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This supplemental appendix contains two parts. Appendix SA.1 contains proofs of the propo-

sitions presented in the main paper. Appendix SA.2 contains derivations used in the analytical

results presented in the paper.

Appendix SA.1: Proofs

Proof of Proposition 1(a). We will show that under Assumptions (1)�(3), MSEB �

MSEA ) FBt � FAt 8t) E
h
L
�
Yt; Ŷ

B
t

�i
� E

h
L
�
Yt; Ŷ

A
t

�i
8L 2 LBregman:

For the �rst implication: Assume that FAt � FBt 8t: This implies E
��
Yt � Ŷ At

�2
jFBt

�
�

E
��
Yt � Ŷ Bt

�2
jFBt

�
a:s:8t since Ŷ At 2 FAt � FBt : Then E

��
Yt � Ŷ At

�2�
� E

��
Yt � Ŷ Bt

�2�
by

the law of iterated expectations (LIE). The only way that this can also satisfy the �rst assump-

tion that MSEB � MSEA is under equality: MSEB = MSEA: Since E
��
Yt � Ŷ At

�2
jFBt

�
�

E
��
Yt � Ŷ Bt

�2
jFBt

�
a:s:8t, equality of (unconditional) MSEs can only obtain under equality of

conditional MSEs at each point in time, i.e. E
��
Yt � Ŷ At

�2
jFBt

�
= E

��
Yt � Ŷ Bt

�2
jFBt

�
a:s:8t;

which in turn can only hold if Ŷ At = Ŷ Bt a:s:8t; violating the �not identical�part of Assumption (1).

Thus we have a contradiction, and so under Assumptions (1)-(3),MSEB �MSEA ) FBt � FAt 8t:

Now consider the second implication: Let

Yt = Ŷ
A
t + �t = Ŷ

B
t + �t + "t (15)

Then

E
h
L
�
Yt; Ŷ

A
t

�
� L

�
Yt; Ŷ

B
t

�i
= E

h
��

�
Ŷ At

�
� �0

�
Ŷ At

�
�t + �

�
Ŷ Bt

�
+ �0

�
Ŷ Bt

�
(�t + "t)

i
= E

h
�
�
Ŷ Bt

�
� �

�
Ŷ At

�i
(16)
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since E
h
�0
�
Ŷ At

�
�t

i
= E

h
�0
�
Ŷ At

�
E
�
�tjFAt

�i
by the LIE and E

�
�tjFAt

�
= 0; by Assumptions (2)-

(3). Similarly for E
h
�0
�
Ŷ Bt

�
(�t + "t)

i
: Next, consider the second-order mean-value expansion:

�
�
Ŷ At

�
= �

�
Ŷ Bt

�
� �0

�
Ŷ Bt

�
"t + �

00
�
�Y At

�
"2t (17)

where �Y At = �tŶ
A
t + (1� �t) Ŷ Bt , for �t 2 [0; 1] : Thus

E
h
L
�
Yt; Ŷ

A
t

�
� L

�
Yt; Ŷ

B
t

�i
= E

h
�0
�
Ŷ Bt

�
"t

i
� E

h
�00
�
�Y At

�
"2t

i
� 0 (18)

since E
h
�0
�
Ŷ Bt

�
"t

i
= 0 and � is convex. And so FBt � FAt 8t) E

h
L
�
Yt; Ŷ

B
t

�i
� E

h
L
�
Yt; Ŷ

A
t

�i
8L 2

LBregman:

Proof of Proposition 2. First we note that

E
h
L
�
Yt; Ŷ

i
t ; a

�i
=

2

a2

�
E [exp faYtg]� E

h
exp

n
aŶ it

oi�
=

2

a2

�
exp

na
2

�
a�2 + 2�

�o
� exp

na
2

�
a!2i + 2�

�o�
! �2 � !2i as a! 0:

where the �rst equality holds under mean-unbiasedness (assumption (ii)) and the second follows

from normality of the target variable and the forecast (assumption (i)). The last line implies

that whichever forecast is based on the richest information set, leading to the greatest (optimal)

variability in the forecast (!2i ), will have the lowest MSE loss. Then note that for non-MSE

exponential Bregman loss (i.e., for a 6= 0), that if E
h
L
�
Yt; Ŷ

A
t ; a

�i
� E

h
L
�
Yt; Ŷ

B
t ; a

�i
; then

exp
�
a
2

�
a!2A + 2�

�	
� exp

�
a
2

�
a!2B + 2�

�	
and so !2A � !2B and thus MSEA � MSEB: The

converse holds using the same derivations, proving the proposition.

Proof of Proposition 3(a). The �rst-order condition for the optimization is:

0 =
@

@�
E [L (Yt;m (Xt; �) ;�)]

����
�=�̂

�
�

= E

24�00 �m�Xt; �̂�����Yt �m�Xt; �̂���� @m
�
Xt; �̂

�
�

�
@�

35
= E

24�00 �m�Xt; �̂�����E [YtjFt]�m�Xt; �̂���� @m
�
Xt; �̂

�
�

�
@�

35
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where the last equality holds by the LIE. Note that the �rst-order condition is satis�ed when

�̂
�
� = �0 by assumption (i), and the solution is unique since � is strictly convex and @m=@� 6= 0 a.s.

by assumption (ii).

