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This supplemental appendix contains two parts. Appendix SA.1 contains proofs of the propo-
sitions presented in the main paper. Appendix SA.2 contains derivations used in the analytical

results presented in the paper.
Appendix SA.1: Proofs

Proof of Proposition 1(a). We will show that under Assumptions (1)—(3), MSEp >
MSEs = FP C FAVt = E [L (YthBﬂ > E [L (YthAﬂ VL € LBregman.

N2
For the first implication: Assume that .7-"{4 - .7-"tB Vt. This implies E [(Yt - Y;A> ].7-}3] >
Y N2 . A\ 2 N2
E [(Yt —YtB) \]—“tB] a.s.t since YA € FA C FP. Then E {(Y; - Y;“) ] > [(Yt —YtB) ] by
the law of iterated expectations (LIE). The only way that this can also satisfy the first assump-
~ 2
tion that MSEp > MSFE 4 is under equality: MSEg = MSFE4. Since E [(Yt fYtA) |.7:tB] >

N2
E [(Yt -Yp ) |}}B] a.s.Vt, equality of (unconditional) MSEs can only obtain under equality of

2 R
conditional MSEs at each point in time, i.e. E [(Yt — Y;A> ftB] =E [(Yt — Y;B) \.’Ff] a.s.Vt,
which in turn can only hold if Y, = Y;# a.s.Vt, violating the “not identical” part of Assumption (1).
Thus we have a contradiction, and so under Assumptions (1)-(3), MSEp > MSE, = FP C FA vt.

Now consider the second implication: Let

Vi=Y4n=Y"+n+a (15)
Then
B[ (v 7) £ (1 75)] = B[6 (7)o (3) mt 0 (72) + 6 () e 0]
- s[o() -0 () w0
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since B [(;5' (Yf‘) nt} =E [(ﬁ’ (Y;A> E [nt]]-"{‘]] by the LIE and E [n,|F{'] = 0, by Assumptions (2)-

(3). Similarly for B [¢' (fftB (n, +&1)| . Next, consider the second-order mean-value expansion:
o (V) =0 (V) - o (V) e+ 0" (V1) 22 ()
where YA = \NYA+ (1—X\)YE, for A, €[0,1]. Thus
i (i) -2 (5] =3[0 ()] 3 (W) ) <o

since [ [gzﬁ' (Yf) 5,5] = 0 and ¢ is convex. Andso FP C FAVt = E [L (Yt,fﬁB)} >F [L (Y},Yf‘)} VL €

EBTegman . n

Proof of Proposition 2. First we note that

B0 (vi¥isa)] = 5 (Bles oyt - B [ewp {a¥/ }])
= % (exp {% (a02 + 2#)} — exp {g (aw? + 21“)})

— 0" —wj asa— 0.

where the first equality holds under mean-unbiasedness (assumption (ii)) and the second follows
from normality of the target variable and the forecast (assumption (i)). The last line implies
that whichever forecast is based on the richest information set, leading to the greatest (optimal)
variability in the forecast (w?), will have the lowest MSE loss. Then note that for non-MSE
exponential Bregman loss (i.e., for a # 0), that if E [L (Y},}AQA;LL)] > E [L (Yt,f/tB;a)] , then
exp{% (aw124+2u)} < exp{% (anB +2,u)} and so w?q < wQB and thus MSE4 > MSEg. The

converse holds using the same derivations, proving the proposition. m

Proof of Proposition 3(a). The first-order condition for the optimization is:

0
%E

[L(Ye,m (X150) 5 0)]

=0,
- oo ) )

= B¢ (m (Xs0;)) (BYiIF) - m (X050;)) W




where the last equality holds by the LIE. Note that the first-order condition is satisfied when
@; = 6y by assumption (i), and the solution is unique since ¢ is strictly convex and dm/96 # 0 a.s.

