogeneously distributed, and M -dependent by Assumption 100(c) which

immediately implies strong mixing. Also note that conditional on FR, �it;NR is independent of

�jt;NR 8 i 6= j: Then note that

E
�
�it;NRjFR

�
= Ẑi;NRE ["itjFR] = Ẑi;NRE [E ["itjGt�M ] jFR] = 0, for t � R+ 1

Next, let

�0i;NPR �
�
�i;R+1;NR; :::; �i;R+P;NR

�
= Ẑi;NR ["i;R+1; :::; "i;R+P ]

0 � Ẑi;NR"
0
iP

and note that

E
�
�i;NPR�

0
i;NPR

��FR� = Ẑ2i;NRE
�
"iP"

0
iP

�
� Ẑ2i;NR
i

Note that by Assumption 100(a) and (c), 
i is a Toeplitz matrix, with �2i on the main diagonal,

 i;1 � Cov ["i;t; "i;t+1] on the secondary diagonal, etc. out to  i;M � Cov ["i;t; "i;t+M ] on the

(M + 1)th diagonal, and with zeros elsewhere. This structure simpli�es the estimation of 
i:

Finally, de�ne

�!2NR � lim
N;P!1

1

NP

NX
i=1

Ẑ2i;NR�
0
P
i�P

= lim
N;P!1

1

N

NX
i=1

Ẑ2i;NR�
2
i + lim

N;P!1

2

N

NX
i=1

Ẑ2i;NR

 
MX
k=1

(1� k=P ) i;k

!
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The general estimator of the asymptotic covariance in Hansen (2007) is given below, which we then

simplify based on our M -dependence assumption.

!̂2NPR =
1

N

NX
i=1

Ẑ2i;NR ̂i;0;P +
2

N

NX
i=1

Ẑ2i;NR

 
MX
k=1

(1� k=P )  ̂i;k;P

!

where  ̂i;k;P � 1

P

T�kX
t=R+1

�
Yit � �YiP

� �
Yi;t+k � �YiP

�
, k = 0; 1; :::;M

Our Assumption 100 is su¢ cient for Assumptions 1, 2 and 3(b) of Hansen (2007, Theorem 3), and

thus we have, conditional on FR;
p
NP 1

NP

PN
i=1

PT
t=R+1 Ẑi;NR"it

�!NR

d�! N (0; 1) and !̂2NPR
p�! �!2NR as N;P;R!1

This implies that the t-statistic obeys
p
NP 1

NP

PN
i=1

PT
t=R+1 Ẑi;NR"it

!̂NPR

d�! N (0; 1) ; as N;P;R!1

As the limiting distribution of the t-statistic does not depend on FR; its unconditional distribution

is also N (0; 1) ; completing the proof.

(b) As in Theorem 1(b), note that ~�NP (̂NR)� �� = (�̂NR � ��) + (~�NP (̂NR)� �̂NR) : Our

Assumption 100 is su¢ cient for Assumption 1 of Bonhomme and Manresa (2015), and their Theorem

1 implies that the �rst term on the RHS is op (1), as N;R!1: The second term is:

~�g;NP (̂NR)� �̂g;NR =
1

N

NX
i=1

�̂�1g;NR1
�
̂i;NR = g

	 1
P

TX
t=R+1

Yi;t �
1

R�M

R�MX
t=1

Yi;t

!

=
1

N

NX
i=1

�̂�1g;NR1
�
̂i;NR = g

	 1
P

TX
t=R+1

"i;t �
1

R�M

R�MX
t=1

"i;t

!

� ��1
1

N

NX
i=1

 
1

P

TX
t=R+1

"i;t �
1

R�M

R�MX
t=1

"i;t

!