Proof of Proposition 5. (a) The �rst-order condition for an optimal forecast based on a

convex combination of Bregman and GPL1=2 loss is:

0 = ���00
�
Ŷ �t

��
Et�1 [Yt]� Ŷ �t

�
+ (1� �)

�
Et�1

h
1
n
Yt � Ŷ �t

oi
� 1=2

�
g0
�
Ŷ �t

�
using the assumption that F �t is continuous. Then note that Et�1 [1 fYt � ŷg] � F �t (ŷ) ; and recall

that F �t is symmetric, which implies that Et�1 [Yt] =Mediant�1 [Yt] and that F �t (Et�1 [Yt]) = 1=2:

Thus Ŷ �t = Et�1 [Yt] is a solution to the optimization problem, and this solution is unique as � is

strictly convex and g is strictly increasing.

(b) From the proofs of Propositions 1(a) and 4(a), we know that under Assumptions (1)�(3)

we have MSEB � MSEA ) FBt � FAt 8t and MAEB � MAEA ) FBt � FAt 8t; and that

FBt � FAt 8t ) E
h
L
�
Yt; Ŷ

B
t

�i
� E

h
L
�
Yt; Ŷ

A
t

�i
8 L 2

n
LBregman ; L1=2GPL

o
: This immediately

yields FBt � FAt 8t) E
h
L
�
Yt; Ŷ

B
t

�i
� E

h
L
�
Yt; Ŷ

A
t

�i
for any L 2 LBreg�GPL since � 2 [0; 1] :

(c) The proof of this negative result requires only an example. This can be constructed using

methods similar to those for Propositions 1(b) and 4(b), and is omitted in the interest of brevity.
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The proofs of Propositions 4 and 6 below use the following results on uniform random variable,

and a �triangular�random variable with a mode at L and a PDF that declines linearly to zero at

U > L.

Uniform random variable �Triangular� random variable

X s Unif (L;U) Z s Tri (L;U) (1)

Fx (x) =

8>>><>>>:
0; z < L

x�L
U�L ; z 2 [L;U ]

1; z > U

Fz (z) =

8>>><>>>:
0; z < L

(U�L)2�(U�z)2

(U�L)2 ; z 2 [L;U ]

1; z > U

(2)

fx (x) =

8<: 1
U�L ; z 2 [L;U ]

0 else
fz (z) =

8<:
2(U�x)
(U�L)2 ; z 2 [L;U ]

0 else
(3)

F�1x (�) = L+ � (U � L) , for � 2 [0; 1] F�1z (�) = U � (U � L)
p
1� �, for � 2 [0; 1] (4)

E [X] = 1
2 (U + L) E [Z] = 1

3 (2L+ U) (5)

E
�
X2
�
= 1

3

�
L2 + U2 + LU

�
E
�
Z2
�
= 1

6

�
3L2 + 2LU + U2

�
(6)

E
�
X3
�
= 1

4

�
L3 + U3 + L2U + LU2

�
E
�
Z3
�
= 1

10

�
4L3 + 3L2U + 2LU2 + U3

�
(7)

Mx �Median [X] = 1
2 (U + L) Mz �Median [Z] = U � U�Lp

2
(8)

E [1 fX < bgX] = b2�L2
2(U�L) , for b 2 [L;U ] E [1 fZ � bgZ] = 3b2U�2b3�L2(3U�2L)

3(U�L)2 , for b 2 [L;U ] (9)

E
�
1 fX < bgX2

�
= b3�L3

3(U�L) E
�
1 fZ � bgZ2

�
= 4b3U�3b4�L3(4U�3L)

6(U�L)2 (10)

E
�
1 fX < bgX3

�
= b4�L4

4(U�L) E
�
1 fZ � bgZ3

�
= 5b4U�4b5�L4(5U�4L)

10(U�L)2 (11)

E [1 fX < MxgX] = 3L+U
8 E [1 fZ �MzgZ] =

U(
p
2�1)+L(4�

p
2)

6 (12)

E
�
1 fX < MxgX2

�
= 7L2+4LU+U2

24 E
�
1 fZ �MzgZ2

�
=

9L2+2LU(7�4
p
2)+U2(8

p
2�11)

24 (13)

E
�
1 fX < MxgX3

�
=

(3L+U)(5L2+2LU+U2)
64 E

�
1 fZ �MzgZ3

�
=

2L3(8�
p
2)+3L2U(2

p
2�1)

40 (14)

+
2LU2(19�13

p
2)+U3(22

p
2�31)

40
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Part of the proof of Proposition 4(b)(ii) below uses the distribution of Y = X + Z; where

X s Unif (L; 0) and Z s Unif (0; U) ; where L < 0 < jLj < U: This variable has the following

properties:

Fy (y) =

8>>>>>>>>><>>>>>>>>>:

0; y < L

(L�y)2
�2LU y 2 [L; 0]
2y�L
2U y 2 [0; L+ U ]

�2LU�(U�y)2
�2LU y 2 [L+ U;U ]

1; y > U

and fz (z) =

8>>>>>><>>>>>>:

y�L
�LU ; y 2 [L; 0]
1
U ; y 2 [0; L+ U ]
U�y
�LU y 2 [L+ U;U ]

0; else

(19)

F�1z (�) =

8>>><>>>:
L+

p
2� jLjU; � 2

�
0; �L2U

�
1
2L+ �U; � 2

��L
2U ;

L+2U
2U

�
U �

p
2 (1� �) jLjU; � 2

�
L+2U
2U ; 1

� (20)

And then

E [Y ] =
1

2
(L+ U) (21)

E
�
Y 2
�
=

1

6

�
2L2 + 3LU + 2U2

�
(22)

E
�
Y 3
�
=

1

4

�
L3 + 2L2U + 2LU2 + U3

�
My � Median [Y ] =

1

2
(L+ U) (23)

E [1 fY �MygY ] =
1

24

�
6L� L

2

U
+ 3U

�
(24)

E
�
1 fY �MygY 2

�
=

(L+ U)3 � 2L3
24U

(25)

E
�
1 fY �MygY 3

�
=

5 (L+ U)4 � 16L4
320U

(26)

Analogous to the mean case, de�ne an ��-quantile unbiased�forecast as one which satis�es:

E
h
1
n
Y � Ŷ

o
jŶ
i
= � (27)

Note that for an �-quantile unbiased forecast we have:

E
h
L
�
Y; Ŷ ; g

�i
� E

h�
1
n
Y � Ŷ

o
� �

��
g
�
Ŷ
�
� g (Y )

�i
(28)

= E
h
g
�
Ŷ
��
1
n
Y � Ŷ

o
� �

�i
� E

h�
1
n
Y � Ŷ

o
� �

�
g (Y )

i
= E

h
g
�
Ŷ
��
E
h
1
n
Y � Ŷ

o
jŶ
i
� �

�i
� E

h
1
n
Y � Ŷ

o
g (Y )

i
+ �E [g (Y )]

= �E [g (Y )]� E
h
1
n
Y � Ŷ

o
g (Y )

i
5



Holzmann and Eulert (2014) present a di¤erent proof of part (a) of Proposition 4 below. I

present the following for comparability with the conditional mean case presented in Proposition 1.

Proof of Proposition 4. (a) We will show that under Assumptions (1)�(3), LinLin�B �

LinLin�A ) FBt � FAt 8t ) E
h
L
�
Yt; Ŷ

B
t

�i
� E

h
L
�
Yt; Ŷ

A
t

�i
8L 2 L�GPL; where LinLin�j �

E
h
LinLin

�
Yt; Ŷ

j
t

�i
for j 2 fA;Bg and LinLin is the �Lin-Lin�loss function in equation (27).

First: we are given that LinLin�B � LinLin�A; and assume that FAt � FBt 8t: This im-

plies E
h
LinLin

�
Yt; Ŷ

A
t

�
jFBt

i
� E

h
LinLin

�
Yt; Ŷ

B
t

�
jFBt

i
a:s: 8t; since Ŷ At 2 FAt � FBt , and

E
h
LinLin

�
Yt; Ŷ

A
t

�i
� E

h
LinLin

�
Yt; Ŷ

B
t

�i
by the LIE. The only way that this also satisfy the

assumption that LinLin�B � LinLin�A is if E
h
LinLin

�
Yt; Ŷ

A
t

�
jFBt

i
= E

h
LinLin

�
Yt; Ŷ

B
t

�
jFBt

i
a:s: 8t. Let cY it = n

ŷ : � = F it

�
Ŷ it

�o
, for i 2 fA;Bg : This accommodates the fact that we do

not assume that F it ; for i 2 fA;Bg ; is strictly increasing, and so the �-quantile is not necessarily

unique. The necessity and su¢ ciency of GPL loss (which includes LinLin loss) for quantile estima-

tion, implies that this set can alternatively be de�ned as cY it = argminŷ2 bY E
�
LinLin (Yt; ŷ)j F it

�
:

Thus E
h
LinLin

�
Yt; Ŷ

A
t

�
jFBt

i
= E

h
LinLin

�
Yt; Ŷ

B
t

�
jFBt

i
a:s: 8t implies that Ŷ At 2 cYBt 8t and

so cYAt \ cYBt 6= ? 8t: This violates Assumption 1, leading to a contradiction. Thus LinLin�B �

LinLin�A ) FBt � FAt 8t: Next: Let

�Lj � E
h
LGPL

�
Yt; Ŷ

j
t ;�; g

�i
, j 2 fA;Bg

where LGPL (�; �;�; g) is a GPL loss function de�ned by g; a nondecreasing function. Under Assump-

tions (2)-(3) we know that Ŷ jt is the solution to minŷ E
h
LGPL

�
Yt; Ŷ

j
t ;�; g

�
jF jt
i
: It is straight-

forward to show that Ŷ jt then satis�es � = E
h
1
n
Yt � Ŷ jt

o
jF jt
i
: This holds for all possible (condi-

tional) distributions of Yt; and from Saerens (2000) and Gneiting (2011b) we know that this implies