by assumption (ii). m

Proof of Proposition 5. (a) The first-order condition for an optimal forecast based on a

convex combination of Bregman and GPL/2 loss is:
0= 2" (V) (Ba [¥i] = V) + (1= N) (B [1{vi < ¥ }] = 1/2) o (V)

using the assumption that F}* is continuous. Then note that E;_1 [1{Y; < g}] = FY (9), and recall
that F}* is symmetric, which implies that E;_; [Y;] = Median,—1 [Y;] and that F} (B, [Y;]) = 1/2.
Thus ?}* = E;_1 [Y¢] is a solution to the optimization problem, and this solution is unique as ¢ is
strictly convex and g is strictly increasing.

(b) From the proofs of Propositions 1(a) and 4(a), we know that under Assumptions (1)—(3)
we have MSEp > MSE4 = FP C FA VYt and MAEg > MAEs = FP C FA Vt, and that
FBECFAVt=>E [L (YthBﬂ > [L (YthAﬂ VIe {LBWW” , ,cg/;L}. This immediately
yields 7P C FA VLt = E [L (Yt,YtBﬂ >E {L (Yt,f/tAﬂ for any L € Lpregxapr since A € [0,1].

(c) The proof of this negative result requires only an example. This can be constructed using
methods similar to those for Propositions 1(b) and 4(b), and is omitted in the interest of brevity.



The proofs of Propositions 4 and 6 below use the following results on uniform random variable,

and a “triangular” random variable with a mode at L and a PDF that declines linearly to zero at

U>L.
Uniform random variable “Triangular” random variable

X ~ Unif (L,U) Z ~Tri(L,U) (1)

0, z <L 0, z<L
Fo(@)={ 2L  :e[LU] F.(s) = 37, z€lLU] (2)

1, z>U 1, z>U

1 2(U—x)
) E[LaU} _71)2» G[L7U]
fo(z)=4q 7" fa(z)=q @0 (3)
0 else 0 else
F'(a)=L+a(U-1L), foracl01] F'(a)=U-(U~-L)V/1—a, for a€0,1] (4)
E[X]=3(U+L) E[Z]=1(2L+U) (5)
E[X? =3 (L2+U?*+LU) E[Z?%] = § (3L% 4+ 2LU + U?) (6)
E[X3] = ; (L*+ U + L?U + LU?) E [Z3] = {5 (AL® + 3L*U + 2LU? + U®) (7)
M, = Median [X] = 1 (U + L) M, = Median[Z2] = U — "7¢ (8)
277_o13_ 12 _
E[1{X < b} X] = Jolyy, for be [L,U] | B[1{Z<b} 2] =" 2;(U_LL)(§U 2L for be [L, U] (9)
3 403U —3b*—L3(4U—-3L
E[1{X <b} X2 = f-L) B [1{Z < b} 2?] = OG0 (10)
414 564U —4b5 —L*(5U—4L

B [1 (X<t} Xg] - 4b(U—LL) [ {Z<0b} ZS] 10(U- L() : (11)

U(v2-1)+L(4-v2
E[1{X < M,} X] = 3L4U E[1{Z < M.} 7] = T2 UH0=v2) (12)
E[1{X < M,} X?] = W E[1{Z< M}7% = 9L2+2LU(774\§2+U2(8\/5711) (13)

(BL+U)(5L2+2LU+U? 2L3(8—+/2)+3L%U(2v2-1

B[1{X < M} X?) = SLOCLRIU) | g1y 17 < 6, 28] = 2EBV2I0 (V) (14)

2LU?(19-13v2)+U®(22v2-31)
40

_l’_




Part of the proof of Proposition 4(b)(ii) below uses the distribution of Y = X + Z, where
X ~ Unif(L,0) and Z ~ Unif (0,U), where L < 0 < |L| < U. This variable has the following

properties:

And then

0,2 y<L ¢ y-L
L— —LU>
Loyl y € [L,0] R
ol ye0,L+U] and fi(z)=9
LU (U—y)? =IU
LUy e L+ U, U .
1, y>U C
L+ /2a|L|U, a€ [0, 5]
sL+al, a € [gf, B
V2= Q)[L[T, e [H55,1]
1
BlY] = 5(L+U)
1
E[Y?] = 2 (20%+3LU +2U7)
1
E[Y?] = = (L®+2L°U+2LU%+U?
(V7] 7 (L7 + 200 +2LU° + U°)
1
M, = Medicm[Y]:f(L—i—U)
EQ{Y <M}V] = — 6L—L—2+3U
- Y1 U
L+U)*—2L?
E[1{Y < M,} Y7 oY
5(L+U)*—16L4
E[1{Y <M,}Y3] =
(LY < My} Y7 320U

y € [L,0]
y €1[0,L+ U] (19)
ye[L+U,Uj
else

(20)
(21)
(22)
(23)
(24)
(25)
(26)

Analogous to the mean case, define an “a-quantile unbiased” forecast as one which satisfies:

E[1{Y

gf/}]f/}:a

Note that for an a-quantile unbiased forecast we have:

)

E[({Y
Bl (V) (1
Bls (7)

aBlg (V)] -

{Y

(v
(®[r
E[1{Y

o) (0(5) a01)
r<5) ol -

(27)



Holzmann and Eulert (2014) present a different proof of part (a) of Proposition 4 below. I

present the following for comparability with the conditional mean case presented in Proposition 1.

Proof of Proposition 4. (a) We will show that under Assumptions (1)-(3), LinLin% >
LinLing = FP C F{' vt = B[L (Y, VP)| > B[L (¥, ¥/)] VL € £&p,, where LinLing
E {LmLm (Yt, )} for j € {A, B} and LinLin is the “Lin-Lin” loss function in equation (27).

First: we are given that LinLin% > LinLing, and assume that FA C FP vt. This im-
plies E [LmLm (Yt, ) |.7-"B] > E [LmLm (Yt,Yt ) |ftB} a.s. Vt, since YA € F € FP, and
E {LinLin (Yt, Y, )] > E [LinLin (Yt, Y, )} by the LIE. The only way that this also satisfy the
assumption that LinLing > LinLin% is if E [LmLm <Y}, ) P ] =E {LmLm (Yt, ) \FB ]
a.s. Vt. Let yg = {g} ca=F} (YZ) }, for i € {A, B} . This accommodates the fact that we do
not assume that F}, for i € {A, B}, is strictly increasing, and so the a-quantile is not necessarily
unique. The necessity and sufficiency of GPL loss (which includes LinLin loss) for quantile estima-
tion, implies that this set can alternatively be defined as yt = arg mlny E [LmLm (Y2, 9)| ]:,f] .
Thus E [LmLm (Yt,Yt ) |ftB} —E [LmLm (Yt,Yt ) |ftB] a.s. ¥t implies that VA € VB vt and
SO J/Jt‘\“ N 3/723 # @ Vt. This violates Assumption 1, leading to a contradiction. Thus LinLing >
LinLin% = FP C F{* Vt. Next: Let

II=E [LGPL (}Q,ﬁj;a,g)} , je{A B
where Lgpr, (¢, +; @, g) is a GPL loss function defined by g, a nondecreasing function. Under Assump-
tions (2)-(3) we know that Y7 is the solution to ming [ [LGPL (Y}, v/ oz,g) |.7-"tj] . It is straight-
forward to show that Y7 then satisfies a = B {1 {Yt <Y/ } |} ] . This holds for all possible (condi-

tional) distributions of Y;, and from Saerens (2000) and Gneiting (2011b) we know that this implies

