On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation

Andrew Patton

London School of Economics.

Outline of talk

- Motivation
- Definition of asymmetric dependence
- Set-up of the problem
 - Data
 - Investor's utility function and optimisation problem
 - Density models: mean, variance, skewness and copula
 - Investment strategies
 - Portfolio performance measures
- Results
 - Unconstrained versus short sales constrained
 - Economic significance
 - Statistical significance

Motivation: stock returns are non normal

- The distribution of stock returns are widely reported as be being <u>skewed</u>, see Kraus and Litzenberger (1976), Harvey and Siddique (1999,2000), *inter alia*.
- Recent studies report that stock returns are more higly correlated in bear markets than bull markets – a form of <u>asymmetric dependence</u>, see Erb *et al.* (1994), Longin and Solnik (2001), Ang and Chen (2002).

Describing asymmetric dependence

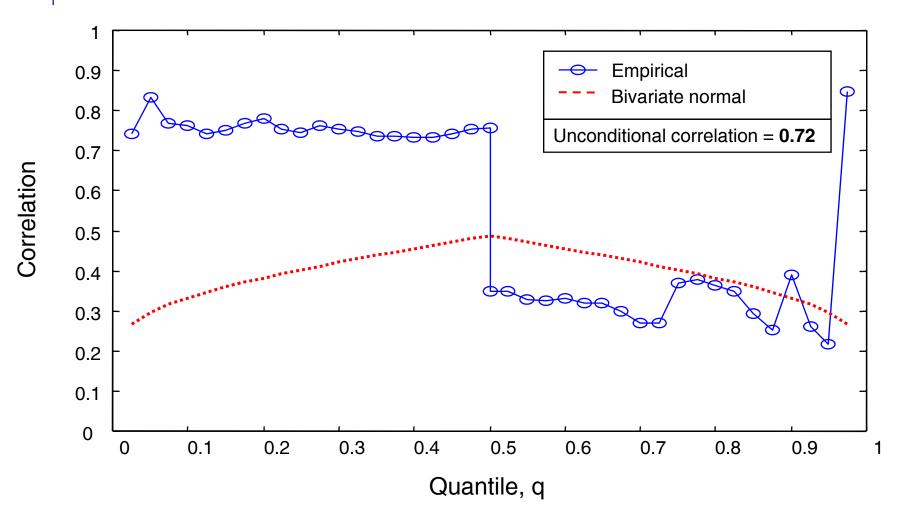
- There are a number of ways of trying to measure and present asymmetric dependence
- One simple way is to look at exceedence correlations, see Longin and Solnik (2001) and Ang and Chen (2002):

```
Correl [ X , Y | Quantile(X) < q , Quantile(Y) < q ], for q \le 0.5
Correl [ X , Y | Quantile(X) > q , Quantile(Y) > q ], for q \ge 0.5
```

• [I don't use this measure in the modelling stage, but it is useful for preliminary analysis of the data.]