(by the necessity of GPL loss for optimal quantile forecasts) that Ŷ jt then moreover satis�es

Ŷ jt = argmin
ŷ

E
h
(1 fYt � ŷg � �) (g (ŷ)� g (Yt)) jF jt

i
for any nondecreasing function g: If FBt � FAt 8t then by the LIE we have �LB (g) � �LA (g) for any

nondecreasing function g:

(b)(i) We �rst consider the case of non-nested information sets (violating Assumption 1). Con-

sider the following simple example:

Y = X + Z (29)

where X s Unif (0; 10) , Z s Tri (0; 12) ; X??Z
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Let � = 1
2 ; and assume that forecast A conditions on X and forecast B conditions on Z: Then:

Ŷ a = X +Median [Z] = X + 0:45, since Median [Z] = 12� 6
p
2 � 3:51 (30)

Ŷ b = Z +Median [X] = Z + 2:5, since Median [X] = 5 (31)

Next consider the GPL loss functions generated by g1 (y) = y and g2 (y) = y3: Notice that both Ŷ a

and Ŷ b are median-unbiased forecasts, which simpli�es the calculation of their expected loss.

�LA (g1) � E
h�
1
n
Y � Ŷ a

o
� 1=2

��
Ŷ a � Y

�i
(32)

=
1

2
E [Y ]� E

h
1
n
Y � Ŷ a

o
Y
i

where E [Y ] = E [X] + E [Z] (33)

and E
h
1
n
Y � Ŷ a

o
Y
i
= E [1 fX + Z � X +Mzg (X + Z)] (34)

= E [1 fZ �Mzg]E [X] + E [1 fZ �MzgZ] , since X??Z

=
1

2
E [X] + E [1 fZ �MzgZ] , since E [1 fZ �Mzg] = 1=2

We �nd an analogous expression for the other forecaster:

�LB (g1) =
1

2
E [Y ]� E

h
1
n
Y � Ŷ b

o
Y
i

(35)

=
1

2
E [Y ]�

�
1

2
E [Z] + E [1 fX �MxgX]

�
Next consider the loss GPL function obtained when g2 (y) = y3:

�LA (g2) � E
��
1
n
Y � Ŷ a

o
� 1=2

���
Ŷ a
�3
� Y 3

��
(36)

=
1

2
E
�
Y 3
�
� E

h
1
n
Y � Ŷ a

o
Y 3
i

E
�
Y 3
�
= E

h
(X + Z)3

i
= E

�
X3
�
+ 3E

�
X2
�
E [Z] + 3E [X]E

�
Z2
�
+ E

�
Z3
�
(37)

E
h
1
n
Y � Ŷ a

o
Y 3
i
= E [1 fZ �Mzg]E

�
X3
�
+ 3E [1 fZ �MzgZ]E

�
X2
�

(38)

+3E
�
1 fZ �MzgZ2

�
E [X] + E

�
1 fZ �MzgZ3

�
Pulling these terms together and using the expressions for these moments given above, we �nd:

�LA (g1) = 1:17 < 1:25 = �LB (g1) (39)

�LA (g2) = 350:45 > 349:38 = �LB (g2) (40)
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Thus the ranking is reversed depending on the choice of function g. Note that while the di¤erences

in these values may appear small, these are analytical population values, and so there is no sampling

or simulation variability.

(ii) Next we consider the case that both forecasters use correctly speci�ed models, given their

(nested) information sets, but they are subject to estimation error. Assume that

Y = X + Z (41)

X s Unif (�10; 0) , Z s Unif (0; 12) , X??Z

Assume that forecaster A uses no conditioning information, and so reports her optimal forecast as:

Ŷ a =Median [Y ] = 1 (42)

Forecaster B uses information on Z; but to exploit it must estimate Median [X] : He treats that as

an unknown parameter and assume that he estimates it using n = 1 observation of X. Forecaster

B�s prediction will then be

Ŷ b = ~X + Z (43)

where ~X is a realization from a Unif (L; 0) distribution, independent of (X;Z) : This design allows

for a signal/noise trade-o¤: In this design we �nd that:

�LA (g1) � E
h�
1
n
Y � Ŷ a

o
� 1=2

��
Ŷ a � Y

�i
(44)

= E [(1 fY �Myg � 1=2) (My � Y )]

= MyE [1 fY �Myg]� E [1 fY �MygY ]� 1=2 (My � E [Y ])

For forecaster B we �nd:

�LB (g1) � E
h�
1
n
Y � Ŷ b

o
� 1=2

��
Ŷ b � Y

�i
(45)