= ��1

 
1

NP

NX
i=1

TX
t=R+1

"i;t �
1

N (R�M)

NX
i=1

R�MX
t=1

"i;t

!
= op (1) , as N;P;R!1

since our Assumption 100 is su¢ cient for Assumptions 1, 2 and 3(b) of Hansen (2007), which implies

that 1
N(R�M)

PN
i=1

PR�M
t=1 "i;t = op (1) and 1

NP

PN
i=1

PT
t=R+1 "i;t = op (1) : This holds for g = 1; 2;

4



and thus ~�NP (̂NR)
p�! ��, as N;P;R ! 1: This implies that ~�1;NP (̂NR) � ~�2;NP (̂NR)

p�!

��1 � ��2 6= 0 by Assumption 20(b). Thus jtstatj
p�!1; as N;P;R!1:

We next consider allowing for general time series and cross-sectional dependence, by adapt-

ing Assumption 1 of Bonhomme and Manresa (2015) to our application. Consider the following

assumption. Let K denote some �nite constant.

Assumption 1000: (a) The data come from Yit = mi + "it, for i = 1; :::; N; and t = 1; ::; T;

where mi 2 [m; �m] � R and V ["it] � �2i 2
�
�2; ��2

�
� R+ 8 i; and E

�
�4it
�
� �� <1 8 i

(b)
��� 1NT PN

i=1

PT
t=1

PT
s=1E ["it"is]

��� � K <1

(c)
��� 1
N2T

PN
i=1

PN
j=1

PT
t=1

PT
s=1Cov ["it"jt; "is"js]

��� � K <1

(d) 1
N

PN
i=1

PN
j=1

��� 1T PT
t=1E ["it"jt]

��� � K <1

(e)
p
NT 1

NT

PN
i=1

PT
t=1 "it

d�! N
�
0; ��2

�
for some ��2 > 0, and there exists an estimator �̂2NT

that is robust to cross-sectional heteroskedasticity in f"itg and is consistent for ��2; as N;T !1:

(f) N;P;R!1.

Assumption 1000(a) allows for cross-sectional heteroskedasticity, and heterogeneity more gener-

ally, in the distribution of residuals, subject to them being mean zero and having �nite fourth

moments. Assumptions 1000(b) and (c) imposes restrictions on the amount of time series depen-

dence in the data, and 1000(d) limits the amount of cross-sectional dependence. Assumption 1000(e)

is a high level assumption that a CLT can be invoked for the sample average of f"itg ; and that a

consistent estimator of the asymptotic variance is available. There are a variety of CLTs and LLNs

that can be used in panel applications to satisfy this assumption, see Pesaran (2015) for a recent

textbook treatment of this area. The requirement that this estimator is robust to cross-sectional

heteroskedasticity is a mild requirement and is satis�ed by many estimators in the literature.

Theorem 7 Let ̂NR be the estimated group assignments based on sample R, and let ~�NP (̂NR)

be the estimated group means from sample P using group assignments ̂NR: De�ne the t-statistic
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for the di¤erences in the estimated means as

tstatNPR =

p
NP

�
~�1;NP (̂NR)� ~�2;NP (̂NR)

�
!̂NPR

where !̂2NPR is an estimator of the asymptotic variance of

�it;NR �
�
�̂�11;NR1

�
̂i;NR = 1

	
� �̂�12;NR1

�
̂i;NR = 2

	�
"it

and takes the same functional form as the estimator �̂2NT in Assumption 1
000(e).

(a) Under Assumptions 1000 and 2,

tstatNPR
d�! N (0; 1) , as N;P !1 (8)

(b) Under Assumptions 1000 and 20,

jtstatNPRj
p�!1, as N;P;R!1 (9)

Proof of Theorem 7. (a) Note that

p
NP

�
~�1;NP (̂NR)� ~�2;NP (̂NR)

�
=

1p
NP

NX
i=1

X
t2P

"it

�
�̂�11;NR1

�
̂i;NR = 1

	
� �̂�12;NR1

�
̂i;NR = 2

	�

=
1p
NP

NX
i=1

X
t2P

Ẑi;NR"it

where Ẑi;NR � �̂�11;NR1
�
̂i;NR = 1

	
� �̂�12;NR1

�
̂i;NR = 2

	
: By Assumption 1000(e) we know that

1p
NP

PN
i=1

PP
t=1 "it

d�! N
�
0; ��2

�
; so

��2 = lim
N;P!1

V

"
1p
NP

NX
i=1

PX
t=1

"it

#
= lim
N;P!1

1

NP

NX
i=1

NX
j=1

PX
t=1

PX
s=1

E ["it"js]