(by the necessity of GPL loss for optimal quantile forecasts) that ?tj then moreover satisfies
¥ = argmin B[(1{Y <9} ~ ) (9.(3) ~ () |77
for any nondecreasing function g. If 7 C F/ Vt then by the LIE we have LZ (g) > L4 (g) for any
nondecreasing function g.
(b)(i) We first consider the case of non-nested information sets (violating Assumption 1). Con-
sider the following simple example:
Y = X+Z7 (29)

where X ~ Unif(0,10), Z ~Tri(0,12), X127



Let a = %, and assume that forecast A conditions on X and forecast B conditions on Z. Then:

Ve = X 4 Median[Z] = X +0.45, since Median [Z] = 12 — 6v/2 ~ 3.51 (30)

Y? = Z+4 Median[X] = Z + 2.5, since Median [X] =5 (31)

Next consider the GPL loss functions generated by g1 (y) = y and g2 () = 3. Notice that both ye

and Y? are median-unbiased forecasts, which simplifies the calculation of their expected loss.

Lalg) = E[(1{Ygiﬂl}—1/2) (f/a—y)} (32)
_ %E[Y]—E[l{YgY“}Y]
where E[Y] = E[X]+E[Z] (33)
and E[1{Y§?G}Y] = BEL{X+Z<X+M}X+2) (34)

= ER{Z<MME[X]+E[1{Z <M.} 7], since X1Z

_ %E[X]JFE[l{ZSMZ}Z], since B[1{Z < M,}] = 1/2

We find an analogous expression for the other forecaster:

Ip(g) = éE V] - B [1 {Y < f/b}y} (35)
- %E v]— GE 7]+ B[1{X < MI}X])

Next consider the loss GPL function obtained when gs (y) = 33.

Lalgs) = E[(l{YﬁY“}—lﬁ) ((Y“)g—r"ﬂ (36)
_ %E[Y?’}—E[l{yg?a}ifﬂ

B[(X +2)*| =B [X?] + 3E [X*] E[2] + 3B [X]E [2%] + B[2%)(37)

=
~
9
Il

E [1 {y < f/a} ys} — B1{Z < M}YE[X? +3E[1{Z < M.} Z|E [X?] (38)

+3E[1{Z < M.} Z?|E[X]+E [1{Z < M.} Z°]

Pulling these terms together and using the expressions for these moments given above, we find:

La(gr) = 117<1.25=Lg(q) (39)

La(g2) = 350.45 > 349.38 = L (g2) (40)



Thus the ranking is reversed depending on the choice of function g. Note that while the differences
in these values may appear small, these are analytical population values, and so there is no sampling
or simulation variability.

(ii) Next we consider the case that both forecasters use correctly specified models, given their

(nested) information sets, but they are subject to estimation error. Assume that

= X+7Z (41)

Y
X ~ Unif(=10,0), Z ~Unif (0,12), X1.Z

Assume that forecaster A uses no conditioning information, and so reports her optimal forecast as:

Y® = Median[Y] =1 (42)

Forecaster B uses information on Z, but to exploit it must estimate Median [X]. He treats that as
an unknown parameter and assume that he estimates it using n = 1 observation of X. Forecaster
B’s prediction will then be

YP=X+7Z7 (43)

where X is a realization from a Unif (L,0) distribution, independent of (X, Z) . This design allows

for a signal /noise trade-off. In this design we find that:

Lalg) = E[(l{YgY“}—lﬂ) (W—Yﬂ (44)
= EB[A{Y <My} -1/2)(My —Y)]

= ME[{Y < M)~ E[{Y < M} Y] - 1/2(M, - E[Y])

For forecaster B we find:

Lp(g) = E:<1{Y§?b}1/2) (Yty)} (45)
- E:<1{X+Z§ ~+Z}—1/2 (X+Z—X—Z)}
- Ezl{XgX}(X—X)}—1/2(E[)~(+Z—YD, noteE[X—l—Z—Y}:O
- E}{Xgi(}f(}—m{l{ng(}x}
- E:E[l XSX}WX}—E E[l{XgX}|X]X}
- B[R, (X' X]—E[(l—Fx(X))X]