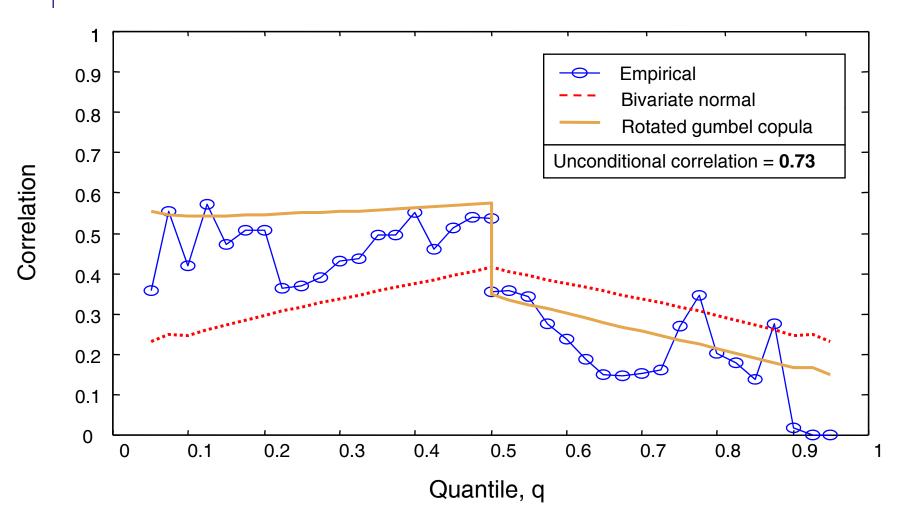
Asymmetric dependence

Exceedence correlations between raw excess returns



Asymmetric dependence

Exceedence correlations between transformed residuals



Goal of this research

- The presence of skewness and/or asymmetric dependence violates the assumption that stock returns are normally distributed
- I attempt to determine the economic and statistical significance of these non-normalities for a particular pair of indices, in the context of out-of-sample asset allocation
- I find substantial economic significance, and moderate statistical significance

Investor's optimisation problem

The investor's optimisation problem is:

$$\begin{split} \boldsymbol{\omega}_{t}^{*} &= \arg\max_{\boldsymbol{\omega}} \hat{E}_{t-1}[U(\boldsymbol{\omega}_{x}\boldsymbol{X}_{t} + \boldsymbol{\omega}_{y}\boldsymbol{Y}_{t}\})] \\ &\equiv \arg\max_{\boldsymbol{\omega}} \iint U(\boldsymbol{\omega}_{x}\boldsymbol{x} + \boldsymbol{\omega}_{y}\boldsymbol{y}).\hat{h}_{t}(\boldsymbol{x}, \boldsymbol{y}).d\boldsymbol{x}.d\boldsymbol{y} \\ &= \arg\max_{\boldsymbol{\omega}} \iint U(\boldsymbol{\omega}_{x}\boldsymbol{x} + \boldsymbol{\omega}_{y}\boldsymbol{y}).\hat{f}_{t}(\boldsymbol{x}).\hat{g}_{t}(\boldsymbol{y}).\hat{c}_{t}(\hat{F}_{t}(\boldsymbol{x}), \hat{G}_{t}(\boldsymbol{y}))d\boldsymbol{x}.d\boldsymbol{y} \end{split}$$

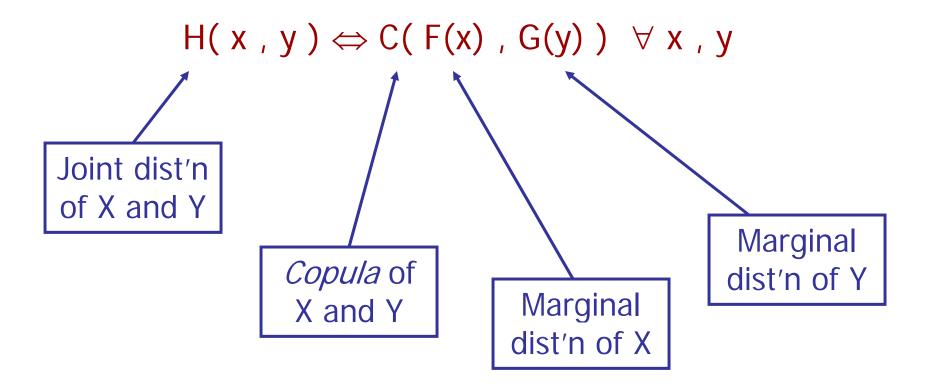
where U is a CRRA utility function with RRA of 1, 3, 7, 10 and 20.