Conditional on FR; the weights, Ẑi;NR, on "it are known, and are bounded since � > 0: De�ne the

variable �it;NR � Ẑi;NR"it; and note that we have:

E
�
�it;NR

��FR� = Ẑi;NRE ["it] = 0
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Moreover,

E
����it;NR��q��FR� =

���Ẑi;NR���q E [j"itjq] , for q s.t. E [j"itjq] <1
E
�
�it;NR�is;NR

��FR� = Ẑ2i;NRE ["it"is] 8 i; t; s

E
�
�it;NR�jt;NR

��FR� = Ẑi;NRẐj;NRE ["it"jt] 8 i; j; t

Cov
�
�it;NR�jt;NR; �jt;NR�js;NR

��FR� = Ẑ2i;NRẐ
2
j;NRCov ["it"jt; "is"js] 8 i; j; t; s

and so the moment and memory properties of
�
�it;NR

	
are completely determined by the moment

and memory properties of f"itg : Thus any CLT that applies to f"itg ; and which allows for cross-

sectional heteroskedasticity, will also apply to
�
�it;NR

	
, conditional on FR: This implies that

1p
NP

NX
i=1

PX
t=1

�it;NR
d�! N

�
0; �!2

�
where �!2 = lim

N;P!1
V

"
1p
NP

NX
i=1

PX
t=1

�it;NR

#

By Assumption 1000(e) we know that there exists an estimator �̂2NP such that �̂2NP
p�! ��2; as

N;P !1: As Ẑi;NR is non-zero and �nite, any estimator �̂2NP that is consistent for ��2; and robust

to cross-sectional heteroskedasticity, can also be applied to �it;NR; yielding an estimator !̂
2
NPR that

is consistent for �!2: This implies that the t-statistic obeys:

tstat =

p
NP

�
~�1;NP (̂NR)� ~�2;NP (̂NR)

�
!̂NPR

d�! N (0; 1) as N;P;R!1

As the limiting distribution of the t-statistic does not depend on FR; its unconditional distribution

is also N (0; 1) ; completing the proof.

(b) Note that ~�NP (̂NR) � �� = (�̂NR � ��) + (~�NP (̂NR)� �̂NR) : Our Assumption 1000 is

su¢ cient for Assumption 1 of Bonhomme and Manresa (2015), and their Theorem 1 implies that
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the �rst term on the RHS is op (1), as N;R!1: The second term is:

~�g;NP (̂NR)� �̂g;NR =
1

N

NX
i=1

�̂�1g;NR1
�
̂i;NR = g

	 1
P

X
t2P

Yi;t �
1

R

X
t2R

Yi;t

!

=
1

N

NX
i=1

�̂�1g;NR1
�
̂i;NR = g

	 1
P

X
t2P

"i;t �
1

R

X
t2R

"i;t

!

� ��1

 
1

NP

NX
i=1

X
t2P

"i;t �
1

NR

NX
i=1

X
t2R

"i;t

!
= op (1) , as N;P;R!1

since � > 0 and using a LLN for 1
NP

PN
i=1

P
t2P "i;t and

1
NR

PN
i=1

P
t2R "i;t which follows from

Theorem 1 of Bonhomme and Manresa (2015). This holds for g = 1; 2; and thus ~�NP (̂NR)
p�! ��,

as N;P;R ! 1: This implies that ~�1;NP (̂NR) � ~�2;NP (̂NR)
p�! ��1 � ��2 6= 0 by Assumption

20(b). Thus jtstatj p�!1; as N;P;R!1.

