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ABSTRACT

This paper presents new methods for comparing the accuracy of estimators of the quadratic variation
of a price process. I provide conditions under which the relative accuracy of competing estimators can
be consistently estimated (as T — o0), and show that forecast evaluation tests may be adapted to the
problem of ranking these estimators. The proposed methods avoid making specific assumptions about
microstructure noise, and facilitate comparisons of estimators that would be difficult using methods from
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IBM data between 1996 and 2007 illustrates the new methods.
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1. Introduction

The past decade has seen an explosion in research on volatility
measurement, as distinct from volatility forecasting.! This research
has focused on constructing non-parametric estimators of price
variability over some horizon (for example, one day) using data
sampled at a shorter horizons (for example, every 5 minutes or
every 30 seconds). These “realised volatility” (RV) estimators or
“realised measures” generally aim at measuring the quadratic
variation or integrated variance of the log-price process of some
asset or collection of assets.

This profusion of research has lead to a need for some
practical guidance on which RV estimator to select for a given
empirical analysis. In addition to the particular estimator to use,
the performance of RV estimators is generally affected by the
frequency used to sample the price process (for example, every
5 minutes or every 30 seconds), see Zhou (1996) and Bandi and
Russell (2008) for example, and may also be affected by the
decision to sample in calendar time or in “tick time” (for example,
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1 See Andersen and Bollerslev (1998), Andersen et al. (2001a, 2003), Barndorff-
Nielsen and Shephard (2002, 2004a), Ait-Sahalia et al. (2005), Zhang et al. (2005),
Hansen and Lunde (2006a), Christensen and Podolskij (2007), and Barndorff-
Nielsen et al. (2008) amongst many others. Andersen et al. (2006) and Barndorff-
Nielsen and Shephard (2007) present recent surveys of this burgeoning field.
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every r minutes or every s trades), and the decision to use prices
from transactions or from quotes, see Bandi and Russell (2006b),
Hansen and Lunde (2006a) and Oomen (2006).

This paper provides new methods for comparing RV estimators,
which complement the approaches currently in the literature
(discussed further below). Denoting the latent quadratic variation
of the process over some interval of time (for example, one day)
as 6, estimators of this quantity as Xj;, and a distance measure as
L, the primary theoretical contribution of this paper is to provide
methods to consistently estimate:

E[AL(qut)]EE[L(Gt,Xit)]—E[L(Qt,xjt)]- (1)

The latent nature of 6, makes estimating E [AL (6;, X;)] more
difficult than in standard forecasting applications, as we cannot
employ the sample mean of the loss differences as an estimator.
Further, the fact that the estimators X;; usually use data from the
same period over which 6; is measured makes this problem distinct
from (and more difficult than) volatility forecasting applications.
With an estimator of E [AL (6;, X;)] in hand, it is possible to
employ one of the many tests from the literature on forecast
evaluation and comparison, such as Diebold and Mariano (1995)
and West (1996) for pair-wise comparisons, White (2000), Hansen
(2005), Hansen et al. (forthcoming) and Romano and Wolf (2005)
for comparisons involving a large number of RV estimators, and
Giacomini and White (2006) for conditional comparisons of RV
estimators. These tests rely on standard large sample asymptotics
(T — o00) rather than continuous-record asymptotics (m — 00),
and thus can be used to compare the “finite m” performance
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of different estimators. I provide conditions under which these
tests can be applied to the problem of ranking RV estimators.
The proposed methods rely on the existence of a volatility proxy
that is unbiased for the latent target variable, 6;, and satisfies an
uncorrelatedness condition, described in detail below. This proxy
must be unbiased but it does not need to be very precise; a
simple and widely-available proxy is the daily squared return, for
example.

Previous research on the selection of estimators of quadratic
variation has predominantly focused on finding the sampling
frequency that maximises the accuracy of a given estimator.
Consider the simplest RV estimator:

m
Rvgm) = Z (prl- _p'[,'_l)z (2)

i=1

where p, is the log-price at time t;, {70, 71, ..., T} are the times
at which the price of the asset is available during period t, and
m is the number of intra-period observations used in computing
the estimator. In the absence of market microstructure effects, the
distribution theory for the simplest RV estimator would suggest
sampling prices as often as possible, see Andersen et al. (2001a) for
example, as the asymptotic variance of the estimator in this case
declines uniformly as m — oo. In practice, however, the presence
of autocorrelation in very high frequency prices leads the standard
RV estimator to become severely biased,? and several papers have
attempted to address this problem.> While the methods of these
papers differ, they have in common their use of continuous-record
asymptotics in their derivations, the use of mean squared error
(MSE) as the measure of accuracy, and, importantly, generally quite
specific assumptions about the noise process.>

In contrast to the theoretical studies of the optimal sampling
frequency cited above, the data-based methods proposed in this
paper allow one to avoid taking a stand on some important
properties of the price process. In particular, the proposed
approach allows for microstructure noise that may be correlated
with the efficient price process and/or heteroskedastic, ¢cf. Hansen
and Lunde (2006a), Kalnina and Linton (2008), and Bandi et al.

2 Early research in this area, see Zhou (1996) and Andersen et al. (2000),
employed “volatility signature plots” to show graphically that at very high
frequencies, features such as bid-ask bounce and stale prices can lead to large
biases in simple RV estimators. More sophisticated estimators, such as the two-
scale estimator of Zhang et al. (2006) and the realised kernel estimator of Barndorff-
Nielsen et al. (2008) provide consistent estimates of quadratic variation, under some
conditions, by taking these autocorrelations into account in the construction of the
estimator.

3 Assuming i.i.d. noise and intra-daily homoskedasticity, Zhou (1996) derives
the MSE-optimal sampling frequency (or, equivalently, optimal choice of m) for
the RVACI estimator, which adjusts the standard RV estimator to account for
autocovariances up to order 1; Ait-Sahalia et al. (2005) derive the MSE-optimal
choice of m for the standard RV estimator under a variety of cases (i.i.d. noise, serially
correlated noise, and noise correlated with the efficient price); Andersen et al.
(2011b) derive the MSE-optimal choice of m for the RV ACq estimator, the realised
kernel estimator of Barndorff-Nielsen et al. (2008) and the two-scale estimator of
Zhang et al. (2005), under the assumption of i.i.d. noise; Hansen and Lunde (2006a)
derive the MSE-optimal choice of m for RV ACq estimators assuming i.i.d. noise;
Bandi and Russell (2006a, 2011) derive the optimal choice of the m for standard RV,
and the optimal ratio of g/m for RV ACq estimators using m intra-daily observations,
under the assumption of iid. noise; Bandi et al. (2007) consider the optimal
choice of m when the noise process is conditionally mean zero but potentially
heteroskedastic; and Barndorff-Nielsen et al. (2008) examine the optimal sampling
frequency and number of lags to use with a variety of realised kernel estimators,
under the assumption of i.i.d. noise.

4 Gatheral and Oomen (2010) provide an alternative analysis of the problem of
choosing an RV estimator via a detailed simulation study.

5 It should be noted that several of these papers derive the asymptotic
distribution of their estimators, as m — oo, under weaker assumptions on the
noise than are required to derive optimal sampling frequencies.

(2007). Further, this approach avoids the need to estimate
quantities such as the integrated quarticity and the variance of the
noise process, which often enter formulas for the optimal sampling
frequency, see Andersen et al. (2011b) and Bandi and Russell
(2008) for example, and which can be difficult to estimate in
practice. This approach does, however, require some assumptions
about the time series properties of the variables under analysis
(e.g., stationarity of certain functions of variables), which are not
required in most of the existing literature, and so the proposed
tests complement, rather than substitute, existing methods; they
provide an alternate approach to addressing the same important
problem.

The data-based methods proposed in this paper also allow
for comparisons of estimators of quadratic variation that would
be difficult using existing theoretical methods in the literature.
For example, theoretical comparisons of estimators using quote
prices versus trade prices require assumptions about the behaviour
of market participants: the arrival rate of trades, the placing
and removing of limit and market orders, etc., and theoretical
comparisons may be sensitive to these assumptions. Likewise,
theoretical comparisons of tick-time and calendar-time sampling
requires assumptions on the arrival rate of trades. Finally, the
methods of this paper make it possible to compare estimators
based on quite different assumptions about the price process, such
as the “alternation” estimator of Large (2011) which is based on
the assumption that the price process moves in steps of at most
one tick, versus, for example, the multi-scale estimator of Zhang
(2006), which is based on a quite different set of assumptions.

