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Joint crashes, S&P 100 stocks, 2008-2010
Number of stocks experiencing a once-in-a-year crash

Apr08 Jul08 Dec08 Jul09 Dec09 Jul10 Dec10
0

2

4

6

8

10

12

14

16

18

20

N
um

be
r o

f s
to

ck
s

Number of stocks experiencing a once­in­a­year event

27apr10: Greece and
Portugal downgraded29sep08: House rejects

bank bail­out plan

6jun08: Oil price hits
new high, USD falls,

weak jobs report
17sep08: Lehman Brothers

files for bankruptcy



Expected wait times to observe j once-in-a-year crashes
Observed frequency of joint crashes is *much* higher than as implied by a Normal copula
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Motivation

Crashes are not usually contained to pairs or small collections of
assets; they can (and do) sometimes a¤ect large collections of assets
(eg, returns on �nancial companies, defaults on credit, etc. during the
�nancial crisis)

One of the di¢ culties with studying the dependence between large
numbers of assets is the relative paucity of models available

There is a growing literature on models for large covariance matrices
(eg, Engle and Kelly, 2008, Engle, Shephard and Sheppard, 2008,
Hautsch, Kyj and Oomen, 2010)

However there is a relative lack of models for dependence beyond
linear correlation



Joint distributions and copulas

From Sklar (1959), we can decompose a N-dim joint distribution into
its N univariate marginal distributions and a N-dim copula:

F (x1, x2, � � � , xN ) = C (F1 (x1) ,F2 (x2) , � � � ,FN (xN )) 8 x 2 RN

where C : [0, 1]N ! [0, 1]

Existing work in econometrics provides us with good, �exible models
for univariate (conditional) distributions, Fi .

The goal of this paper is to provide new models for C, with particular
attention paid to the case that N is large (between, say 20 and 100).



Main contributions of this paper

1 A �exible, easily interpreted, class of copula models that may be
applied in high dimensional problems.

Closed-form expression for these models not generally available, but:

Simulation-based estimation is simple and fast

Analytical results on tail dependence available using EVT

2 In our empirical application we study S&P 100 daily equity returns

We �nd signi�cant evidence of tail dependence, asymmetric
dependence, and heterogeneous dependence.

Our new copula models provide improved estimates of systematic risk.
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Characteristics of a high dimension copula model

1 Allows for tail dependence?

! non-zero probability of joint extreme events

2 Allows for asymmetric dependence?

! crashes and booms are not assumed identical

3 Allows for heterogeneous dependence?

! dependence between
�
Yi ,Yj

�
not assumed identical for all pairs

4 Allows for interpretable constaints on dependence?

! parameter restrictions can be explained, understood, and tested



Existing models for high dimension copulas

� Normal: Li (2000, J.Fix Inc), and many others

� Student�s t: Embrechts et al. (2002), Fang et al. (2002 JMVA)

� Archimedean (eg, Clayton, Gumbel, Frank)

F Nested Archimedean copulas: Hofert and Scherer (2011 Quant
Fin), Joe (1997 book), McNeil et al. (2005 book)

F Grouped t-copulas: Daul et al. (2003 RISK)

F Pair-copula constructions (vines): Aas, et al. (2007 IME), Heinen
and Valdesogo (2009 wp), Acar, et al. (2012 JMVA)

F Skew t copulas: Smith, et al. (2010 JAE), Christo¤ersen, et al.
(2011 wp), Demarta and McNeil (2004 ISR)



�Explicit�and �Implicit�copulas

McNeil, Embrechts and Frey (2005) characterize copula models as:

1 �Explicit�: those with a known (simple) functional form:

Clayton: C (u1, u2) =
�
u�γ
1 + u�γ

2 � 1
��1/γ

2 �Implicit�: those obtained from a known multivariate distribution:

Normal: C (u1, u2) = Φρ

�
Φ�1 (u1) ,Φ�1 (u2)

�

F �Really implicit�: those obtained from known multivariate models
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A simple factor copula model

Consider a vector of n variables, Y, with some joint distribution F�,
marginal distributions F �i , and copula C

�

[Y1, ...,Yn ]
0 � Y s F�= C� (F �1 , ...,F �n )

Our model for C� is the copula C (θ) implied by the following model:

Let Xi = Z + εi , i = 1, 2, ..., n

Z s Fz (θ) , εi s iid Fε (θ) , Z??εi 8 i
So [X1, ...,Xn ]