= E
h�
1
n
X + Z � ~X + Z

o
� 1=2

��
~X + Z �X � Z

�i
= E

h
1
n
X � ~X

o�
~X �X

�i
� 1=2

�
E
h
~X + Z � Y

i�
, note E

h
~X + Z � Y

i
= 0

= E
h
1
n
X � ~X

o
~X
i
� E

h
1
n
X � ~X

o
X
i

= E
h
E
h
1
n
X � ~X

o
j ~X
i
~X
i
� E

h
E
h
1
n
X � ~X

o
jX
i
X
i

= E
h
Fx

�
~X
�
~X
i
� E [(1� Fx (X))X]

= 2E [Fx (X)X]� E [X] , since ~X
d
= X
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And for the second loss function we obtain:

�LA (g2) � E
��
1
n
Y � Ŷ a

o
� 1=2

���
Ŷ a
�3
� Y 3

��
(46)

= E
�
(1 fY �Myg � 1=2)

�
M3
y � Y 3

��
= M3

yE [1 fY �Myg]� E
�
1 fY �MygY 3

�
� 1=2

�
M3
y � E

�
Y 3
��

and

�LB (g2) � E
��
1
n
Y � Ŷ b

o
� 1=2

���
Ŷ b
�3
� Y 3

��
(47)

= E
��
1
n
X + Z � ~X + Z

o
� 1=2

���
~X + Z

�3
� (X + Z)3

��
= E

�
1
n
X � ~X

o��
~X + Z

�3
� (X + Z)3

��
� 1=2

�
E
��
~X + Z

�3�
� E

h
(X + Z)3

i�
= E

h
1
n
X � ~X

o�
~X3 + 3 ~X2Z + 3 ~XZ2 �X3 � 3X2Z � 3XZ2

�i
= E

h
1
n
X � ~X

o
~X3
i
� E

h
1
n
X � ~X

o
X3
i

+3E [Z]
�
E
h
1
n
X � ~X

o
~X2
i
� E

h
1
n
X � ~X

o
X2
i�

+3E
�
Z2
� �
E
h
1
n
X � ~X

o
~X
i
� E

h
1
n
X � ~X

o
X
i�

Then we use, for p = 1; 2; 3 :

E
h
1
n
X � ~X

o
~Xp
i
= E

h
E
h
1
n
X � ~X

o
j ~X
i
~Xp
i
= E [Fx (X)Xp] , since ~X d

= X (48)

E
h
1
n
X � ~X

o
Xp
i
= E

h
E
h
1
n
X � ~X

o
jX
i
Xp
i
= E [(1� Fx (X))Xp]

= E [Xp]� E [Fx (X)Xp] (49)

And so

�LB (g2) = 2E
�
Fx (X)X

3
�
� E

�
X3
�

(50)

+3E [Z]
�
2E
�
Fx (X)X

2
�
� E

�
X2
��

+3E
�
Z2
�
(2E [Fx (X)X]� E [X])

For X s Unif (L;U) we have:

E [Fx (X)X] =
L+ 2U

6
(51)

E
�
Fx (X)X

2
�
=

L2 + 2LU + 3U2

12
(52)

E
�
Fx (X)X

3
�
=

L3 + 2L2U + 3LU2 + 4U3

20
(53)

9



Pulling these terms together, we �nd that

�LA (g1) = 1:85 > 1:67 = �LB (g1) (54)

�LA (g2) = 72:65 < 90 = �LB (g2) (55)

Thus the ranking is reversed depending on the choice of function g.

(iii) Finally, we consider a violation assumption 3, and consider models that are misspeci�ed.

We will simplify the DGP, and assume that

Y = X s Unif (0; 10) (56)

We will assume that the two forecasters use misspeci�ed models, in that they use a linear model

with parameters that di¤er from (0; 1):

Ŷ a = �0 + �1X (57)

Ŷ b = 0 + 1X (58)

Of course here we cannot use the simplifcation that holds when the forecasts are median unbiased.

In this example, if we set (�0; �1) = (0:33; 0:67) and (0; 1) = (�0:25; 1:25) then both forecasts use

the same information set, neither has estimation error, but both are based on misspeci�ed models.

In this case we �nd:

�LA (g1) � E
h�
1
n
Y � Ŷ a

o
� 1=2

��
Ŷ a � Y

�i
(59)

= E [(1 fX � �0 + �1Xg � 1=2) (�0 + �1X �X)]

= �0E [1 f(1� �1)X � �0g]�
�0
2
� �1 � 1

2
E [X]

+ (�1 � 1)E [1 f(1� �1)X � �0gX]

E [1 f(1� �1)X � �0g] =

8>>><>>>:
Fx

�
�0
1��1

�
; �1 < 1

1� Fx
�

�0
1��1

�
; �1 > 1

1 f�0 � 0g ; �1 = 1

(60)

E [1 f(1� �1)X � �0gXp] =

8>>><>>>:
E
h
1
n
X � �0

1��1

o
Xp
i
; �1 < 1

E [Xp]� E
h
1
n
X � �0

1��1

o
Xp
i
; �1 > 1

1 f�0 � 0gE [Xp] ; �1 = 1

(61)

The same expressions can be used for �LB (g1) plugging in (0; 1) for (�0; �1) : We use p = 1 for

the �rst GPL loss function above, and p = 1; 2; 3 for the second, below.