The methods for comparing the accuracy of RV estimators
proposed in this paper complement recent work comparing the
accuracy of forecasts based on these estimators, see Andersen
et al. (2003), Ait-Sahalia and Mancini (2008), and Ghysels and
Sinko (2011), among others. If the forecasting model in which
the estimator will be used is known by the econometrician,
then rankings of RV estimators by their forecast performance are
likely of primary interest. However, if the forecasting model is
not known by the econometrician, or if the end-use of the RV
estimator is unknown more generally (e.g., it may be used in
pricing derivatives, risk management, portfolio decisions etc.) then
ameasure of its estimation accuracy may be of interest as a general
gauge of its quality as a proxy for the true, latent, volatility. Of
course, the methods proposed in this paper may be combined with
measures of forecast accuracy to obtain overall rankings of RV
estimators.

The main empirical contribution of this paper comes from a
study of the problem of estimating the daily quadratic variation
of IBM equity prices, using high frequency data over the period
January 1996 to June 2007. I consider simple realised variance
estimators based on either quote or trade prices, sampled in
either calendar time or in tick time, for many different sampling
frequencies. Also studied are four more sophisticated estimators
of QV. I find that Romano and Wolf (2005) tests clearly reject the
squared daily return in favour of an RV estimator using higher
frequency data, and corresponding tests also indicate that there
are significant gains to moving beyond the rule-of-thumb of using
5-min calendar-time RV: estimators based on data sampled at
between 15 s and 2 min are significantly more accurate than
5-min RV. I also find that some of the more sophisticated
estimators of QV proposed in the literature significantly out-
perform 5-min RV, particularly in the latest sub-sample. In general,
[ find that using tick-time sampling leads to better estimators than
using calendar-time sampling, particularly when trade arrivals
are very irregularly-spaced. I also find that quote prices are
significantly less accurate that trade prices in the early part of
the sample, but this difference disappears in the most recent sub-
sample.
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The remainder of the paper is structured as follows. Section 2
presents the main theoretical results of this paper, Section 3
presents a simulation study of the proposed new methods, and
Section 4 presents an application using high frequency quote
and trade data on IBM over the period January 1996-June 2007.
Section 5 concludes, and all proofs are collected in the Appendix.

2. Data-based ranking of RV estimators

2.1. Notation and background

The target variable, generally quadratic variation (QV) or
integrated variance® (IV), is denoted 6;. I assume that 6; is %;-
measurable, where #; is the information set generated by the
complete path of the log-price process. For the remainder of the
paper I assume that 6 is a scalar; I discuss the extension to vector
(or matrix) target variables in the conclusion. The estimators of
6; are denoted X;;, i = 1,2, ..., k. Often these will be the same
estimator applied to data sampled at different frequencies, for
example 1-min returns versus 30-min returns, though they could
also be RV estimators based on different functional forms, different
sampling schemes, etc.

In order to rank the competing estimators we need some
measure of distance from the estimator, Xj;, to the target variable,
6;. Two popular (pseudo-)distance measures in the volatility
literature are MSE and QLIKE:

MSE L(6,X) = (6 — X)? (3)

0 0
QUKE L(0,X) = —log <7<> —1. (4)

The definition of QLIKE above has been normalised to yield a
distance of zero when § = X.The methods below apply to rankings
of RV estimators using the general class of “robust” pseudo-
distance measures proposed in Patton (2011), which nests MSE and
QLIKE as special cases:

LO,X)=CX)—C@O)+CX) O —X) (5)
with C being some function that is decreasing and twice-
differentiable function on the supports of both arguments of this
function, and where C is the anti-derivative of C. In this class
each pseudo-distance measure L is completely determined by the
choice of C. MSE and QLIKE are obtained (up to location and scale
constants) when C(z) = —z and C(z) = 1/z respectively.

For the remainder of the paper I will use the following notation
to describe the (k — 1 vector of) differences in the distances from
the target variable to a collection of RV estimators:

AL (‘s xt) = [L ('a X]t) —L ('a th) N L ('7 Xlt) —L ('7 X’(t)]/ (6)
where
Xe = [Xies ooy Xiel -

Throughout, variables denoted with a **’ below are the boot-
strap samples of the original variables obtained from the station-
ary bootstrap, P is the original probability measure, and P* is the

probability measure induced by the bootstrap conditional on the
original data.

2.2. Ranking volatility forecasts versus ranking RV estimators

Ranking volatility forecasts, as opposed to estimators, has
received a lot of attention in the econometrics literature, see
Poon and Granger (2003) and Hansen and Lunde (2005) for
two recent and comprehensive studies, and this is the natural
starting point for considering the ranking of realised volatility

6 Broadly stated, the quadratic variation of a process coincides with its integrated
variance if the process does not exhibit jumps, see Barndorff-Nielsen and Shephard
(2007) for example.

estimators. Hansen and Lunde (2006b) and Patton (2011) show
that rankings of volatility forecasts using a “robust” loss function
and a conditionally unbiased volatility proxy are asymptotically
equivalent to rankings using the true latent target variable—this is
stated formally in part (a) of the proposition below. Part (b) shows
that this result does not hold for rankings of volatility estimators,
due to a critical change in the time at which they are observable. In
a slight abuse of notation, the proposition below uses 6; to denote
conditional variance in part (a) and quadratic variation in part (b).

Proposition 1. Let 6; be the latent scalar quantity of interest, let ;
be the information set generated by the complete path of the log-price
process until time t, and let ¥; C %; be the information set available
to the econometrician at time t. Let (Xy¢, X2;) be two estimators of 6;,

and let 6, be the proxy for 6;.

(a) [Volatility forecasting] If 6; € Fr_1, Xit, Xo¢) € Fiq, éf €%
and E [§t|ﬂ_1] = 0,, and if Lis a member of the class of distance
measures in Eq. (5), then
E[L (0 X10)] S E[L (6, Xa0)]

SE [L (ét,xn)] <E [L (ét,xn)] .

(b) [Volatility estimation] If 6, € F;, Xit, Xat) € 5,0, € F: and
E [éf|ﬂ,1, 0[] = 6, and if L is a member of the class of distance
measures in Eq. (5), then
E[L (6, X1)] S E[L (6, Xar)]

@ E [L (ét, x“)] <E [L (ét,X2t>] .

All proofs are presented in the Appendix. The reason the
equivalence holds in part (a) but fails in part (b) is that estimation
error in (Xy;, Xo;) will generally be correlated with the error in 6 in
the latter case. This means that the ranking of RV estimators needs
to be treated differently to the ranking of volatility forecasts, and
it is to this that we now turn.

2.3. Ranking RV estimators

In this section we obtain methods to consistently estimate
the difference in average accuracy of competing estimators of
quadratic variation, E[AL (6, X;)], by exploiting some well-
known empirical properties of the behaviour of 8, and by making
use of a (function of a) proxy for 6;, denoted 6,. This proxy may
itself be a RV estimator, of course, and it may be a noisy estimate
of the latent target variable, but it must be conditionally unbiased.

Assumption P1. §; = 6; + v, with E [v¢|Fi_1, 6;] = 0, as.

For many assets the squared daily return can reasonably be
assumed to be conditionally unbiased: the meanreturn is generally
negligible at the daily frequency, and the impact of market
microstructure effects is often also negligible in daily returns. It
should be noted, however, that the presence of jumps in the data
generating process will affect the inference obtained using the
daily squared return as a proxy: in this case we can compare the
estimators in terms of their ability to estimate quadratic variation,
which is the integrated variance plus the sum of squared jumps
in many cases, see Barndorff-Nielsen and Shephard (2007) for
example, but not in terms of their ability to estimate the integrated
variance alone. If an estimator of the integrated variance that
is conditionally unbiased, for finite m, in the presence of jumps
is available, however, then the methods presented below apply
directly.

Assumption P2. Y, = Z]i:1 wib i, where 1 < | < 00, w; > 0Vi
and YJ_, w; = 1.
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In the propositions below I consider using a convex combina-
tion of leads of 6, as in Assumption P2, the simplest special case of
which is just a one-period lead (and so Y; = ét+1). Using leads
of the proxy is important for breaking the correlated measure-
ment errors problem, which makes it possible to overcome the
problems identified in Proposition 1. Y; is thus interpretable as
an instrument for 6;. Our focus on differences in average accu-
racy makes this a non-linear instrumental variables problem, and
like other such problems it is not sufficient to simply assume that

Corr [Yt, ét] # 0; some more structure is required. [ obtain results

in this application by considering two alternative approximations
of the conditional mean of 6;.