And for the second loss function we obtain:
it = 8|(1{y<ve}-1p) () )] (16)
B[O < M- 1) (M- v

= MJE[L{Y <M} -E[1{Y < M,}Y?| —1/2(M} -E[Y?])

and

LB (gg) = E

1{y <7 - u2) (7)) (a7)

Then we use, for p=1,2,3:

E [1 {X < X} XP] - E [E [1 {X < X} |X} XP} = E[F, (X)X?], since X £ X (48)
E [1 {X < X} XP] - E [E [1 {X < X} |X} XP} —E[(1 - F, (X)) X?]
= E[X?] -E[F, (X)X"] (49)

And so
Lp(g2) = 2B[F (X)X"] —E[X’] (50)
+3E[Z] (2E [F, (X) X*] - E [X?])
+3E [Z?] (2E [F, (X) X] - E[X])

For X ~ Unif (L,U) we have:
L+2U

Elf: (X)X] = — (51)
2 2

B[F, (X) X7 — L +2L112J+3U (52)

B[R (X)X?] — L3+ 2L2U + 3LU? + 4U3 (53)

20
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Pulling these terms together, we find that

La(g1) = 1.85>1.67=Lg(g1) (54)

La(ga) = 72.65<90=Lg(g) (55)

Thus the ranking is reversed depending on the choice of function g.
(iii) Finally, we consider a violation assumption 3, and consider models that are misspecified.

We will simplify the DGP, and assume that
Y =X ~Unif (0,10) (56)

We will assume that the two forecasters use misspecified models, in that they use a linear model

with parameters that differ from (0, 1):

Y = Bo+ B X (57)
Y = g4 mX (58)
Of course here we cannot use the simplifcation that holds when the forecasts are median unbiased.
In this example, if we set (8, 51) = (0.33,0.67) and (¢, 7v;) = (—0.25,1.25) then both forecasts use

the same information set, neither has estimation error, but both are based on misspecified models.

In this case we find:

La(g) = E[(l{YgY“}—lﬂ) (W—Yﬂ (59)
= B[(1{X <8y + B8, X} —1/2) (Bp + 51X — X)]
= BB~ B)x <))~ 2 - D gx

+ (81 —DEL{(1-51) X < By} X]

( Fx(lf%l), By <1
E[L{(1-8)X < B} = 1—Fx<£—%l>, By > 1 (60)
1{Bp =0}, pBi=1
E[l{Xglf%l}Xp}, By <1
E[1{(1—-8)X < B} XP] = E[Xp]—E[l{ng%l}Xp], By >1 (61)
1{8, > 0}E[X7], B =1

The same expressions can be used for Lp (g1) plugging in (v, ;) for (8g, 31) - We use p = 1 for

the first GPL loss function above, and p = 1,2, 3 for the second, below.

10



Next consider

Litw = 8|(1{r<vo}-1p) () -v?)] (62)
= B[1{0 - )X < Bo} ((Bo +41X)° — X7)| = 1/28 [(8y + 1 X)" — X
= BOE[1{(1 - B1) X < Bo}] + 36856 E[1{(1 - 1) X < B} X]
+3B08TE [1{(1 = #1) X < B} X*] + (B = 1) B [1{(1 - 1) X < Bo} X°]

~1/2 (83 + 3838, B [X] + 38,43E [X?] + (8} - 1) B [X?])