10



Next consider

�LA (g2) � E
��
1
n
Y � Ŷ a

o
� 1=2

���
Ŷ a
�3
� Y 3

��
(62)

= E
h
1 f(1� �1)X � �0g

�
(�0 + �1X)

3 �X3
�i
� 1=2E

h
(�0 + �1X)

3 �X3
i

= �30E [1 f(1� �1)X � �0g] + 3�20�1E [1 f(1� �1)X � �0gX]

+3�0�
2
1E
�
1 f(1� �1)X � �0gX2

�
+
�
�31 � 1

�
E
�
1 f(1� �1)X � �0gX3

�
�1=2

�
�30 + 3�

2
0�1E [X] + 3�0�21E

�
X2
�
+
�
�31 � 1

�
E
�
X3
��

The same expressions can be used for �LB (g2) plugging in (0; 1) for (�0; �1) : Pulling these terms

together, we �nd that

�LA (g1) = 0:68 > 0:51 = �LB (g1) (63)

�LA (g2) = 79:44 < 100:19 = �LB (g2) (64)

Thus the ranking is reversed depending on the choice of function g.

We have thus demonstrated analytically that the presence of any of non-nested information sets,

estimation error, or model misspeci�cation can lead to sensitivity in the ranking of two quantile

forecasts to the choice of consistent (GPL) loss function.

Proof of Proposition 6. (a) We again prove this result by showing that E
�
L
�
FAt ; Yt

��
�

E
�
L
�
FBt ; Yt

��
for some L 2 LProper ) FBt � FAt 8t ) E

�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
8 L 2

LProper: First: we are given that E
�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
; and assume that FAt � FBt 8t:

Under Assumptions (2)-(3), this implies that we can take FBt as the data generating process for Yt:

Then E
�
L
�
FBt ; Yt

�
jFBt

�
= EFBt

�
L
�
FBt ; Yt

�
jFBt

�
� EFBt

�
L
�
FAt ; Yt

�
jFBt

�
8t the propriety of L: By

the LIE this implies E
�
L
�
FBt ; Yt

��
� E

�
L
�
FAt ; Yt

��
; which can only hold if E

�
L
�
FBt ; Yt

�
jFBt

�
=

E
�
L
�
FAt ; Yt

�
jFBt

�
a:s: 8t; but since L is a strictly proper scoring rule this implies FAt = FBt a:s:8t

which violates Assumption 1, leading to a contradiction. Thus E
�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
for

some L 2 LProper ) FBt � FAt 8t: Next, using similar logic to above, given FBt � FAt we have

that E
�
L
�
FAt ; Yt

��
� E

�
L
�
FBt ; Yt

��
for any L 2 LProper; completing the proof.

11



(b)(i) We �rst consider the case of non-nested information sets (violating Assumption 1). Con-

sider the following example:

Y = ��2A� �1 (1�A) + �1B + �2 (1�B) (65)

A s Bernoulli (p)

B s Bernoulli (q) , B??A

�2 > �1 > 0

The indicator, A reveals whether the left �tail�will be long or short, and B reveals whether the

right tail will be long or short. Forecaster A observes the signal A and forecaster B observes signal

B; i.e., each forecaster only gets information about a single tail (left or right). Then we �nd:

E [wCRPS (FA; Y; !)] = pq (1� q)
Z 0

�1��2
! (z) dz + q (1� p) (1� q)

Z �2��1

0
! (z) dz (66)

E [wCRPS (FB; Y; !)] = pq (1� p)
Z 0

�1��2
! (z) dz + p (1� p) (1� q)

Z �2��1

0
! (z) dz

The two proper scoring rules we consider (equation 33) place di¤erent weights on the left vs. right

tails using the logistic function:

! (z; a) =
1

1 + exp f�azg (67)

When a > 0 more weight is placed on the right tail, and when a < 0 more weight is placed on the

left tail. We then compute the integrals, setting !R (z) = ! (z; +1) and !L (z) = ! (z;�1)Z 0

�1��2
!R (z) dz =

Z �2��1

0
!L (z) dz = �2 + log 2� log (exp f�2g+ exp f�1g) (68)Z �2��1

0
!R (z) dz =

Z 0

�1��2
!L (z) dz = log

�
1

2
(1 + exp f�2 � �1g)

�
With these in hand, if we set (p; q; �1; �2) = (0:25; 0:75; 1; 5) we �nd:

E [wCRPS (FA; Y ;!R)] = 0:50 > 0:25 = E [wCRPS (FB; Y ;!R)] (69)

E [wCRPS (FA; Y ;!L)] = 0:25 < 0:50 = E [wCRPS (FB; Y ;!L)] (70)

And so the ranking of these two distribution forecasts can be reversed depending on the choice of

(proper) scoring rule.

(ii) Next, we consider a violation assumption 3, and consider models that are misspeci�ed.