Numerous papers on the conditional variance (see Bollerslev
et al., 1994; Engle and Patton, 2001; Andersen et al., 2006, for
example), or integrated variance (see Andersen et al., 2004, 2007)
have reported that these quantities are very persistent, close to
being (heteroskedastic) random walks. The popular RiskMetrics
model, for example, is based on a unit root assumption for
the conditional variance, and in recent work Hansen and Lunde
(2010) find that the null of a unit root is rejected for almost
none of the Dow Jones 30 stocks. Wright (1999), in contrast,
provides thorough evidence against the presence of a unit root in
daily conditional variance for several assets. Other authors have
studied the persistence of volatility via long memory models, see
Ding et al. (1993), Ait-Sahalia and Mancini (2008), Corsi (2009),
and Maasoumi and McAleer (2008), for example. As an initial
approximation to the observed persistence in volatility, consider
the following assumption’:

AssumptionT1. 6, = 6,1 + ., with E [5;|#._1] = 0, a:s. and
6; > 0a.s.

The approximation in Assumption T1 is likely to be poor in
applications where the price process is subject to jumps that
contribute substantially to the total QV. Previous authors have
found that the jump component of daily QV is much less persistent
than the IV component, see Andersen et al. (2007, 2011a,b) for
example, and in such cases the sum of these components (ie, the
QV) may not be well approximated by Assumption T1.

2.3.1. Unconditional rankings of RV estimators

This section presents results that allow the ranking of RV es-
timators based on unconditional average accuracy, according to
some distance measure L. Importantly, the methods presented be-
low allow for the comparison of multiple estimators simultane-
ously, via the tests of White (2000) and Romano and Wolf (2005)
for example.

Proposition 2. (a) Let Assumptions P1, P2 and T1 hold, and let the
pseudo-distance measure L belong to the class in Eq. (5). Then
E[AL (6, X;)] = E[AL (Y, Xp)]

for any vector of RV estimators, X;, and any L such that these
expectations exist.
(b) If we further assume A1 and A2 in the Appendix, then:

1 T
JT <T ; AL(Y,, X,) — E[AL (8, XJ])

—IN(0, £21),

where §24 is given in the proof.
(c) If B1in the Appendix also holds then the stationary bootstrap may
also be employed, as:

asT — oo

7 Strict positivity of 6; for this random walk process can be ensured if innovation
is a strictly positive random variable with variance proportional to 6;_,for example
N = 601 (Z — 1) where Z, ~ i.i.d. logN (—07/2, 7). Many other specifications
are possible.

sup
z

1 « 1 «
p* [HT § AL(Y}, XY) — T § AL (Y, X¢)
t=1 t=1

|

P 0,

|
|

Part (a) of the above proposition shows that it is possible
to obtain an unbiased estimate of the difference in the average
distance from the latent target variable, 6;, using a suitably-
chosen volatility proxy, under certain conditions. This opens the
possibility to use existing methods from the forecast evaluation
literature to help us choose between RV estimators.® Parts (b)
and (c) of the proposition uses the existing forecast evaluation
literature to obtain moment and mixing conditions under which
we obtain an asymptotic normal distribution for estimates of the
differences in average distance. The conditions in part (b) are
sufficient to justify the use of Diebold and Mariano (1995) and
West (1996 )-style tests for pair-wise comparisons of RV estimator
accuracy. Part (c) justifies the use of the bootstrap ‘reality check’
test of White (2000), the ‘model confidence set’ of Hansen and
Lunde (2010), the SPA test of Hansen (2005), and the stepwise
multiple testing method of Romano and Wolf (2005), which are
based on the stationary bootstrap of Politis and Romano (1994).

The methods proposed above are complements rather than
substitutes for existing methods: the assumptions required for
the above result are mostly non-overlapping with the conditions
usually required for existing comparison methods. For example,
the above proposition does not require any assumptions about
the underlying price process (subject to the moment and mixing
conditions being satisfied), the microstructure noise process,
the trade or quote arrival processes, or the arrivals of limit
versus market orders. This means that tests based on the above
proposition allow for comparisons of RV estimators that would be
difficult using existing methods in the literature. However, unlike
most existing tests, the above proposition relies on a long time
series of data rather than a continuous sample of prices (i.e., T —
oo rather than m — o©0), on mixing and moment conditions,
and on the applicability of the random walk approximation for the
target variable. In Section 3 below I show that these assumptions
are reasonable in three realistic simulation designs.

In the next proposition I substitute Assumption T1 with one
which allows the latent target variable, 6;, to follow a stationary
AR(p) process. The work of Meddahi (2003) and Barndorff-Nielsen
and Shephard (2002) shows that integrated variance follows an
ARMA(p, q) model for a wide variety of stochastic volatility models
for the instantaneous volatility, motivating this generalisation of
the result based on a random walk approximation in Proposition 2.
Whilst allowing for a general ARMA model is possible, I focus on the
AR case both for the ease with which this case can be handled, and
the fact that it has been found to perform approximately as well
as the theoretically optimal ARMA model in realistic scenarios, see
Andersen et al. (2004).

1 T
7 D AL(Ye X)) — EAL (6, X0)]

t=1

asT — o0.

Assumption T2. 0, = ¢+ >+, ¢i6r—i + e, With E [n¢|Fr—1] = 0
as., 6, > 0as., ¢; # 0, the matrix ¥ defined in Eq. (36) is
invertible, and ¢ = [¢1,...,¢,] is such that 6, is covariance
stationary.

When the order of the autoregression is greater than one, I also
require Assumption R1, below. This assumption is plausible for
most RV estimators in the literature, as they are generally based

8 Note that if the accuracy of RV estimators varies over time, then this approach
allows us to make comparisons only about the average accuracy over the sample
period. If variables thought to be correlated with the accuracy of a given estimator
are known, then the conditional rankings in the next section may instead be used.
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on data from a single day, although Barndorff-Nielsen et al. (2004)
and Owens and Steigerwald (2007) are two exceptions.

Assumption R1. X; is independent of v;_; for all j > 0.

Proposition 3. Let Assumptions P1, P2 and T2 hold, let the pseudo-
distance measure L belong to the class in Eq. (5), and let R1 hold if p >

0 0 —¢
1. Further, define Qy = [¢0,0;,],,Q1 = [,5 O],P = [o]p 1:)]
where 0, is a p x 1 vector of zeros. Then:

(@ E[AL(6;, X))l = E[AL(Y;,X)]—B
where

T
B = E[ACX)] ) wg /g

i=1

M\

+ 3w (1 - 1/g?>) E [AC (X,) étﬂ]

wj Xp: <gi(j)/g10)> E [AC (Xe) ét+1fi:|

1 i=2

1

.
Il

M\

+

.
Il

for any vector of RV estlmators Xt, and any L such that these
expectations exist. The variable g0 is defmed as the first element of

the vector ( (P'Q,y ) (1- 1Q1) P~'Qy, and g is defined

as (1, i) element of the matrix (P~'Q )j.
(b) If we further assume A1 and A2 in the Appendix hold for the series
B;, defined in Eq. (35), then:

1¢ A
VT <T Z AL (Y, X;) — By —E[AL (6, Xr)])

—-IN(0,2,), asT— oo

where

1¢ L0 ad
= (TZAC(xo) (;wjgé”/g9)>

J T—j
N 1 -
+ > (1-1/)) . Z AC (Xe) By
j=1 t=1
/ 4 (I (1)
+ZwJZ &1 T+1—i ZAC(Xr)GrH i
j=1 i=2
where gi@, i=0,1,...,p;j = 1,2,...,] are estimators of g,-(")

described in the proof.
(c) If B1in the Appendix also holds then the stationary bootstrap may
also be employed, as:

1

1 ~
-7 ; AL (Ye, X¢) + By

[1
—pll=
T

—P0, asT — oo.

ZAL (v, X) — B,

=

T
Y AL(Ye,Xe) = By — E[AL (6. X))

t=1

sup|P
z

=

Proposition 3 relaxes the assumption of a random walk, at the
cost of introducing a bias term to the expected loss computed
using the proxy. This bias term, however, can be consistently
estimated under the assumption that the target variable follows

a stationary AR(p) process. The cost of the added flexibility in
allowing for a general AR(p) process for the target variable is the
added estimation error induced by having to estimate the AR(p)
parameters, and having to estimate additional terms of the form

E [AC X) étﬂ]. This estimation error will lead to reduced power

to distinguish between competing RV estimators than would
otherwise be the case.