0 � X s Fx (θ) = C (G1 (θ) , ...,Gn (θ) ; θ)

In general we won�t know C (θ) in closed form, but we can
nevertheless use it as a model for the true copula C�.
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A simple factor copula model, discussion I

[Y1, ...,Yn ]
0 � Y s F� = C(F �1 , ... ,F �n ; θ)

[X1, ...,Xn ]
0 � X s Fx (θ) = C(G1 (θ) , ...,Gn (θ) ; θ)

1 The structure for [X1, ...,Xn ]
0 � X also provides marginal

distributions for Xi , but we discard these and only �extract� the
copula from this structure. In estimation we will only use �copula
information� from this structure

This is what makes this a model for the copula of the data and not for
the joint distribution. (Marginal distributions are modelled in a
separate stage.)

This also means that we must be careful that all parameters in θ are
identi�ed given only the copula.



A simple factor copula model, discussion II

2 When Z and εi are Normal, the resulting factor copula is Normal. For
almost all other combinations, the distribution of X is not previously
known and not known in closed form.

Thus it is simple to nest the important (but restrictive) Normal copula.
Useful for model comparisons

When distribution of X is not known in closed form, we propose using
simulation-based methods to estimate θ

For many types of factor structures simulation is fast and simple.



A simple factor copula model, discussion III

3 Even without a closed-form expression for C (θ) , we can still obtain
properties of that copula. Eg:

If Z is at least as fat-tailed as εi , then this copula will exhibit
tail dependence

If Z is skewed and εi is symmetric then this copula will exhibit
asymmetric dependence

With a trivial modi�cation of above structure, can acommodate both
positive and negative dependence.

Can impose equi-dependence, block equi-dependence, or allow for
heterogeneous dependence



Tail dependence properties of a factor copula

Despite the lack of closed-form expression, we can still obtain tail
dependence properties of (linear) factor copulas using EVT:

Proposition (Tail dependence for a linear factor copula): If Fz and Fε

have regularly varying tails with a common tail index α > 0 and constants
ALz , A

U
z , A

L
ε , A

U
ε , eg:

Pr [Z < �s ] = ALz s�α, as s ! ∞

then the lower tail dependence coe¢ cient of the implied factor copula is:

λL � lim
s!∞

Pr [X1 < �s \ X2 < �s ]
Pr [X1 < �s ]

=
ALz

ALz + ALε

A corresponding result holds for the upper tail dependence coe¢ cient.



Extensions of the simple factor copula

Heterogeneous dependence between pairs of assets:

Xi = βiZ + εi , i = 1, 2, ..., n

Z s Fz (θ) , εi s iid Fε (θ) , Z??εi 8 i

Multiple common factors:

Xi = ∑J
j=1 βijZj + εi , i = 1, 2, ..., n

εi s iid Fε, Zj??εi 8 i , j
[Z1, ...,ZJ ]

0 � Z s Fz= Cz (Gz1 , ...,GzJ )

Time-varying dependence: let σ2z ,t � Vt�1[Zt ], where

σ2z ,t = ω+ βσ2z ,t�1 + α � h (Y1,t�1, ...,YN ,t�1)
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Extensions to non-linear factor copulas

It is simple to generalize the class of factor copulas to consider other
ways of combining Z and εi :

Xi = h(Z , εi ), i = 1, 2, ..., n

Z s Fz (θ)

εi s iid Fε (θ) , Z??εi 8 i

[X1, ...,Xn ]
0 � X s Fx (θ) = C (G1, ...,Gn; θ)

By considering di¤erent functions h and distributions (FZ ,Fε) we can
obtain existing copulas and generate new models:



Existing non-linear factor copulas

Xi = h (Z , εi ) ) [X1, ...,Xn ]
0s FX = C (G1, ...,Gn; θ)

C (θ) h (z , ε) FZ Fε

Normal z + ε N
�
0, σ2z

�
N
�
0, σ2ε

�
Student�s t z1/2ε Ig (ν/2, ν/2) N

�
0, σ2ε

�
Skew t λz + z1/2ε Ig (ν/2, ν/2) N

�
0, σ2ε

�
Gen hyperbolic γz + z1/2ε GIG (λ,χ,ψ) N

�
0, σ2ε

�
Clayton (1+ ε/z)�α Γ (α, 1) Exp (1)
Gumbel � (log z � log ε)α Stable (1/α, 1, 1, 0) Exp (1)

By abandoning the requirement for a closed-form expression for the
copula, much �exibility is gained



Illustration of some factor copulas

Consider the following factor structure:

Let Xi = Z + εi , i = 1, 2, ..., n

εi s iid t (ν) , Z??εi 8 i
Z s Skew t

�
σ2z , ν,λ

�
ν 2 [2,∞] , λ 2 [�0.99, 0]

We set σ2z so that the factor copula implied by this structure
generates linear correlation of 0.5. (Roughly, σ2z = 1.)