Data and Estimation

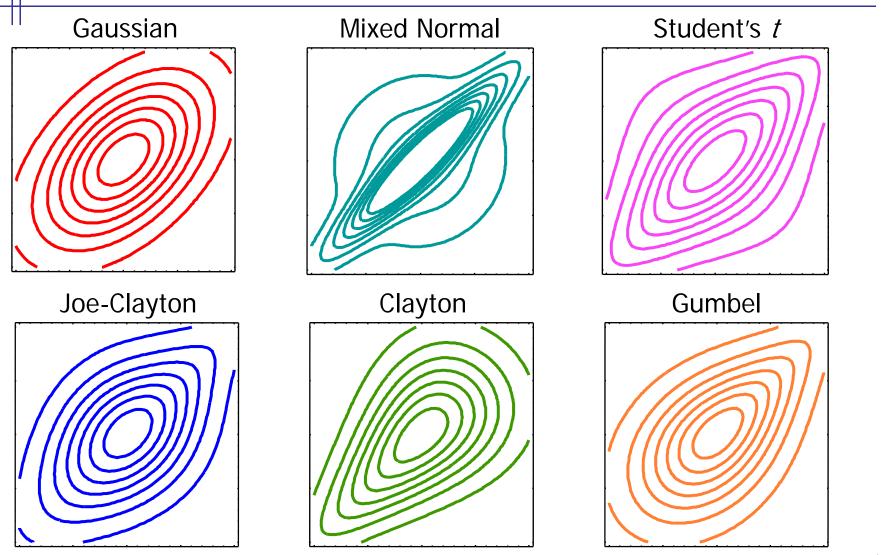
- Monthly data from Jan 1954 to Dec 1999 on a U.S. risk-free asset, a small cap and a big cap stock index.
 - In-sample period: Jan 1954 Dec 1989, 420 obs
 - Out-of-sample period: Jan 1990 Dec 1999, 120 obs
- Model selection is done only once, using the insample data.
- Parameters of the model are estimated recursively throughout the out-of-sample period.

Copulas and Sklar's theorem

Sklar (1959) showed that we may decompose the distribution of (X,Y) into three parts:



All of these distributions have N(0,1) marginal distributions and $\rho=0.50$



The density models

- I compare the performance of three density models.
 - All have AR models for the mean, and TARCH models for the variance
 - All use DIV, RF and SPR as explanatory variables
- 1. The first assumes a bivariate normal density
- 2. The second allows for time-varying skewness, via Hansen's (1994) skewed t, but imposes a normal copula
- 3. The third allows for time-varying skewness and chooses the optimal copula model from a set of 9 possible copulas (selects the 'rotated Gumbel' copula)

The asset allocation decision rules

- 1. 100% weight in small caps
- 2. 100% weight in big caps
- 3. 50% weight in each stock index
- 4. Optimise using unconditional distribution
- 5. Optimise using a bivariate normal
- 6. Optimise using a skewed *t* Normal copula
- 7. Optimise using a skewed *t* –flexible copula

Portfolio performance measures

I use four measures of portfolio performance:

1-3. Mean to risk ratios:

- Mean / standard deviation (Sharpe ratio)
- Mean / 5% Value-at-Risk
- Mean / 5% Expected Shortfall

4. Management fee

- A more interpretable value than average realised utility
- This is a fee, expressed in basis points per year, that a particular investor would be willing to pay to switch from a 50:50 portfolio to another portfolio.

Short sales constraints

- Short sales constraints have two interpretations in this context:
 - 1. Economically they reflect the constraints that many market participants face, and so possibly make the study more realistic
 - 1. Econometrically they can be interpreted as an 'insanity filter', preventing the hypothetical investor from taking extreme positions in the market.
 - → Stock and Watson (1999), for example, find that such filters improve forecast accuracy from non-linear models.