2.3.2. Conditional rankings of RV estimators

In this section we extend the above results to consider expected
differences in distance conditional on some information set, thus
allowing the use of Giacomini and White (2006)-type tests of equal
conditional RV estimator accuracy. The null hypothesis in a GW-
type test is:

HSZE[AL(O[,Xt)|9.[_]]:O a.S.t:l,Z,.... (7)

For pair-wise comparisons of forecasts (or RV estimators, in our
case), AL (6, X;) is a scalar and the above null is usually tested by
looking at simple regressions of the form:

AL (6, X;) = L1+ e (8)

where Z,_; € ;1 is some g x 1 vector of variables thought to be
useful for predicting future differences in estimator accuracy, and
testing:

Hy: =0 versus H,:

o #0. 9

The following proposition provides conditions under which a
feasible form of the above regression:

AL(Ye, Xo) = @Zy + 8 (10)

provides consistent estimates of the parameter « in the infeasible
regression.

Proposition 4. (a) Let Assumptions P1, P2 and T1 hold, and let the
pseudo-distance measure L belong to the class in Eq. (5). If §¢—1 C
F:, then

E [AL O, Xp) |9t—1] =E [AL (Ye, Xt) |9>r—l]
as,t=1,2,...

for any vector of RV estimators, X;, and any L such that these
expectations exist.

(b) Assume AL (6;, X;) is a scalar and denote the OLS estimator of
& in Eq. (10) as &y. Then if we further assume A3 and A4 in the
Appendix:

D VPUT (67 — a) »4N (0, 1)
where
T

= % Z Zt71Z;_1:

t=1

and with 2 some symmetric and positive semi-definite estimator
such that 21 — 27 —P 0.

Part (a) of the above proposition shows that the corresponding
part of Proposition 2 can be generalised to allow for a conditioning
set ;1 C F¢ without any additional assumptions. Part (b) shows
that the OLS estimator of the feasible GW regression in Eq. (10)
is centred on the true parameter in the infeasible regression in
Eq. (8), thus enabling GW-type tests. The variance of the OLS
estimator will generally be inflated relative to the variance of
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the infeasible regression, but nevertheless the variance can be
estimated using standard methods.

The above proposition can also be extended to allow the
latent target variable, 6;, to follow a stationary AR(p) process.
The proposition below shows that the AR approximation can be
accommodated by using an adjusted dependent variable in the
GW-type regression. That is, the infeasible regression is again:

AL (Qt, Xt) = O(/Z[,p + e (11)

while the adjusted regression becomes:

AL(B X)) = &Z_p + 8. (12)

Note that the variable Z; must be lagged by (at least) the order
of the autoregression, so for an AR(p) the right-hand side of
the GW-type regression would contain Z;_,. Under the random
walk approximation the adjusted dependent variable is simply

AL (6, X;) = AL(Y;, X;), while under the AR(p) approximation
it will contain terms related to the parameters of the AR(p) model.
For example, specialising the proposition below to an AR(1) with
J=1(sothatY, = ér+1) we have:

AL©X) = AL (B, xt) - %Ac )

AC (X¢) Opy1. (13)

1- ¢
T

1
This adjusted dependent variable is constructed such that @ = «,
and thus estimating Eq. (12) by OLS yields a consistent estimator
of the unknown true parameter «. (Note thatif ¢g = Oand ¢ = 1,
which corresponds to the random walk case, the adjustment term
drops out and we obtain the same result as in Proposition 4.) Of
course, the parameters of the AR(p) process must be estimated,
leading to a feasible adjusted regression:

AL(B Xe) = 0 Zey + (14)
where
ALG X = AL (B X)) — 2T ac )
1,T
1—¢ -
PPN AT (15)
1,T

in the AR(1) and J = 1 case. The dependent variable in the feasible
adjusted regression depends on estimated AR(p) parameters, and
so standard OLS inference cannot be used.

The proposition below considers the more general AR(p) case,
with a proxy that may depend on a convex combination of leads of
6, and shows how to account for the fact that the adjustment term
involves estimated parameters. A strengthening of Assumption R1
is needed for the test of conditional accuracy if the order of the
autoregressive approximation is greater than one.

Assumption R1'. X; is conditionally independent of v;_; given
Fi_j—1,forallj > 0.

Proposition 5. Let Assumptions P1, P2 and T2 hold, let the pseudo-
distance measure L belong to the class in Eq. (5), and let R1’ hold if

p > 1. Let Qp, Qq, P and gig) be defined as in Proposition 3. Finally,
assume that AL (6;, X;) is a scalar, and define:

AL X)) = AL(Y, Xe) + AoAC (X)) + A1 AC (X,) Brg

p
+ Z MAC (X¢) Oy 1-i

i=2

where
1 J (O]
M=—— wj&, and
1 = b1
oi ! < ) ¢>i> !
M= —— — wilg’ —g’'— ), i=0,2,3,...,p
1 o ; AN '
and

AL(G:, X)) = AL(Yi, Xo) + Ao r AC (X,)

p
+ A1, 7AC(X;) Orgq + Z AT AC (Xp) Op 1
p

where )A»,-,T, i=20,1,...,pare the values of A; based on estimated
values for ¢; and gi(’) . Then:

@ E| AL X0Zp) = E[AL (0 X) 2]

foranyZ,_, € F_,.
(b) Denote the OLS parameter estimate of & in Eq. (14) as ay. If we
further assume A1 and A2 in the Appendix hold for the series Dy,
defined in Eq. (37), then:
ﬁ(&r —a)>IN(0,£2;) asT — oo.

(c) If B1 in the Appendix also holds then the stationary bootstrap may
also be employed, as:

sup |P* [[| 67 — ér|| <z] - P[|ér — o <z]| >0,
V4
asT — oo.

As in Proposition 3, the AR assumption introduces addi-
tional terms to be estimated in order to consistently estimate
E[AL (6, X;) - Z;—p]. The above proposition shows that these
terms are estimable, though the additional estimation error will of
course reduce the power of this test. It is worth noting that Propo-
sition 3 can be obtained as a special case of the above proposition
by simply setting Z;_, equal to one.

3. Simulation study

To examine the finite-sample performance of the results in the
previous section, I present the results of a small simulation study. |
use three different stochastic volatility models, each with the same
parameters as in Gongalves and Meddahi (2009). The first model is
a GARCH diffusion:

dlogPT(t) = 0.0314d(t) + v (t)

X (—0.576dW1 () +v1—0.5762dW, (t)) (16)

dv?(t) = 0.035 (0.636 — v*(t)) d(t) + 0.144v> (0)dW; (¢).

The second model is a log-normal diffusion, using the same process
for the log-price as above, but a different process for the volatility:

dlogv*(t) = —0.0136 (0.8382 + log v (1)) d(¢)

+0.1148dW(t). (17)

The third volatility model is a two-factor diffusion, which takes the
following form:

dlogPT(t) = 0.030d(t) + v(t)(—O.BOdWl(t) — 0.30dWs(t)
+y/1-2x (0.30%)aws (1))
V2(t) = exp {—1.2 + 0.04v{(t) + 1.505(0)} (18)

dv2(t) = —0.00137v?(t)dt 4 dW; (t)
dv3 () = —1.386v3 (1)dt + (14 0.25v3 (1)) dWx (0).
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The two-factor diffusion is characterized by one highly persistent
component and one less persistent component, which yields
volatility dynamics that are quite distinct from the other two
processes. We include all three processes in this study to gain
a better understanding of the finite sample properties of the
proposed tests in a variety of empirical situations.

In simulating from these processes I use a simple Euler
discretization scheme, with the step size calibrated to one-tenth of
one second (i.e., with 234,000 steps per simulated trade day, which
assumed to be 6.5 h in length). I consider sample sizes of T = 500
and T = 2500 trade days.

To gain some insight into the impact of microstructure effects,
I also consider a simple i.i.d. error term for the observed log-price:

logP (t;) = log P (4;) + & (t;) (19)
£ (4) ~iid.N(0,67).

Following Ait-Sahalia et al. (2005) and Huang and Tauchen (2005),
I set 052 to be such that the proportion of the variance of the 5-min
return (5/390 of a trade day) that is attributable to microstructure
noise is 20%:
2052

———— =10.20 (20)
Vr] 55 + 207

where r; is the open-to-close return on day t. The expression above
is from Ait-Sahalia et al. (2005), while the proportion of 20% is
around the middle value considered in the simulation study of
Huang and Tauchen (2005).

The processes to be simulated above exhibit a leverage effect
and are contaminated with noise, and so existing results on
the ARMA processes for QV implied by various continuous-time
stochastic volatility models, see Barndorff-Nielsen and Shephard
(2002) and Meddahi (2003), cannot be directly applied. This
allows us to study how the proposed tests perform in realistic
cases where both the random walk and AR(p) models are merely
approximations to the true process for daily QV; neither is correctly
specified.