The same expressions can be used for Lp (go) plugging in (v, 7;) for (8y,81) - Pulling these terms
together, we find that

La(g1) = 0.68>0.51=Lg(q) (63)

Thus the ranking is reversed depending on the choice of function g.
We have thus demonstrated analytically that the presence of any of non-nested information sets,
estimation error, or model misspecification can lead to sensitivity in the ranking of two quantile

forecasts to the choice of consistent (GPL) loss function. m

Proof of Proposition 6. (a) We again prove this result by showing that E [L (F/,Y;)] <
E[L (FP,Y;)] for some L € Lpwoper = F£ C F ¥Vt = E[L(FAY)] <E[L(FP,Yvi)] VL€
Lproper- First: we are given that E [L (FtA, Yt)] <E [L (FtB,Y})] , and assume that .7-"{4 - ff V.
Under Assumptions (2)-(3), this implies that we can take F}? as the data generating process for Y;.
Then B [L (FP, ;) |FP] = Bpp [L (FP,Y:) |FP] < Bps [L (F,Y:) |FP] Vi the propriety of L. By
the LIE this implies E [L (FtB, Y})] <E [L (FtA, Y})] , which can only hold if E [L (FtB, Y}) |.7-"tB] =
E[L (FtA, Y;) |FP] a.s. Vt, but since L is a strictly proper scoring rule this implies FA =FP a.svt
which violates Assumption 1, leading to a contradiction. Thus E [L (FtA, Y})] <E [L (FtB, Y})] for
some L € Lproper = ftB - .7-"{4 Vt. Next, using similar logic to above, given ftB - .7-"{‘ we have

that E [L (FtA, Yt)] <E [L (FtB, Y})] for any L € Lproper, completing the proof.

11



(b)(i) We first consider the case of non-nested information sets (violating Assumption 1). Con-

sider the following example:

= —ByA—B,(1—A)+ BB+ By(1 - B) (65)
~ Bernoulli (p)

~ Bernoulli(q), B1A

By > p1>0

The indicator, A reveals whether the left “tail” will be long or short, and B reveals whether the
right tail will be long or short. Forecaster A observes the signal A and forecaster B observes signal

B, i.e., each forecaster only gets information about a single tail (left or right). Then we find:
0 B2—B1
BWORPS (FaYow)] = p(i-0) [  w@dtai-p0-9 [ wEd ©)
1= B2 0

0 /32*51
E[wORPS (Fp,Y,w)] = pq(l—m/ﬁ W(Z)derp(l—p)(l—Q)/o w(2)dz

The two proper scoring rules we consider (equation 33) place different weights on the left vs. right

tails using the logistic function:

1
w(za) = T+ exp (—az] (67)

When a > 0 more weight is placed on the right tail, and when a < 0 more weight is placed on the

left tail. We then compute the integrals, setting wg (2) = w (2;+1) and wy, (2) = w (z; —1)
0 B2—B1
[ er@ds = [ wn(e)ds= 6,4 g2~ log(exp {85} +exp (1)) (69)
1—B2 0

Ba—B1 0 1
/ wr(2)dz = / , wr, (z)dz = log <2 (1+exp{52—,6’1})>
0 17 P2
With these in hand, if we set (p, q, 51, 55) = (0.25,0.75,1,5) we find:

E[wCRPS (F4,Y;wg)] = 0.50 > 0.25 = E[wCRPS (F,Y;wg)] (69)

E[wCRPS (Fa,Y;w)] = 0.25<0.50=E[wCRPS (Fg,Y;wp)| (70)

And so the ranking of these two distribution forecasts can be reversed depending on the choice of
(proper) scoring rule.
(ii) Next, we consider a violation assumption 3, and consider models that are misspecified.

In this case, consider the case where forecaster A uses the unconditional distribution of the target

12



variable, while forecaster B continues to use her signal, but based on p # p. If we set (p, q, 81, B2, D) =

(0.25,0.75,1,5,0.5) we find

E[wCRPS (Fa,Yiwp)] = 0.61>033 =B |wCRPS (Fp,Y;wr)| (1)

E [wCRPS (Fy,Yiwp)] = 061<0.67=E [wCRPS (FB,Y;wL)] (72)

And so the ranking of these two distribution forecasts can be reversed depending on the choice
of (proper) scoring rule. (Note that E [wCRPS’ (FA,Y;wR)] =E [wCRPS (FA,Y;wL)] as the
distribution forecast (FA) is symmetric around zero, and the weighting functions satisfy wg (z) =
wr, (—2).)