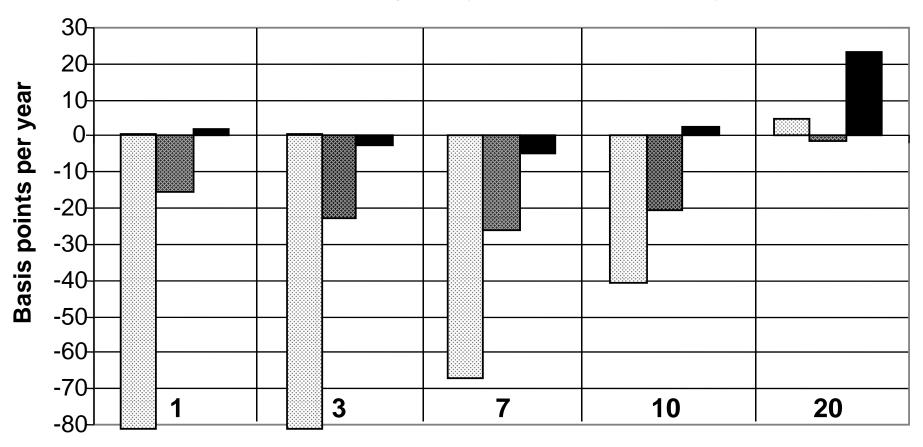
Economic significance

- Gumbel model out-performs the normal model 16 out of 20 comparisons
 - Overall average out-performance is 16.7%
 - Average out-performance in management fee is 41 (1) basis points for unconstrained (constrained) investors.
- Gumbel model out-performs the 'intermediate' model in all 20 comparisons
 - Overall average out-performance is 52.3%
 - Average out-performance in management fee is 21 (1.5) basis points for unconstrained (constrained) investors

Management fee

- Unconstrained Normal
- Unconstrained intermediate
- Unconstrained Gumbel

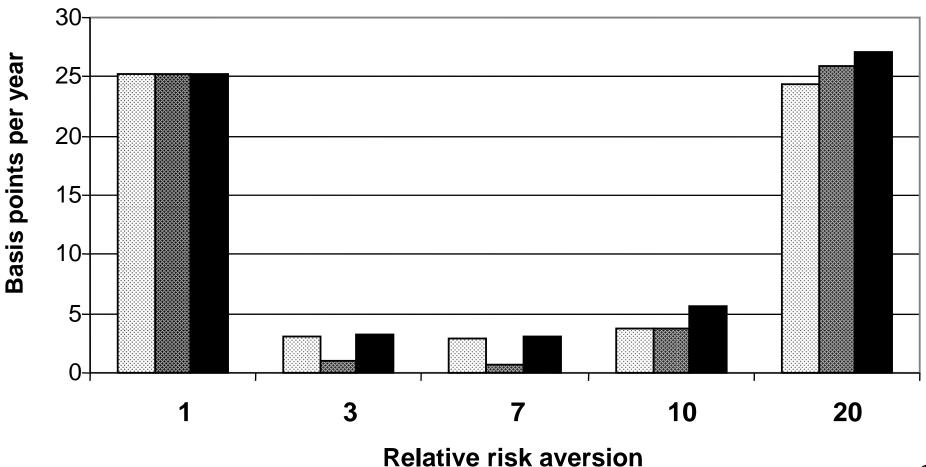
Amount investor would be willing to pay to switch from the buy and hold portfolio



Management fee

- Constrained Normal
- Constrained intermediate
- Constrained Gumbel

Amount investor would be willing to pay to switch from the buy and hold portfolio



Pair wise comparison bootstrap tests

Focussing on results using realised utility:

Unconstrained investors:

- Gumbel model significantly outperformed both the Normal and intermediate models for all levels of risk aversion
- Normal and intermediate models were not distinguishable

Pair wise comparison bootstrap tests

Short sales constrained investors:

- Gumbel out-performed Normal model for high risk aversion (RRA=10 and 20) while Normal outperformed Gumbel for RRA=1
- Gumbel outperformed the intermediate model for all levels of risk aversion
- Normal and intermediate models were again indistinguishable

Bootstrap reality check results

 Reject benchmark portfolio if 'consistent' p-value is less than 0.10

Benchmark portfolio: Normal

	Unconstrained			Short sales constrained		
RRA	Lower	Consistent	Upper	Lower	Consistent	Upper
1	N/A	N/A	N/A	0.316	0.316	0.896
3	N/A	N/A	N/A	0.586	0.667	0.792
7	0.042	0.042	0.042	0.746	0.792	0.842
10	0.034	0.034	0.034	0.373	0.384	0.593
20	0.117	0.185	0.309	0.082	0.082	0.535

Bootstrap reality check results

 Reject benchmark portfolio if 'consistent' p-value is less than 0.10

Benchmark portfolio: Intermediate

	Unconstrained			Short sales constrained		
RRA	Lower	Consistent	Upper	Lower	Consistent	Upper
1	0.126	0.126	0.126	0.556	0.556	0.932
3	0.066	0.066	0.317	0.319	0.368	0.470
7	0.067	0.067	0.305	0.349	0.394	0.493
10	0.023	0.023	0.224	0.380	0.511	0.579
20	0.238	0.380	0.380	0.151	0.161	0.611