The finite-sample size and power properties of the proposed
methods are investigated via the following experiment. For
simplicity I focus on pair-wise comparisons of RV estimators, each
implemented using the 1000 draws from the stationary bootstrap
of Politis and Romano (1994), thus making this a ‘reality check’-
type test from White (2000). I set the each RV estimator equal to
the true QV plus some noise:

Xit=QVt+§it’ i=1,2 (21)
G = ™ + (1 — ) oy Uy, (22)

Cor = V™" + (1 — w) oy, Uye + muy (23)

[Uie, Uae, Use] ~ i.i.d. N (0, 1)
where
vt30 min = RV?O min __ IVt.

The above structure allows the measurement error on each of the
RV estimators to be correlated with the proxy measurement error,
consistent with what is faced in practice. As a benchmark, I use
the measurement errors on RV ™" to generate this correlation,
and I set the correlation to be p = Corr [v* ™", ¢ ] = 0.5,
by setting the parameters (w, o) using Eqs. (24) and (25). The
equations below also allow me to vary the variance of the errors
associated with the RV estimators, o, and o72,. In the study of the

size of the tests I set o, /V [QV,] = 67,/V [QV(] = 0.1 (and so the
variable Us; drops out of Eq. (23)) which is approximately equal

to V [v2® ™"] /V [QV,] in this simulation. To study the power, I fix
0/,/VIQV,] =0.1,and let 6, /V [QV,] = 0.15,0.2,0.5, 1.

01
w:—p;

- (24)
252 (1 — o2
cruz = %% ( ,02) (25)
(ov = por1)
where

Vv [vf'o mi"] = O'VZ.

I consider seven unconditional comparison tests in total. The
first test is the infeasible test that would be conducted if the true
QV were observable. The power of this test represents an upper
bound on what one can expect from the feasible tests. I consider
feasible tests under both the random walk approximation (using
Proposition 2) and an AR(1) approximation (using Proposition 3).
I also consider three different volatility proxies: daily squared
returns, 30-min RV and the true QV. The latter case is considered
to examine the limiting case of a proxy with no error being put
through these tests. The rejection frequencies under each scenario
are presented in Table 1, using the QLIKE pseudo-distance measure
from Eq. (4). The corresponding results for the MSE distance
measure are similar and available upon request.

The first row of each panel of Table 1 corresponds to the case
when the null hypothesis is satisfied, and thus we expect these
figures to be close to 0.05, the nominal size of the tests. For both
sample sizes and across all three diffusion models we see that the
finite-sample size is reasonable, with rejection frequencies close
to 0.05. Most tests appear to be under-sized, meaning that they are
conservative tests of the null. Only in the cases of a short time series
and the use of the AR approximation does over-rejection of the null
occur. The results for the power of this test are as expected: the
power of the new tests are worse than would be obtained if the
true QV were observable; power is greater when using a longer
time series of data; power is worse when a noisier instrument is
used (true QV versus 30-min RV versus daily squared returns); and
the power of the test based on the AR(1) approximation is worse
than that based on the random walk approximation. The AR(1)
approximation has little power when the volatility proxy is very
noisy and T is small: in that case it appears that the estimation of
the AR parameters overwhelms any information about the relative
accuracy of the two RV estimators. The power curves for the GARCH
and Log diffusions are similar, while the power of the test under the
two-factor diffusion is generally lower, a finding consistent with
other papers using this model, see Huang and Tauchen (2005).

Next I consider a simulation study of the Giacomini and White
(2006)-style conditional comparisons of RV estimators. I use the
following design:

Xie = QV; + i (26)
Xot = QVe = AQVe_q + O (27)
G =™+ (1-w)oy Uy, i=1,2

[Use, Uy ~ iid. N (0, 1).

As in the simulation for tests of unconditional accuracy, I choose
w and o7 such that o7,/V[QV] = o%/V[QV] = 0.1 and

u
Corr [v20 ™, z4,] = Corr [v° ™", £ ] = 0.5.In the study of finite-
sample size, [ set A = 0. To study power, I consider introducing
some time-varying bias to the second RV estimator, by letting the
parameter A = 0.1, 0.2, 0.4, 0.8, and then estimate regressions of
the form:

. . 1.
L (9r+17X1r) —1L <9r+1»X2t> = op + o log 10 ; O—j+e (28)
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Table 1
Finite-sample size and power of unconditional accuracy tests.
Qv RV-30 min RV-daily

Qv* RW AR RW AR RW AR
T 500 2500 500 2500 500 2500 500 2500 500 2500 500 2500 500 2500
y GARCH diffusion
0.10 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.06 0.03 0.03 0.10 0.02
0.15 0.30 0.53 0.24 0.49 0.20 0.44 0.19 0.43 0.20 0.51 0.11 0.23 0.09 0.09
0.20 0.50 0.79 0.49 0.78 0.43 0.76 0.41 0.75 0.35 0.77 0.20 0.50 0.09 0.18
0.50 0.75 0.99 0.77 0.99 0.75 0.99 0.74 0.99 0.60 0.95 0.53 0.89 0.20 0.36
1.00 0.84 0.99 0.85 1.00 0.84 0.99 0.83 1.00 0.65 0.97 0.69 0.95 0.24 0.41

Log diffusion
0.10 0.02 0.03 0.02 0.01 0.01 0.00 0.02 0.01 0.04 0.04 0.03 0.02 0.09 0.01
0.15 0.14 0.32 0.14 0.22 0.14 0.22 0.13 0.20 0.13 0.23 0.08 0.12 0.09 0.03
0.20 0.28 0.62 0.29 0.53 0.25 0.52 0.25 0.49 0.23 0.44 0.16 0.30 0.10 0.06
0.50 0.59 0.96 0.60 0.96 0.60 0.97 0.58 0.94 0.38 0.81 0.39 0.75 0.16 0.12
1.00 0.68 0.98 0.73 0.98 0.74 0.98 0.71 0.98 0.47 0.86 0.54 0.87 0.20 0.20

Two factor diffusion
0.10 0.04 0.05 0.04 0.03 0.16 0.05 0.03 0.03 0.15 0.06 0.04 0.04 0.17 0.12
0.15 0.05 0.13 0.07 0.09 0.22 0.12 0.07 0.08 0.21 0.12 0.07 0.06 0.20 0.18
0.20 0.10 0.21 0.07 0.11 0.24 0.17 0.08 0.09 023 0.18 0.05 0.06 0.20 0.19
0.50 0.20 053 0.10 0.16 0.33 0.31 0.11 0.16 0.31 0.28 0.07 0.10 0.28 0.29
1.00 0.26 0.70 0.10 0.17 0.38 0.31 0.09 0.16 0.38 0.27 0.07 0.09 0.30 0.31

Notes: This table presents the rejection frequencies for tests of equal accuracy of two competing RV estimators, using the QLIKE pseudo-distance measure. The first two
columns correspond to the ideal infeasible case when the true QV is observable. The remaining columns present results when the available volatility proxy has varying
degrees of measurement error, under two approximations for the QV (a random walk (RW) and a first-order autoregression (AR)). The three panels correspond to three
different specifications of the continuous time diffusion generating the observed returns. All tests are conducted at the 0.05 level, based on 1000 draws from the stationary
bootstrap, and each scenario is simulated 1000 times. The null hypothesis of equal average accuracy is satisfied in the first row of each panel, while in the other rows the
second RV estimator has greater noise variance (y = O'CZZ/V [QV¢]) than the first (afl/V [QV] = 0.10).

Table 2
Finite-sample size and power of conditional accuracy tests, slope coefficient t-test.
Qv RV-30 min RV-daily

QVv* RW AR RW AR RW AR
T 500 2500 500 2500 500 2500 500 2500 500 2500 500 2500 500 2500
A GARCH diffusion
0.00 0.02 0.03 0.03 0.03 0.00 0.01 0.03 0.02 0.01 0.01 0.03 0.03 0.01 0.00
0.10 0.06 0.15 0.08 0.17 0.02 0.07 0.06 0.14 0.01 0.04 0.03 0.05 0.01 0.00
0.20 0.13 0.38 0.20 0.43 0.06 0.31 0.15 0.40 0.03 0.20 0.03 0.08 0.02 0.01
0.40 0.23 0.74 0.32 0.80 0.12 0.69 0.25 0.75 0.06 0.53 0.04 0.12 0.02 0.02
0.80 0.17 0.53 0.14 0.45 0.14 0.54 0.13 0.38 0.13 0.44 0.06 0.10 0.02 0.03