Scatterplots of joint dist�ns with factor copulas
Marginal dist�ns are N(0,1), linear correlation = 0.5.
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Quantile dependence and �crash�dependence

1 Quantile dependence: conditional on one variable being in its q tail,
what is prob that other variable is in its q tail?

λLq � Pr [U1 � qjU2 � q] =
C (q, q; θ)

q

λUq � Pr [U1 > qjU2 > q] =
1� 2q +C (q, q; θ)

1� q

2 Crash dependence (related to a measure in Embrechts, et al., 2000):
Conditional on j variables being in their q tails, what is expected
proportion of remaining variables that are in their q tails?

πqj �
κqj
n� j

where κqj = E
�
N�q jN�q � j

�
� j

N�q � ∑n
i=1 1 fUi � qg



Quantile dependence for factor copulas
Probabilities of joint crashes and joint booms of varying severity
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Proportion of remaining stocks that will crash
�Crash� de�ned as a 1/66 event = once in a quarter for daily asset returns
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Estimation via SMM-type method

Estimation of the proposed factor copulas is complicated by the fact
that their likelihood is not known in closed form

In a companion paper, we propose estimation via a simulated
method of moments-type estimator

We match measures of dependence computed from the data with those
measured from simulations of the model

Our estimator is not strictly SMM, as our �moments�are functions of
sample ranks and not sample means



De�nition of the estimator I

Consider the following measures of dependence

ρ̂T � 12
1
T

T

∑
t=1
F̂i (Yit ) F̂j (Yjt )� 3

λ̂
q
T � 1

q
1
T

T

∑
t=1
1
�
F̂i (Yit ) < q \ F̂j (Yjt ) < q

	
where F̂i (y) � (T + 1)�1 ∑T

t=1 1 fYit < yg .

Could consider other dependence measures: Kendall�s tau,
Blomqvist�s beta, etc.



De�nition of the estimator II

Let m̂T denote a vector of sample measures of dependence

Let ~mS (θ) denote the corresponding vector computed using S
simulations of the factor copula using parameter vector θ

Our estimator is de�ned as

θ̂T ,S � argmin
θ
g0T ,S (θ)WT gT ,S (θ)

where gT ,S (θ) � m̂T � ~mS (θ)

This is implemented in the same way as SMM, but the asymptotic
properties of θ̂T ,S require di¤erent methods of proof.



Main �ndings from the simulation

The asymptotic results for our simulation-based estimator provide a
good approximation in �nite samples:

1 Parameter estimates are approximately unbiased

2 Con�dence intervals have satisfactory coverage rates, when the step
size is not too small

3 Tests of over-identifying restrictions have satisfactory �nite-sample size

4 Estimation error from marginal distribution dynamics (AR-GARCH)
does not a¤ect accuracy of copula parameter estimates

5 Loss in e¢ ciency (under Normality) is low :

From ML to SMM is moderate: around 10� 25%

From GMM to SMM is negligible: around 0� 3%
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Modelling equity return dependence I

Daily US equity return data from CRSP:

N = 100, the individual stocks in the S&P 100 index

T = 696, sample period is Apr 08�Dec 10

Our model for the joint distribution of these returns is based on:

Yt jFt�1 s Ft = C (F1t ,F2t , � � � ,FNt )

Similar to the CCC model of Bollerslev (1990)



Modelling equity return dependence II

Marginal distributions:

AR-GARCH models to construct standardized residuals:

rit = φ0 + φ1ri ,t�1 + φm rm,t�1 + εit

σ2it = ω+ βσ2i ,t�1 + αε2i ,t�1 + γε2i ,t�11 fεi ,t�1 < 0g
+αm ε2m,t�1 + γm ε2m,t�11 fεm,t�1 < 0g

ηit � εit/σit s iid Fη,i

Empirical distribution functions for Fη,i :

F̂η,iT (η) �
1
T

T

∑
t=1

1 fηit � ηg



Modelling equity return dependence III

Copula:

We consider a variety of new and existing copula models:

Copula
Clayton Heterogeneity
Normal Equi-dependence
Student�s t Block equi-dependence
Skew t Multi-factor
Factor (t-t)
Factor (Skew t-t)



Summary statistics for pair-wise dependence

Dependence measures using standardized residuals (4950 pairs)

Mean 5% 25% Median 75% 95%
ρ (linear corr) 0.42 0.28 0.35 0.42 0.48 0.60
ρs (rank corr) 0.44 0.30 0.37 0.43 0.50 0.62
1
2 (τ0.99 + τ0.01) 0.07 0.00 0.00 0.07 0.07 0.22
(τ0.90 � τ0.10) -0.08 -0.19 -0.13 -0.09 -0.04 0.03



Parameter estimates for copula models
Equi-dependence models

σ2z ν�1z λz QSMM p-val
Est s.e. Est s.e. Est s.e.

Clayton� 0.60 0.03 - - - - 4.49 0.000
Normal 0.91 0.06 - - - - 0.90 0.000
Student�s t 0.86 0.05 0.03 0.03 - - 1.19 0.000
Skew t 0.67 0.09 0.05 0.01 -8.30 4.02 0.10 0.002

t � t 0.90 0.06 0.01 0.05 - - 0.98 0.000
Skew t � t 0.88 0.06 0.08 0.05 -0.23 0.05 0.07 0.001

ρ̂ = σ̂2z
σ̂2z+1

� 0.46, v̂z � 25
All models are rejected using the J-test



Block equi-dependence copula, by industry group

We next divide the stocks into 7 groups using their 1-digit SIC code:

SIC Industry Number of Stocks
1 Mining & construction 6
2 Manufacturing: Food, apparel, furniture, etc 26
3 Manufacturing: Electronics, machinery, etc 25
4 Transportation, communications, utilities 11
5 Wholesale and retail trade 8
6 Finance, insurance, real estate 18
7 Services 6

Total 100



A multi-factor copula model

Consider a more �exible two-factor copula model:

Xi = βiZ0 + γiZS (i ) + εi , i = 1, 2, ..., n

Z0 s Skew t (ν,λ) , εi s iid t (ν) , i = 1, 2, ..., n
ZS s t (ν) , S = 1, 2, ..., 7

Zi ? Z j ? εk 8 i , j , k

We impose that the parameters βi and γi are the same for stocks in
the same industry ()block equi-dependence)

This model allows for more �exibility in modelling intra- and
inter-industry correlations



Parameter estimates for copula models
Multi-factor block equi-dependence models - shape parameters

Copula ν�1z λz QT
�

θ̂
�

p-val

Est SE Est SE
Normal � � � � 0.159 0.000
Student�s t 0.073 0.027 � � 0.157 0.000
Skew t 0.049 0.007 -9.660 1.086 0.027 0.044

t � t 0.066 0.047 � � 0.139 0.000
Skew t � t 0.099 0.046 -0.222 0.055 0.019 0.072

v̂z � 14



Parameter estimates for copula models
Block equi-dependence models - block dependence parameters

Skew t � t
SIC industry Est Std Err Est Std Err
Food, Apparel β2 0.865 0.040 γ2 0.266 0.040
Transportation β4 0.916 0.041 γ4 0.262 0.059

Trade β5 0.926 0.056 γ5 0.554 0.047
Elec, machinery β3 1.017 0.037 γ3 0.229 0.058
Finance, Ins. β6 1.067 0.046 γ6 0.567 0.037

Services β7 1.129 0.063 γ7 0.341 0.088
Mining β1 1.290 0.085 γ1 1.022 0.064



Sample and �tted multiple-stock crash probabilities
Crash quantile = 1/22



Sample and �tted multiple-stock crash probabilities
Crash quantile = 1/66



Rank correlation matrix implied by the two-factor structure
Correlation between stocks within / across industries

SIC industry Mining Food Elec. Trnsprt Trade Fin. Serv.
Mining 0.72
Food, Apparel 0.41 0.44
Elec, Mach. 0.44 0.45 0.51
Transport 0.41 0.42 0.45 0.46
Trade 0.39 0.40 0.44 0.41 0.53
Finance, Ins. 0.42 0.43 0.47 0.43 0.42 0.58
Servies 0.45 0.46 0.50 0.46 0.44 0.47 0.57

Pair-wise rank correlation ranges from 0.39 to 0.72.