(iii) Finally, we consider the case that both forecasters use correctly specified models, given their
(nested) information sets, but are subject to estimation error. Consider the case that forecaster A
again uses the unconditional distribution of the target variable, while forecaster B uses her signal,
but to do so must estimate the parameter p. Assume she does so based on n observations of the
signal A. (Note that since forecaster B observes the signal B, the value for A can be backed out,

ex post, from the realized value of the target variable.) Then

np = i A; ~ Binomial (n,p) (73)
i=1
In this case, we have:
E [wORPS (FB (B),Y; w)} -3 E [wCRPS (FB B),Y:; w)} Pr[p = ] (74)
P

and we can use the expressions from part (ii) to help solve this problem. Consider the case that

n =4, and so p can take one of five values {0,1/4,1/2,3/4,1} . In this case we find

E[wCRPS (Fa,Yiwg)] = 0.61>031 = |wCRPS (Fp(5),Yiwr)| (75)
E [wCRPS (Fa,Yiwp)] = 061<0.62=E [wCRPS (FB (5) ,Y;wL)} (76)

And so the ranking of these two distribution forecasts can be reversed depending on the choice of

(proper) scoring rule. m
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Appendix SA.2: Derivations

The results below draw on the following lemma, which summarizes some useful results on

moments that arise when the data are Gaussian and the loss function is exponential Bregman.

Lemmal If X ~N (u, 02) and (a,b) € R?, then

(i) Elexp{a+bX}] = exp{a+bu+ 3b%0?}

(ii))  Elexp{a+bX}X] = exp{a+bu+1b20?} (u+bo?)

(iii) E[exp{a+bX}X? = exp{a+bu+ 3b%c?} (02+ (u+b02)2)

(iv) Blexpfo+bX}X*] = exp{atbu+ 3202} (u+bo?) (302 + (u+ b))

Some results below are simplified if we consider the following definition:
Definition 1 A forecast Y} is “mean unbiased” if Yi = B Y| 7] a.s.

By the law of iterated expectations, this implies that & [Yt‘f/?} = Ytl a.s. Note that this does
not require that 7} contains all relevant information for forecasting Y;, only that that f@z optimally

uses all information available in F7.
Appendix SA.2.1: Derivations for the AR(p) models in Section 2.2
The Gaussian AR(5) specification in equation (12) implies:
(¥ i Yie Yis Y| ~N(us®) (77)

where ¢5 is a (b x 1) vector of ones, p is the mean of Y; and ¥ is the covariance matrix of the
left-hand side vector. These can be obtained using standard methods from time series analysis, see

Hamilton (1994) for example).

Let ¢ = [¢17 ¢27 () ¢5]/ (78>
then p = 1_¢:;,L5, and vec(X) = (s — (F @ F)) " vec(Q)
¢/

where F' = 5 Q - elella €] = [1707 Ovo)o]l
Iy | O4x1

14



Then note that the joint distribution of (Y;,Y;_1) is

Vi, Yia]' ~ N (ut2, o) (79)

Yo M1

where s , and v; = Cov[Y, Y, 4], for j=0,1,2,...

Y1 Y0

Denote p; = v;/70- Then the conditional distribution of Y;|Y;_; is:

YiYior ~ N (u(1=py) + p1Yi1,70 (1= p7)) (80)

and so for the parameters used in the example we find [8y, 81] = [ (1 — p1), p1] = [1.52,0.85].
Similar calculations for the AR(2) model yield:

V2, Yo1,Yia] ~ N (ues, S3) (81)
Yo Y1 72

where ¥3 = Y1 Y M (82)
Y271 Yo

Yi| (Yic1,Yi—2) ~ N (6o +1Yi—1 + 2Yi—2,VaRe)