Log diffusion
0.00 0.03 0.04 0.03 0.04 0.01 0.00 0.03 0.03 0.01 0.00 0.04 0.04 0.00 0.00
0.10 0.04 0.07 0.05 0.08 0.02 0.02 0.04 0.07 0.01 0.01 0.03 0.04 0.01 0.00
0.20 0.09 0.20 0.10 0.22 0.04 0.08 0.08 0.21 0.02 0.06 0.03 0.08 0.01 0.00
0.40 0.16 0.43 0.19 0.45 0.12 0.27 0.16 0.42 0.06 0.20 0.04 0.12 0.01 0.01
0.80 0.39 0.93 0.37 0.92 0.38 0.93 0.33 0.90 0.33 0.90 0.11 0.41 0.04 0.20

Two factor diffusion
0.00 0.04 0.04 0.03 0.03 0.01 0.00 0.04 0.03 0.01 0.01 0.02 0.03 0.01 0.01
0.10 0.04 0.06 0.04 0.05 0.02 0.02 0.04 0.05 0.02 0.01 0.02 0.03 0.01 0.01
0.20 0.03 0.11 0.04 0.12 0.02 0.05 0.04 0.10 0.01 0.04 0.02 0.04 0.01 0.01
0.40 0.05 0.28 0.06 0.25 0.02 0.16 0.05 0.23 0.02 0.11 0.03 0.08 0.01 0.02
0.80 0.06 0.38 0.04 0.30 0.04 0.34 0.03 0.28 0.03 0.23 0.03 0.11 0.01 0.03

Notes: This table presents the rejection frequencies for tests on the slope coefficient in a regression for testing the equal conditional accuracy of two competing RV
estimators, using the QLIKE pseudo-distance measure. The first two columns correspond to the ideal infeasible case when the true QV is observable. The remaining columns
present results when the available volatility proxy has varying degrees of measurement error, under two approximations for the QV (a random walk (RW) and a first-order
autoregression (AR)). The three panels correspond to three different specifications of the continuous time diffusion generating the observed returns. All tests are conducted
at the 0.05 level, based on 1000 draws from the stationary bootstrap, and each scenario is simulated 1000 times. The null hypothesis of a zero slope coefficient is satisfied
in the first row of each panel, while in the other rows the second RV estimator at time t has time-varying bias equal to —1 x QV;_1, and thus the true slope coefficient is
non-zero.

where 6, is the volatility proxy: daily squared returns, 30-min RV these simulation results only for the QLIKE distance measure, see
or the true QV. I use Propositions 4 and 5 to consider two tests Tables 2 and 3; results under the MSE distance measure are similar
based on the above regression: a test that the slope coefficient and available on request.

is zero («¢q; = 0), or a joint test that both coefficients are zero The first row of each panel in Tables 2 and 3 corresponds to
(g = a1 = 0). Under the random walk approximation, I can the case where the null hypothesis is true. The tests using the
estimate these regressions by simple OLS, and I use Newey and random walk approximation are generally close to the nominal size
West (1987) to obtain the covariance matrix of the estimated of 0.05, while the tests using the AR(1) approximation appear to
parameters. Under the AR(1) approximation I use 1000 draws be somewhat under-sized, again implying a conservative test of
from the stationary bootstrap. In the interests of space I present the null. As expected, the power of the tests to detect violations
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Table 3
Finite-sample size and power of conditional accuracy tests, joint test.
Qv RV-30 min RV-daily
Qv* RW AR RW AR RW AR
T 500 2500 500 2500 500 2500 500 2500 500 2500 500 2500 500 2500
A GARCH diffusion
0.00 0.02 0.01 0.02 0.01 0.01 0.00 0.02 0.02 0.03 0.01 0.03 0.03 0.00 0.01
0.10 0.46 0.62 0.44 0.61 0.25 0.40 0.24 0.53 0.12 0.33 0.04 0.15 0.01 0.04
0.20 0.75 0.92 0.75 0.93 0.47 0.63 0.71 091 0.43 0.61 0.19 0.67 0.03 0.16
0.40 0.96 1.00 0.95 1.00 0.56 0.89 0.94 1.00 0.56 0.86 0.80 0.98 0.16 0.43
0.80 1.00 1.00 1.00 1.00 0.78 1.00 1.00 1.00 0.76 1.00 0.98 1.00 0.30 0.83
Log diffusion
0.00 0.01 0.02 0.02 0.02 0.00 0.00 0.02 0.02 0.01 0.00 0.02 0.02 0.01 0.01
0.10 0.19 0.34 0.18 0.34 0.10 0.15 0.11 0.28 0.05 0.13 0.04 0.10 0.00 0.03
0.20 0.51 0.83 0.52 0.83 0.24 0.60 0.48 0.80 0.22 0.52 0.14 0.44 0.02 0.11
0.40 0.91 1.00 0.90 1.00 0.47 0.93 0.87 1.00 0.47 0.91 0.64 0.94 0.10 0.44
0.80 1.00 1.00 1.00 1.00 0.77 1.00 0.99 1.00 0.75 1.00 0.96 1.00 0.34 0.86
Two factor diffusion
0.00 0.02 0.03 0.02 0.03 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03 0.00 0.00
0.10 0.05 0.15 0.04 0.12 0.00 0.02 0.04 0.10 0.01 0.02 0.03 0.06 0.00 0.00
0.20 0.18 053 0.12 0.38 0.01 0.08 0.10 0.35 0.00 0.05 0.05 0.17 0.00 0.01
0.40 0.39 0.93 0.25 0.75 0.01 0.25 0.23 0.71 0.01 0.18 0.14 0.45 0.00 0.04
0.80 0.56 1.00 0.41 0.95 0.03 0.43 0.38 0.93 0.02 0.32 0.26 0.74 0.02 0.08

Notes: This table presents the rejection frequencies for tests of equal conditional accuracy of two competing RV estimators, using the QLIKE pseudo-distance measure. The
first two columns correspond to the ideal infeasible case when the true QV is observable. The remaining columns present results when the available volatility proxy has
varying degrees of measurement error, under two approximations for the QV (a random walk (RW) and a first-order autoregression (AR)). The three panels correspond
to three different specifications of the continuous time diffusion generating the observed returns. All tests are conducted at the 0.05 level, based on 1000 draws from the
stationary bootstrap, and each scenario is simulated 1000 times. The null hypothesis of equal conditional accuracy is satisfied in the first row of each panel, while in the
other rows the second RV estimator at time ¢ has time-varying bias equal to —1 x QV;_.

100 \ \

Annualised volatility of IBM stock retums, using RV-5min
T T T T T

90
80
70
60
50
40
30
20
10

Annualised volatility

0
Jan96 Jan97 Jan98 Jan99 Jan00 Jan01 Jan02 Jan03 Jan04 Jan05 Jan06 Jan07

Fig. 1. IBM volatility over the period January 1996-June 2007 (computed using realised volatility based on 5-min calendar-time trade prices), annualised using the formula

ot = /252 x RV,.

of the null is lower when a less accurate volatility proxy is
employed, higher when a long time series of data is available, and
higher using the random walk approximation than using the AR(1)
approximation. The results across the three diffusion processes
are similar, though again power under the two-factor diffusion is
generally lower than under the GARCH or Log diffusion.

4. Estimating the volatility of IBM stock returns

In this section I apply the methods of Section 2 to the
problem of estimating the quadratic variation of the open-to-
close continuously-compounded return on IBM. I use data on
NYSE trade and quote prices from the TAQ database over the period
from January 1996 to June 2007, yielding a total of 2893 daily
observations.® This sample period covers several distinct periods:

9 Yuse trade and quote prices from the NYSE only, between 9:45 am and 4:00 pm,
with a g127 code of 0 or 40, a corr code of 0 or 1, positive size, and cond not equal to

the minimum tick size moved from one-eighth of a dollar to one-
sixteenth of a dollar on June 24, 1997, and to pennies on January
29, 2001.19 Further, volatility for this stock (and for the market
generally) was high over the early and middle parts of the sample,
and very low, by historical standards, in the later years of the
sample, see Fig. 1. These changes motivate the use of sub-samples
in the empirical analyses below: I break the sample into three
periods (1996-1999, 2000-2003 and 2004-2007) to determine
whether these changes impact the ranking of the competing
realised volatility estimators.

“0”,“Z", “B”, “T”, “L”, “G”, “W", “J”, or “K". Further, the data were cleaned for data
problems, following guidelines in Barndorff-Nielsen et al. (2009): trade and quote
prices of zero were dropped, as were quotes generating negative spreads or spreads
of more than 50 times the median spread for that day. If more than one price was
observed with the same time stamp then the median of these prices was used.

10 Source: New York Stock Exchange web site, http://www.nyse.com/about/
history/timeline_chronology_index.html.
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Fig. 2. ‘Volatility signature plots’ for IBM, over the period January 1996-June 2007, using 13 different sampling frequencies (from 1 second to 1 trade day), 2 different price
series (trades and quotes) and 2 different sampling schemes (calendar-time and tick-time).