Lower tail dependence matrix
Lower tail dep between stocks within / across industries

SIC industry Mining Food Elec. Trnsprt Trade Fin. Serv.
Mining 0.99
Food, Apparel 0.70 0.70
Elec, Mach. 0.92 0.70 0.92
Transport 0.75 0.70 0.75 0.75
Trade 0.81 0.70 0.81 0.75 0.81
Finance, Ins. 0.94 0.70 0.92 0.75 0.81 0.94
Servies 0.96 0.70 0.92 0.75 0.81 0.94 0.96

Lower tail dependence ranges from 0.70 to 0.99.



Upper tail dependence matrix
Upper tail dep between stocks within / across industries

SIC industry Mining Food Elec. Trnsprt Trade Fin. Serv.
Mining 0.74 0.02 0.07 0.02 0.03 0.09 0.13
Food, Apparel 0.02 0.02 0.02 0.02 0.02 0.02
Elec, Mach. 0.07 0.02 0.03 0.07 0.07
Transport 0.02 0.02 0.02 0.02
Trade 0.03 0.03 0.03
Finance, Ins. 0.09 0.09
Servies 0.14

Upper tail dependence ranges from 0.02 to 0.74.



Testing restrictions on the two-factor copula model

The two factor model:

Xi = βiZ0 + γiZS (i ) + εi , i = 1, 2, ..., n

1 Test that only common factor is needed ) γi = 0 8 i
p-value=0.000

2 Test that only industry factors are needed ) βi = 0 8 i
p-value=0.000

3 Test of equidependence assumption ) βi = βj \ γi = γj 8i , j
p-value=0.000
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1 Test that only common factor is needed ) γi = 0 8 i
p-value=0.000

2 Test that only industry factors are needed ) βi = 0 8 i
p-value=0.000

3 Test of equidependence assumption ) βi = βj \ γi = γj 8i , j
p-value=0.000



Measuring systemic risk va �expected shortfall�

Brownlees and Engle (2011, wp) propose a measure of systemic risk
they call �marginal expected shortfall� (MES):

MESit � Et�1 [rit jrmt < C ]

That is, it is the expected return on stock i , conditional on the
market return being below some threshold C (eg, C = �2%).

Brownless and Engle also provide a way to estimate this using a
bivariate GARCH model and nonparametric estimation of the tail.

With a high dimension copula model one can recover the MES
measure, and also alternative measures, such as:

kESit � Et�1
h
rit
����∑n

j=1 1 frjt < Cg
�
> k

i



Marginal expected shortfall as a function of the threshold
MES estimates for Apple are similar across all models
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Marginal expected shortfall as a function of the threshold
MES estimates for Walmart have sizeable di¤erences
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Evaluating MES forecasts

Brownlees and Engle (2011) propose a simple method for ranking
estimates of MES:

MSEi =
1
T

T

∑
t=1

�
rit �[MES it

�2
1 frmt < Cg

RelativeMSEi =
1
T

T

∑
t=1

 
rit �[MES it
[MES it

!2
1 frmt < Cg

Corresponding metrics can also be constructed for kES



Performance of methods for predicting MES
Brownlees-Engle does best under MSE; Factor copula best under RelMSE

MSE RelMSE
Cut-o¤ -2% -4% -2% -4%
Gaussian copula 1.0096 1.2521 0.6712 0.3420
Factor copula 1.0012 1.2445 0.5885 0.2954
t copula 1.0118 1.2580 0.6660 0.3325
skew t copula 1.0051 1.2553 0.6030 0.3040
BE 0.9961 1.2023 0.7169 0.3521
Historical 1.1479 1.6230 1.0308 0.4897
CAPM 1.1532 1.5547 0.9107 0.4623



Performance of methods for predicting kES (k=30)
MES estimates from the proposed factor copula perform best

MSE RelMSE
Cut-o¤ -2% -4% -2% -4%
Gaussian copula 1.0885 1.4855 1.3220 0.5994
Factor copula 1.0822 1.4850 1.1922 0.5204
t copula 1.0956 1.4921 1.4496 0.6372
skew t copula 1.0898 1.4923 1.3370 0.5706
Historical 1.1632 1.6258 1.4467 0.7653



Summary and conclusion

We present a simple and �exible class of factor copula models that
may be applied in high dimensions.