01 1 71 (Yo — 72)
- 2
2 Tom N YoV2 — 71
-1
Yo M1 71 3+ p2 —2p2p
Vare = ’Yo—[’yl 72} =yt 12_ 212 (83)
71 Yo V2 l

And for the parameters used in the example we find [dg, d1, d2] = [1.38,0.76,0.10].
Now we derive the expected loss for the AR(1), AR(2) and AR(5) forecasts. First note that
since all three of these forecasts are mean-unbiased, the expected loss of any Bregman loss function

simplifies to:

B|L (YY) =Blo (0] -B o (V)| -B|¢ (%) (B[wl%] - %) | =Bl ()] -E o (V)]

For exponential Bregman loss, where ¢ (Y;a) = 2a=2exp {aY'}, Lemma 1 implies
B[ (Y))] = 2a7B [exp {a¥i}] = 20 2exp { 5 2+ a70) | (85)

To obtain E [exp {aYtH for the AR(1), AR(2) and AR(5) forecasts, we exploit the fact that

for this Gaussian autoregression, all of these forecasts are unconditionally normally distributed:
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VARK ~ N (1, Vark), where [Vari, Vare, Vars] = [p3yo 0700 + 0500 + 20702 , 7o — 1] . Thus we

find

afo (160)] - 2w tafoofor )
= 2a %exp {g (2u + CLVARk)}
from Lemma 1. The expected loss from an AR (k) forecast is
> AR, _ 9,2 a _ a
E [L (Yt Y, ¢)} = 2 (exp { S 2+ cwo)} exp { S 2+ aVARk)})
— v9— Vapk asa— 0

Note that we know that Var: < Vars < Vars and so we immediately see that the ranking un-
der MSE (i.e., exponential Bregman with a — 0) is E {L (Yt,?tAm)] >k [L (Yt,YtARQﬂ >
a1 (7).

Appendix SA.2.2: Derivations for the Bernoulli forecasters in Section 2.2

Since }A/tX and }A/tW are both optimal with respect to their limited information, they are both
“mean unbiased” and so their expected Bregman loss simplifies to 2a =2 (E [exp {aY:} — exp {aYtH ) .
For this DGP we easily find:

CL2 CL2
Bloxp (a¥)] = ep{ % +alus+ne) e { G+l +ac) | -9 (50
CL2 (12
rop{ G +alu ) bp- 0 +e G +alu + i) [0 -p0-0)
B exp {a¥¥}| = expla(uy+auc+ (1) pan)}p+explaluy +auc + (1= @) pa)} (1= p)
E[eXp {aﬁw}} = exp{a(ppy + (1 —p)pg +pe)t a+exp{a(ppg + (L—p) pg + par)} (1= q)

Figure 2 normalizes the expected loss from forecast X and W by the optimal forecast, using both

signals:
VAW = Xypp + (1= Xo) pg + Wape + (1= We) pyy (87)
which leads to
E [exp {aYtXW}] = exp{a(ug + pe)} pg +exp{a(pg + pe)} (1 —p)g (88)

+exp{a (g +pa)}p(1—q) +exp{a(pg + pp)} (1 —p)(1—q)
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Appendix SA.2.3: Derivations for the linear model in Section 2.3

The first-order condition for the optimal parameter 6 = [, 3] is:

0
0 = ZpELE,m(X;0);0)
= B¢ (m(X:0) (BY]X] ~m (x;0)) T (%9)

= 2E[exp{a(a+BX)} (X*—a—BX)[1,X]]
So the two first-order conditions are:

0 = Elexp{a(a+BX)} X?] - aBlexp{a(a+ 5X)}] — FE[exp {a (o + X))} X] (90)

0 = Elexp{a(a+BX)}X?] — aElexp{a(a+ BX)} X] - BE [exp {a(a+ BX)} X?] (91)

Using Lemma 1 above we have each of the four unique terms above in closed form. Substituting

these in and solving for solving for [« 8] yields the expressions given in equation (25).
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