I consider standard realised variance, as presented in Eq. (2),
using trade prices and mid-quote prices, and using calendar-time
sampling and tick-time sampling, for thirteen different sampling
frequencies: 1, 2, 5, 15, 30 seconds, 1, 2, 5, 15, 30 minutes, 1,
2 hours!' and the open-close return. For tick-time sampling, the
sampling frequencies here are average times between observations
on each day, and the actual sampling frequency of course varies
according to the arrival rate of observations. The combination of
two price series (trades and mid-quotes), two sampling schemes
(calendar-time and tick-time), and 13 sampling frequencies yields
52 possible RV estimators. However, calendar-time and tick-time
sampling are equivalent for the two extreme sampling frequencies
(1-s sampling and 1-day sampling) which brings the number of
RV estimators to 48 in total. In Fig. 2 I present the volatility
signature plot for these estimators for the full sample, and for
three sub-samples. These plots generally take a common shape:
RV computed on trade prices tends to be upward biased for very
high sampling frequencies, while RV computed on quote prices
tends to be downward biased for very high sampling frequencies,
see Hansen and Lunde (2006a) for example. This pattern does not
appear in the last sub-sample for this stock.

In Figs. 3 and 4 I present the first empirical contribution of
this paper. These figures present estimates of the average distance

11 | yse 62.5 and 125 min sampling rather than 60 and 120 min sampling so that
there are an integer number of such periods per trade day. I call these 1-h and 2-h
sampling frequencies for simplicity.

between each of the 48 RV estimators and the latent quadratic
variation of the IBM price process, relative to the corresponding
distance using 5-min calendar-time RV on trade prices,'? using
the QLIKE distance measure presented in Eq. (4).'* The first figure
uses the random walk (RW) approximation for the dynamics in
QV, the second uses a first-order AR approximation.’ I use a
one-period lead of 5-min calendar-time RV on trade prices as the
volatility proxy to compute the differences in average distances.' |

12 The choice of RV estimator to use as the “benchmark” in these plots is purely a
normalisation: it has no effect on the ranks of the different estimators.

13 pattonand Sheppard (2009a) present evidence that the QLIKE pseudo-distance
has greater power than the MSE distance measure in a variety of volatility
applications. The results of this section under MSE distance are available on request.
14 The point estimate of the AR coefficient for QV, obtained using the estimator
in the proof of Proposition 3, is 0.891, suggesting a strongly persistent volatility
process. [ estimate the contribution of jumps to QV using the ratio (RV-BV)/RV,
where RV is 5-min realised variance and BV is 5-min bipower variation, see
Barndorff-Nielsen and Shephard (2004b), which is a jump-robust estimator of
IV. This ratio averages 0.07 over this sample period, consistent with Huang and
Tauchen (2005) and Tauchen and Zhou (2011), indicating that jumps contribute a
small but non-zero amount to the QV of this stock.

15 Using the assumption that the squared open-to-close return is unbiased for the
true quadratic variation, [ tested whether 5-min calendar-time RV is also unbiased,
and found no evidence against this assumption at the 0.05 level. Using the squared
open-to-close return as the volatility proxy did not qualitatively change these
results, though as expected the power of the tests was reduced.
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Fig. 3. Differences in average distance, estimated using a random walk approximation, for the 48 competing RV estimators, relative to 5-min calendar-time RV on trade
prices. A negative (positive) value indicates that the RV estimator is better (worse) than 5-min calendar-time RV on trade prices. The estimator with the lowest average

distance is marked with a vertical line down to the x-axis.

present these results for the full sample and for three sub-samples
(1996-1999, 2000-2003, 2004-2007).

The conclusion from these pictures is that there are clear
gains to using intra-daily data to compute RV, consistent with the
voluminous literature to date: the estimated average distances to
the true QV for estimators based on returns sampled at 30-min
or lower frequencies are clearly greater than those using higher-
frequency data (formal tests of this result are presented below).
Using the RW approximation, the optimal sampling frequency is
either 30 s or 1 min, and the best-performing estimator over the
full sample is RV based on trade prices sampled in tick time at 1-
min average intervals. The AR approximation gives the same result
for the full sample and similar results in the sub-samples.

4.1. Comparing many RV estimators

To formally compare the 48 competing RV estimators, I use
the stepwise multiple testing method of Romano and Wolf (2005).
This method identifies the estimators that are significantly better,
or significantly worse, than a given benchmark estimator, while
controlling the family-wise error rate of the complete set of
hypothesis tests. That is, for a given benchmark estimator, X; o, it
tests:

HY E[L (6, Xe0)] = E[L (6, Xes)], fors=1,2,...,47
versus
HY L E[L (6, Xe.0)] > E[L (6 Xe.s)]

or

B < E[L (00 X,0)] < E[L (0 %)

and identifies which individual null hypotheses, H, ©  can be
rejected. [ use 1000 draws from the stationary bootstrap of Politis
and Romano (1994), with an average block size of 20, for each test.

I consider two choices of “benchmark” RV estimators: the
squared open-to-close return, which is the most commonly-used
volatility estimator in the absence of higher frequency data, and
an RV estimator based on 5-min calendar-time trade prices, which
is based on a rule-of-thumb from early papers in the RV literature
(see Andersen et al., 2001b and Barndorff-Nielsen and Shephard,
2002 for example), which suggests sampling “often but not too
often”, so as to avoid the adverse impact of microstructure effects.

Table 4 reveals that every estimator, except for the squared
open-to-close quote-price return, is significantly better than
squared open-to-close trade-price return, at the 0.05 level. This is
true in the full sample and in all three sub-samples, using both the
RW approximation and the AR approximation. This is very strong
support for using high frequency data to estimate volatility.

Table 5 provides some evidence that the 5-min RV estimator
is significantly beaten by higher-frequency RV estimators. Under
the RW approximation, the Romano-Wolf method indicates that
RV estimators based on 15-s to 2-min sampling frequencies
are significantly better than 5-min RV. Estimators with even
higher sampling frequencies are not significantly different, while
estimators based on 15-min or lower sampling are found to be
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Fig. 4. Differences in average distance, estimated using an AR(1) approximation, for the 48 competing RV estimators, relative to 5-min calendar-time RV on trade prices. A
negative (positive) value indicates that the RV estimator is better (worse) than 5-min calendar-time RV on trade prices. The estimator with the lowest average distance is
marked with a vertical line down to the x-axis.

Table 4

Tests of equal RV accuracy, with squared open-to-close returns as the benchmark.

Sampling frequency

RW approximation

AR approximation

Trades Quotes Trades Quotes

Calendar Tick Calendar Tick Calendar Tick Calendar Tick
1s s - L4 - L L4 - IS -
2s s S S L4 L4 S S S
5s s L4 L4 4 v L4 L2 LLL4 L4
15s L4 ML L4 ML L4 ML L4 ML L4 IS IS IS
30s s S S L4 L4 S S S
1 min s S L4 L4 L4 L4 L2 L4
2 min L4 L L4 L L4 ML L4 ML L4 L4 S L4
5 min s L4 L4 L4 L4 IS S S
15 min s L4 L4 L4 L4 L4 L4 L4 4
30 min 44 L4444 L4 L4 L4 244 444 L4
1h s L L4 L4 L L4 L L4 IS S IS
2h s L4 4 L4 L4 L4 S S S
1day * - o - * - NN -

Notes: This table presents the results of Romano and Wolf (2005) stepwise testing of the 48 realised volatility estimators considered in the paper (13 frequencies, 2 sampling
schemes, 2 price series, less overlaps which are marked with “-"). Two approximations for the dynamics of QV are considered: a random walk (RW) and a first-order
autoregression (AR). In this table the benchmark RV estimator is the squared open-to-close trade price return, marked with an %. Estimators that are significantly better
than the benchmark, at the 0.05 level, are marked with v, estimators that are significantly worse than the benchmark are marked with x, and estimators that are not
significantly different are marked with ~. The four characters in each element of the above table correspond to the results of the test for the full sample (1996-2007), first
sub-sample (1996-1999), second sub-sample (2000-2003) and third sub-sample (2004-2007) respectively.

significantly worse. The results also indicate that trade prices
are preferred to quote prices for most of this sample period.
Only in the last sub-sample are quote prices at 15-s to 2-min
sampling frequencies found to out-perform 5-min RV using trade
prices. In the earlier sub-samples quote prices were almost always

worse than trade prices. This result will be explored further in
the analysis below. Under the AR approximation very few RV
estimators could be distinguished from the 5-min RV estimator
using the Romano-Wolf method, suggesting that the gains from
moving beyond 5-min sampling are hard to identify in the presence



296

Table 5

Tests of equal RV accuracy, with the 5-min RV as benchmark.