Summary of Results

- Capturing skewness and asymmetric dependence leads to better portfolio performance:
 - Noteworthy, as in many cases simpler models do best in out-of-sample comparisons
 - For these assets, it seems that asymmetric dependence is more important than skewness
 - Statistical significance of improvement is moderate
- Short sales constraints improve portfolio decisions made using out-of-sample density forecasts
- Economic significance is greatest for unconstrained investors, eg: hedge funds.

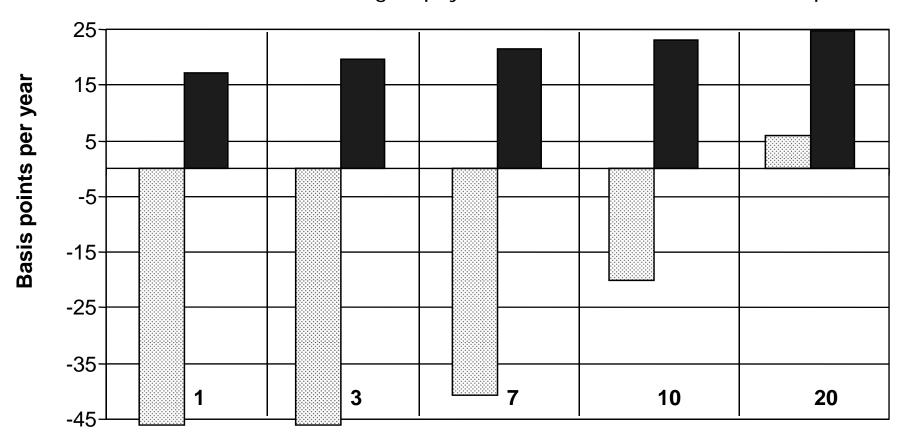
Future work

- Impact of parameter estimation uncertainty on all of these results
- 2. Compare flexible parametric methods, like mine or those of Ang and Bekaert (2001), with nonparametric methods like those of Brandt (1999) and Aït-Sahalia and Brandt (2001)?
- 3. Extensions to higher dimensions: are the improvements even greater, or does estimation error dominate?

Management fee

- Unconstrained Normal
- Unconstrained Gumbel

Amount investor would be willing to pay to switch from the Intermediate portfolio

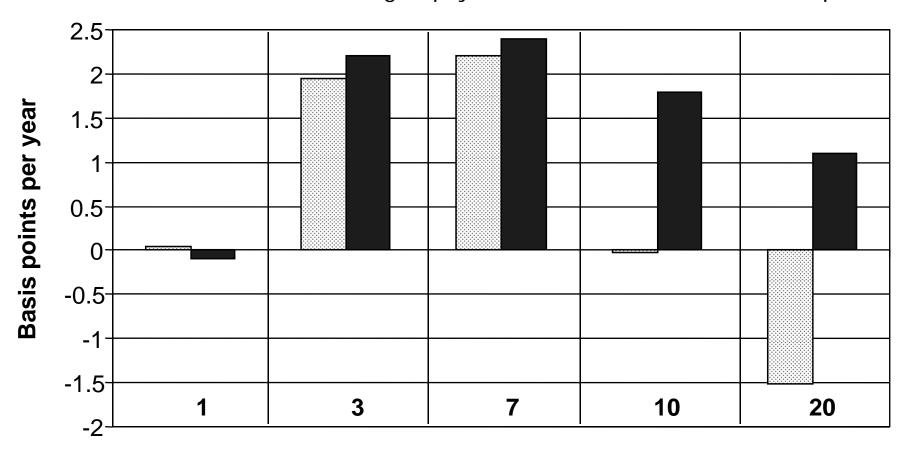


Relative risk aversion

Management fee

- Unconstrained Normal
- Unconstrained Gumbel

Amount investor would be willing to pay to switch from the Intermediate portfolio



Relative risk aversion