Analytical results on tail dependence available using EVT

Estimation using SMM has good properties in �nite samples

We applied the new copulas to a collection of 100 daily equity returns

Among the highest dimension copula application to date

Signi�cant evidence of tail dependence, asymmetric dependence,
and heterogeneous dependence

Improved estimates of measures of systematic risk



Simulation study

We use simulations to study the �nite-sample properties of our
estimator. We consider a variety of scenarios:

1 Factor copula

1 Equi-dependence or heterogeneous dependence

2 Normal, Student�s t (4) , or skewed t (4,�0.5) common factor

All copulas generate correlation of 0.5

2 Dimension: N = 3, 10 and 100

3 Marginal distributions: iid or AR(1)-GARCH(1,1) for conditional
mean, conditional variance

Moments: rank correlation, and quantile dependence for
q 2 f0.05, 0.10, 0.90, 0.95g

Sample size: T = 1000, S = 25� T , replications= 100.



Factor copula with Normal common factor
SMM is only slightly less e¢ cient than MLE, about same as GMM

Xi = Z + εi

Z � N (0, 1)

εi � iid N (0, 1) and Z ? εi

Bias Std dev
# of variables 3 10 100 3 10 100
MLE σ̂2z 0.017 0.015 0.018 0.081 0.057 0.051
GMM σ̂2z -0.012 -0.004 -0.003 0.100 0.067 0.057
SMM σ̂2z -0.013 -0.006 -0.005 0.103 0.069 0.056



iid vs AR-GARCH marginal dynamics:
Factor copula with Normal common factor
AR-GARCH estimation error does not a¤ect copula parameter estimate

Bias Std dev
# of variables 3 10 100 3 10 100
MLE iid 0.017 0.015 0.018 0.081 0.057 0.051
MLE GARCH 0.014 0.011 0.017 0.080 0.056 0.050

SMM iid -0.013 -0.006 -0.005 0.103 0.069 0.056
SMM GARCH -0.016 -0.012 -0.008 0.103 0.067 0.055



iid vs AR-GARCH marginal dynamics:
Factor copula with skewed t common factor
AR-GARCH estimation error does not a¤ect copula parameter estimate

Bias Std dev
# of variables 3 10 100 3 10 100
σ̂2z iid 0.079 0.056 0.042 0.317 0.197 0.160
σ̂2z GARCH 0.061 0.040 0.019 0.307 0.180 0.141

ν̂�1 iid -0.004 0.001 -0.001 0.068 0.049 0.041
ν̂�1 GARCH -0.008 -0.003 -0.005 0.068 0.049 0.038

λ̂ iid -0.019 -0.005 -0.003 0.122 0.066 0.053
λ̂ GARCH -0.020 -0.006 -0.000 0.121 0.066 0.054



Coverage probabilities: N=3
95% con�dence intervals, AR-GARCH data, for di¤erent step sizes

Normal Factor t � t Factor Skew t � t
εT σ2z σ2z ν�1z σ2z ν�1z λz
0.1 89 93 97 99 100 96
0.03 90 94 98 99 98 96
0.01 88 92 98 99 96 95
0.003 85 95 95 96 89 95
0.001 83 89 89 92 84 93
0.0003 58 69 69 74 74 74
0.0001 38 49 53 57 70 61



Coverage probabilities: N=10
95% con�dence intervals, AR-GARCH data, for di¤erent step sizes

Normal Factor t � t Factor Skew t � t
εT σ2z σ2z ν�1z σ2z ν�1z λz
0.1 87 93 99 97 98 99
0.03 87 95 99 97 98 97
0.01 87 94 96 97 98 95
0.003 87 95 95 98 95 96
0.001 87 95 93 96 90 95
0.0003 86 94 87 91 77 93
0.0001 71 87 81 71 81 85



Coverage probabilities: N=100
95% con�dence intervals, AR-GARCH data, for di¤erent step sizes

Normal Factor t � t Factor Skew t � t
εT σ2z σ2z ν�1z σ2z ν�1z λz
0.1 95 93 95 94 95 94
0.03 95 94 94 94 94 94
0.01 95 93 93 94 94 94
0.003 94 95 93 94 94 94
0.001 94 94 92 94 93 95
0.0003 92 94 92 94 92 93
0.0001 84 94 89 94 88 95



J-test rejection frequencies
AR-GARCH data, step size of 0.1, 0.05 level

iid data AR-GARCH data

Norm t-t Skew t-t Norm t-t Skew t-t

N=3 0.03 0.03 0.01 0.05 0.03 0.03
N=10 0.03 0.03 0.02 0.02 0.05 0.02
N=100 0.03 0.05 0.01 0.05 0.05 0.01
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