In this case, consider the case where forecaster A uses the unconditional distribution of the target

12



variable, while forecaster B continues to use her signal, but based on ~p 6= p: If we set (p; q; �1; �2; ~p) =

(0:25; 0:75; 1; 5; 0:5) we �nd

E
�
wCRPS

�
�FA; Y ;!R

��
= 0:61 > 0:33 = E

h
wCRPS

�
~FB; Y ;!R

�i
(71)

E
�
wCRPS

�
�FA; Y ;!L

��
= 0:61 < 0:67 = E

h
wCRPS

�
~FB; Y ;!L

�i
(72)

And so the ranking of these two distribution forecasts can be reversed depending on the choice

of (proper) scoring rule. (Note that E
�
wCRPS

�
�FA; Y ;!R

��
= E

�
wCRPS

�
�FA; Y ;!L

��
as the

distribution forecast
�
�FA
�
is symmetric around zero, and the weighting functions satisfy !R (z) =

!L (�z).)

(iii) Finally, we consider the case that both forecasters use correctly speci�ed models, given their

(nested) information sets, but are subject to estimation error. Consider the case that forecaster A

again uses the unconditional distribution of the target variable, while forecaster B uses her signal,

but to do so must estimate the parameter p: Assume she does so based on n observations of the

signal A: (Note that since forecaster B observes the signal B; the value for A can be backed out,

ex post, from the realized value of the target variable.) Then

np̂ =
nX
i=1

Ai s Binomial (n; p) (73)

In this case, we have:

E
h
wCRPS

�
F̂B (p̂) ; Y ;!

�i
=
X
~p

E
h
wCRPS

�
~FB (~p) ; Y ;!

�i
Pr [p̂ = ~p] (74)

and we can use the expressions from part (ii) to help solve this problem. Consider the case that

n = 4; and so p̂ can take one of �ve values f0; 1=4; 1=2; 3=4; 1g : In this case we �nd

E
�
wCRPS

�
�FA; Y ;!R

��
= 0:61 > 0:31 = E

h
wCRPS

�
F̂B (p̂) ; Y ;!R

�i
(75)

E
�
wCRPS

�
�FA; Y ;!L

��
= 0:61 < 0:62 = E

h
wCRPS

�
F̂B (p̂) ; Y ;!L

�i
(76)

And so the ranking of these two distribution forecasts can be reversed depending on the choice of

(proper) scoring rule.
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Appendix SA.2: Derivations

The results below draw on the following lemma, which summarizes some useful results on

moments that arise when the data are Gaussian and the loss function is exponential Bregman.

Lemma 1 If X s N
�
�; �2

�
and (a; b) 2 R2, then

(i) E [exp fa+ bXg] = exp
�
a+ b�+ 1

2b
2�2
	

(ii) E [exp fa+ bXgX] = exp
�
a+ b�+ 1

2b
2�2
	 �
�+ b�2

�
(iii) E

�
exp fa+ bXgX2

�
= exp

�
a+ b�+ 1

2b
2�2
	�
�2 +

�
�+ b�2

�2�
(iv) E

�
exp fa+ bXgX3

�
= exp

�
a+ b�+ 1

2b
2�2
	 �
�+ b�2

� �
3�2 +

�
�+ b�2

�2�

Some results below are simpli�ed if we consider the following de�nition:

De�nition 1 A forecast Ŷ it is �mean unbiased� if Ŷ
i
t = E

�
YtjF it

�
a.s.

By the law of iterated expectations, this implies that E
h
YtjŶ it

i
= Ŷ it a:s. Note that this does

not require that F it contains all relevant information for forecasting Yt; only that that Ŷ it optimally

uses all information available in F it :

Appendix SA.2.1: Derivations for the AR(p) models in Section 2.2

The Gaussian AR(5) speci�cation in equation (12) implies:h
Yt Yt�1 Yt�2 Yt�3 Yt�4

i0
s N (��5;�) (77)

where �5 is a (5� 1) vector of ones, � is the mean of Yt and � is the covariance matrix of the

left-hand side vector. These can be obtained using standard methods from time series analysis, see

Hamilton (1994) for example).

Let � � [�1; �2; :::; �5]
0 (78)

then � =
�0

1� �0�5
; and vec (�) = (I25 � (F 
 F ))�1 vec (Q)

where F =

24 �0

I4 04�1

35 , Q = e1e01, e1 � [1; 0; 0; 0; 0]0
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Then note that the joint distribution of (Yt; Yt�1) is

[Yt; Yt�1]
0 s N (��2;�2) (79)

where �2 �

24 0 1

1 0

35 , and j � Cov [Yt; Yt�j ] , for j = 0; 1; 2; :::

Denote �j � j=0: Then the conditional distribution of YtjYt�1 is:

YtjYt�1 s N
�
� (1� �1) + �1Yt�1; 0

�
1� �21

��
(80)

and so for the parameters used in the example we �nd [�0; �1] = [� (1� �1) ; �1] = [1:52; 0:85].