S.A.2: Additional proofs

Proof of Lemma 1. We know that the limit of the objective function of the correctly speci�ed

model is minimized at (��;�) ; and the MSE at that point is

MSE� (��;�) = lim
N;T!1

1

NT

NX
i=1

TX
t=1

GX
g=1

�
Yit � ��g

�2
1 f�i = gg

= lim
N;T!1

1

NT

NX
i=1

TX
t=1

"2it

=
1

N

NX
i=1

�2i

� ��2

Let F be such that, for all i; j 2 f1; :::; Ng ; Fi = Fj ) �i = �j : That is, all clusters de�ned by

F can be generated by taking the correct set of clusters (given by �) and then splitting some

�-clusters into two or more clusters. This implies that �Fg = ��g0 for some g
0; for all g: For any
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such
�
�F; F

�
the limit of the objective function is

MSE�
�
�F;F

�
= lim

N;T!1

1

NT

NX
i=1

TX
t=1

~GX
g=1

�
Yit � �Fg

�2
1
n
Fi = g

o
= lim
N;T!1

1

NT

NX
i=1

TX
t=1

"2it

=
1

N

NX
i=1

�2i � ��2 �MSE� (�;)

and so
�
�F; F

�
is a solution to the population ~G-cluster estimation problem.

Lemma 3 For d = 1; Assumption 20(b) implies Assumption 300(b).

Proof of Lemma 3. Consider the case that G = 3 and ~G = 2 for simplicity, and assume

��1 < ��2 < ��3: Every element of a group has the same mean (by Assumption 2
0) and so if it is

optimal for one member of a given group to be assigned to a speci�c group in the ~G-cluster model

then it is optimal for all members of that true group. This implies that there are no split true groups

between the ~G-cluster model groups. There are then three possible groupings for the ~G = 2 model,

in terms of the true group assignments: f1; (2; 3)g ; f(1; 2) ; 3g ; f(1; 3) ; 2g : The latter allocation

can be easily shown to be suboptimal since ��1 < ��2 < ��3; so we need only consider the �rst two

cases.

In the �rst case, we have �F1 = ��1; since that group comprises all the true group one variables.

The other location parameter will be a convex combination of ��2 and �
�
3:

�F2 =
�2

�2 + �3
��2 +

�3
�2 + �3

��3

Then note that
����F1 � �F2 ��� = �����1 � �F2 ��� > j��1 � ��2j > c; where the �rst inequality holds since

�F2 2 (��2; ��3) and the second inequality holds by Assumption 20(b). A similar inequality holds if

we consider the other allocation:
����F1 � �F2 ��� = ����F1 � ��3��� > j��2 � ��3j > c since in this case we have

�F2 = ��3 and �
F
1 2 (��1; ��2) : The extension to the general case G > ~G � 2 is proven similarly.

Next we provide an example where this implication fails for d > 1: Consider d = 2, G = 3 and

~G = 2: Assume ��1 = [0; 0] ; ��2 = [2; 0] and ��3 =
�
1;
p
3
�
, i.e., these points form an equilateral

9



triangle on R2 with side lengths equal to two. Assume that �1 = �2 � � > 0 and �3 > 1=3; leading

to the optimal ~G = 2 group assignment being f(1; 2) ; 3g : Thus �F2 = ��3 and

�F1 =
1

2
(��1 + �

�
2) = [1; 0]

In this case we �nd
�F1 ��F2  = p

3 < ming 6=g0
��g���g0 : Thus the ~G = 2 model has optimal

clusters that are closer together than the clusters in the DGP.