Similar calculations for the AR(2) model yield:

[Yt; Yt�1; Yt�2]
0 s N (��3;�3) (81)

where �3 �

26664
0 1 2

1 0 1

2 1 0

37775 (82)

Ytj (Yt�1; Yt�2) s N (�0 + �1Yt�1 + �2Yt�2; VAR2)24 �1
�2

35 =
1

20 � 21

24 1 (0 � 2)
02 � 21

35 , �0 = � (1� �1 � �2)

VAR2 = 0 �
h
1 2

i24 0 1

1 0

35�1 24 1
2

35 = 0 �21 + �22 � 2�21�21� �21
(83)

And for the parameters used in the example we �nd [�0; �1; �2] = [1:38; 0:76; 0:10] :

Now we derive the expected loss for the AR(1), AR(2) and AR(5) forecasts. First note that

since all three of these forecasts are mean-unbiased, the expected loss of any Bregman loss function

simpli�es to:

E
h
L
�
Yt; Ŷt;�

�i
= E [� (Yt)]�E

h
�
�
Ŷt

�i
�E

h
�0
�
Ŷt

��
E
h
YtjŶt

i
� Ŷt

�i
= E [� (Yt)]�E

h
�
�
Ŷt

�i
:

(84)

For exponential Bregman loss, where � (Y ; a) = 2a�2 exp faY g, Lemma 1 implies

E [� (Yt)] = 2a�2E [exp faYtg] = 2a�2 exp
na
2
(2�+ a0)

o
(85)

To obtain E
h
exp

n
aŶt

oi
for the AR(1), AR(2) and AR(5) forecasts, we exploit the fact that

for this Gaussian autoregression, all of these forecasts are unconditionally normally distributed:
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Ŷ ARkt s N (�; VARk), where [VAR1; VAR2; VAR5] =
�
�210 ; �

2
1�0 + �

2
2�0 + 2�

2
1�2 ; 0 � 1

�
: Thus we

�nd

E
h
�
�
Ŷ ARkt

�i
= 2a�2E

h
exp

n
aŶ ARkt

oi
= 2a�2 exp

na
2
(2�+ aVARk)

o
from Lemma 1. The expected loss from an AR (k) forecast is

E
h
L
�
Yt; Ŷ

ARk
t ;�

�i
= 2a�2

�
exp

na
2
(2�+ a0)

o
� exp

na
2
(2�+ aVARk)

o�
! 0 � VARk as a! 0

Note that we know that VAR1 � VAR2 � VAR5 and so we immediately see that the ranking un-

der MSE (i.e., exponential Bregman with a ! 0) is E
h
L
�
Yt; Ŷ

AR1
t

�i
� E

h
L
�
Yt; Ŷ

AR2
t

�i
�

E
h
L
�
Yt; Ŷ

AR5
t

�i
:

Appendix SA.2.2: Derivations for the Bernoulli forecasters in Section 2.2

Since Ŷ Xt and Ŷ Wt are both optimal with respect to their limited information, they are both

�mean unbiased�and so their expected Bregman loss simpli�es to 2a�2
�
E
h
exp faYtg � exp

n
aŶt

oi�
:

For this DGP we easily �nd:

E [exp faYtg] = exp

�
a2

2
+ a (�L + �C)

�
pq + exp

�
a2

2
+ a (�H + �C)

�
(1� p) q (86)

+exp

�
a2

2
+ a (�L + �M )

�
p (1� q) + exp

�
a2

2
+ a (�H + �M )

�
(1� p) (1� q)

E
h
exp

n
aŶ Xt

oi
= exp fa (�L + q�C + (1� q)�M )g p+ exp fa (�H + q�C + (1� q)�M )g (1� p)

E
h
exp

n
aŶ Wt

oi
= exp fa (p�L + (1� p)�H + �C)g q + exp fa (p�L + (1� p)�H + �M )g (1� q)

Figure 2 normalizes the expected loss from forecast X and W by the optimal forecast, using both

signals:

Ŷ XWt = Xt�L + (1�Xt)�H +Wt�C + (1�Wt)�M (87)

which leads to

E
h
exp

n
aŶ XWt

oi
= exp fa (�L + �C)g pq + exp fa (�H + �C)g (1� p) q (88)

+exp fa (�L + �M )g p (1� q) + exp fa (�H + �M )g (1� p) (1� q)
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Appendix SA.2.3: Derivations for the linear model in Section 2.3

The �rst-order condition for the optimal parameter � � [�; �] is:

0 =
@

@�
E [L (Y;m (X; �) ;�)]

= E
�
�00 (m (X; �)) (E [Y jX]�m (X; �)) @m (X; �)

@�

�
(89)

= 2E
�
exp fa (�+ �X)g

�
X2 � �� �X

�
[1; X]0

�
So the two �rst-order conditions are:

0 = E
�
exp fa (�+ �X)gX2

�
� �E [exp fa (�+ �X)g]� �E [exp fa (�+ �X)gX] (90)

0 = E
�
exp fa (�+ �X)gX3

�
� �E [exp fa (�+ �X)gX]� �E

�
exp fa (�+ �X)gX2

�
(91)

Using Lemma 1 above we have each of the four unique terms above in closed form. Substituting

these in and solving for solving for [�; �] yields the expressions given in equation (25).
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