Proof of Theorem 2. (a) This case is identical to the case considered in Theorem 1(a): a

model with ~G clusters is estimated, but the null of only a single cluster is true. Thus we obtain

Fstat
d�! �2~G�1, as N;P;R!1:

(b) Now we consider a ~G-cluster model when the DGP has G 2
n
2; :::; ~G� 1

o
clusters, and so

the ~G-cluster model is too large. Note that

~�NP (̂NR)� �F =
�
�̂NR��F

�
+ (~�NP (̂NR)� �̂NR)

The �rst term on the RHS is op (1) as N;R!1 by Assumption 30(a). The second term is treated

as in Theorem 1(b) and is op (1) as N;P;R!1:

By Lemma 1, �F is a re-ordering of [��0;'�0]0 ; where '� is a
�
~G�G

�
vector with elements

drawn with replacement from ��: The well-separatedness assumption on the DGP (Assumption

2�(b)) implies that all of the G (G� 1) =2 pairwise di¤erences of elements of �� are non-zero, i.e.,�����g � ��g0��� > c > 0 8 g 6= g0: Combining this with Lemma 1 we have:

~G�1X
g=1

~GX
g0=g+1

1
n����Fg � �Fg0 ��� = 0o �

�
~G�G+ 1

��
~G�G

�
=2

and so

~G�1X
g=1

~GX
g0=g+1

1
n����Fg � �Fg0 ��� > c

o
�

�
4 ~G� 3G

�
(G� 1) =2

Thus, while not all of the pairwise di¤erences in �Fg will be non-zero, there will be at least�
4 ~G� 3G

�
(G� 1) =2 non-zero pairwise di¤erences. This implies that

~�0NP (̂NR)A
0
1; ~G

�
A1; ~G
̂NPRA

0
1; ~G

��1
A1; ~G~�NP (̂NR)

p�! �F0A0
1; ~G

�
A1; ~G

�
NRA
0
1; ~G

��1
A ~G�

F > 0
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by the positive de�niteness of �
NR and the full row rank of AG: And thus

Fstat = NP ~�0NP (̂NR)A
0
1; ~G

�
A1; ~G
̂NPRA

0
1; ~G

��1
A1; ~G~�NP (̂NR)

p�!1, as N;P;R!1

completing the proof.

(c) Now we consider a ~G-cluster model when the DGP has G > ~G clusters, and so the ~G-cluster

model is misspeci�ed. Note that

~�NP (̂NR)� �F =
�
�̂NR��F

�
+ (~�NP (̂NR)� �̂NR)

The �rst term on the RHS is op (1) as N;R!1 by Assumption 300(a). The second term is treated

as in Theorem 1(b) and is op (1) as N;P;R!1: This implies that

~�0NP (̂NR)A
0
1; ~G

�
A1; ~G
̂NPRA

0
1; ~G

��1
A1; ~G~�NP (̂NR)

p�! �F0A0
1; ~G

�
A1; ~G
NRA

0
1; ~G

��1
A1; ~G�

F > 0

by Assumption 300(b), the positive de�niteness of �
NP and the full row rank of AG: Thus

Fstat = NP ~�0NP (̂NR)A
0
1; ~G

�
A1; ~G
̂NPRA

0
1; ~G

��1
A1; ~G~�NP (̂NR)

p�!1, as N;P;R!1

completing the proof.
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Table SA.1: Finite sample rejection rates, no sample splitting

N = 30 30 30 150 150 150 600 600 600
d G T = 50 250 1000 50 250 1000 50 250 1000

Normal data
1 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 5 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 Bonf. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 Bonf. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 Bonf. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Heterogeneous data
1 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 Bonf. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 Bonf. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 Bonf. 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Notes: This table presents the proportion of simulations in which the null of a single cluster is rejected
in favor of multiple clusters, using the test proposed in Theorem 1 but without sample splitting, at a 0.05
signi�cance level. The top panel presents results for iid Normal data; the lower panel presents results
when the distribution is randomly drawn from one of N (0; 1), Exp (2), Unif (�3; 3) ; �2 (4) or t (5),
each standardized to have zero mean and unit variance. The dimension of the variables is denoted d, the
number of groups considered under the alternative is denoted G, the number of variables is denoted N ,
and the number of time series observations is denoted T . Rows labeled �Bonf.�use tests with a Bonferroni
correction to consider G 2 f2; 3; 4; 5g under the alternative. The number of simulations is 1000.
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