AJ. Patton / Journal of Econometrics 161 (2011) 284-303

Sampling frequency

RW approximation

AR approximation

Trades Quotes Trades Quotes

Calendar Tick Calendar Tick Calendar Tick Calendar Tick
1s o~ - X X X ~ - ~~ X~ - o -
2s o ~r~ X~ X X X ~ X X X ~ ~~ X~ ~~ X~ ~r~~ o~
5s NN ~~ X~ X X XV X X XV ~~ X~ ~~ X~ X~~~ X~
15s S o~ X X X X X~ ~r~~ o~ X~~~ X oo
30s I~ L4 X X XV XX ~/ o ~r~ X~~~ X~
1 min L4 L4 4 XX~/ ~ X~/ ~r~~ ~r X~ X~~~
2 min L4 S ~ X~V ~ X ~/ ~~~~ ~~ o~ X~~~ ~ron~
5 min * o~ X X X ~ ~ror~ * o~ N~ oo
15 min X X XX X X XX X X XX X X XX o~ o~ o o~
30 min X X XX X X XX X X XX X X XX ~~~ ~r~ I oo
1h X X XX X X XX X X XX X X XX ~r o s oo
2h X X XX X X XX X X XX X X XX o~ o~ o oo~
1day X X XX - X X XX - ~~~~ - o -

Notes: This table presents the results of Romano and Wolf (2005) stepwise testing of the 48 realised volatility estimators considered in the paper (13 frequencies, 2 sampling
schemes, 2 price series, less overlaps which are marked with “~ ). Two approximations for the dynamics of QV are considered: a random walk (RW) and a first-order
autoregression (AR). In this table the benchmark RV estimator is based on 5-min trade prices sampled in calendar time, marked with an %. Estimators that are significantly
better than the benchmark, at the 0.05 level, are marked with v, estimators that are significantly worse than the benchmark are marked with x, and estimators that are not
significantly different are marked with ~. The four characters in each element of the above table correspond to the results of the test for the full sample (1996-2007), first

sub-sample (1996-1999), second sub-sample (2000-2003) and third sub-sample (2004-2007) respectively.

of additional estimation error from the AR model, consistent with
the simulation results in Section 3.

4.2. Comparing more sophisticated estimators of QV

As noted in the Introduction, the past decade has yielded great
progress on the estimation of asset price volatility using high
frequency data. The realised volatility estimator in Eq. (2) was
the first, and remains the simplest, such estimator. In this Section
I compare the performance of a selection of more sophisticated
estimators of quadratic variation with simple RV estimates.'® The
first two estimators are the two-scale estimator (TSRV) of Zhang
etal.(2005) and the multi-scale estimator (MSRV) of Zhang (2006).
These estimators use realised variances computed using more than
one sampling frequency, which is shown, under certain conditions,
to lead to consistency of the estimator in the presence of noise and
to efficiency gains. For TSRV I use one tick as the highest frequency
and use the optimal “sparse” sampling frequency presented in that
paper. For MSRV I again set one tick as the highest frequency and
use the formula from that paper for the frequencies of the other
estimates and the weights used to combine these estimates. Next,
I consider the “realised kernel” (RK) of Barndorff-Nielsen et al.
(2008). Following their empirical application to General Electric
stock returns, I use their “modified Tukey-Hanning,” kernel and
1-min tick-time sampling, and choose the bandwidth using the
approach in Barndorff-Nielsen et al. (2009). Finally, I consider
the “realised range-based variance” (RRV) of Christensen and
Podolskij (2007) and Martens and van Dijk (2007). I use 5-min
blocks, as in Christensen and Podolskij (2007), with 1-min prices
within each block. I compare these estimators with RV based on
calendar-time trade prices sampled at 1s, 5 min and 1 day, which
gives a total of seven estimators.”

I compare each of these estimators against a RV estimator
based on 5-min calendar-time trade prices, using a bootstrap
version of the Diebold and Mariano (1995) test. I consider both
the RW approximation and the AR approximation, drawing on

16 These estimators were computed using Kevin Sheppard’s “Oxford Real-
ized” toolbox for Matlab, http://realized.oxford-man.ox.ac.uk/data/code.

17 patton and Sheppard (2009b) consider these, and some other, RV estimators in
a study of optimal combinations of estimators of QV. A comprehensive study of the
performance across several asset classes of the various estimators of QV is being
pursued in Patton and Sheppard (2010).

Propositions 2 and 3 respectively. The results are shown in Table 6.
Under the RW approximation all four of the more sophisticated
estimators of QV out-perform simple RV> ™™ over the full sample,
with the differences being significant for RK and RRV. Under the AR
approximation the significance is reduced, and none of the more
sophisticated estimators outperform RV> ™™ in the full sample. It
is noteworthy that in the latter sub-sample (2004-2007) all four of
the more sophisticated estimators significantly beat RV> ™" under
both the RW and AR approximations, perhaps indicating that in
latter periods, when turnover and liquidity are higher, there are
greater gains to using more sophisticated estimates of QV.

4.3. Conditional comparisons of RV estimators

To investigate the possible sources of the under- or out-
performance of certain RV estimators, I next undertake Giacomini
and White (2006)-style tests of conditional estimator accuracy.
As discussed in Section 2.3.2, the null hypothesis of interest in a
Giacomini-White (GW) test is that two competing RV estimators
have equal average accuracy conditional on some information set
g, 4, thatis:

Hg < E[L (6, Xc0) 19e—1] — E[L (6t Xes) 19e—1] =0
as.t=1,2,....
One way to implement a test of this null is via a simple regression:

L (Ota Xt,o) —1L (Qt, Xt,s) = Bo+ B1Zi—1 + & (29)
where Z;_; € §;_1, and then test the necessary conditions:
Ho:Bo=p1=0 (30)
versus

Hy,: Bi# 0 forsomei=0, 1.

4.3.1. High-frequency versus low-frequency RV estimators

[ first use the GW test to examine the states where the
gains from using high-frequency data are greatest. One obvious
conditioning variable is recent volatility: distribution theory for
standard RV estimators, see Andersen et al. (2003) and Barndorff-
Nielsen and Shephard (2004a) for example, suggests that RV
estimators are less accurate during periods of high volatility,
and one might expect that the accuracy gains from using high-
frequency data are greatest during volatile periods. Using the RW
approximation, I estimate the following regression, and obtain the
results below, with robust t-statistics presented in parentheses


http://realized.oxford-man.ox.ac.uk/data/code
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Table 6
Comparing RV® ™" with more sophisticated estimators.
Estimator RW approximation AR approximation
Avg AL t-statistics on AL Avg AL t-statistics on AL
99-07 96-99 00-03 04-07 99-07 96-99 00-03 04-07
RV!S ) —0.01 —1.02 —2.74 1.18 —-1.73 0.10 2.44 1.12 2.10 —0.65
RYS min 0.00 * * * * 0.00 * * * *
RV 4y 29.66 9.77 5.81 5.32 8.93 23.03 6.08 4.50 3.97 8.62
TSRV —0.00 —0.09 3.26 —0.95 —3.22 0.03 1.67 0.32 0.97 —2.39
MSRV —0.00 —0.29 3.12 —0.90 —3.52 0.02 161 —0.03 0.87 —2.58
RKty2 —0.01 —2.14 0.91 —1.86 —5.66 0.02 1.32 —1.27 0.61 —4.41
RRV —0.02 —341 0.49 —2.75 —6.56 0.01 0.73 —1.66 0.41 —5.09

Notes: This table presents the results of comparisons of the accuracy of seven estimators of QV: realised variance (RV) sampled at 1-s, 5-min and 1-day, two-scales realised
variance (TSRV), multi-scale realised variance (MSRV), realised kernel with Tukey-Hanning kernel (RKry; ), and realised range-based variance (RRV). Two approximations
for the dynamics of QV are considered: a random walk (RW) and a first-order autoregression (AR). In this table the benchmark RV estimator is based on 5-min trade prices
sampled in calendar time, marked with an . The full sample differences in average QLIKE accuracy, relative to RV® ™", are reported in the first column of each panel, with
negative (positive) values indicating that the estimator is better (worse) than RV® ™", Diebold-Mariano t-statistics tests of the differences in accuracy are presented in the

remaining columns, for the full sample (1996-2007), first sub-sample (1996-1999), second sub-sample (2000-2003) and third sub-sample (2004-2007).

below the parameter estimates’®:

L (Yt, RV§‘““”) ) (y[, RV® ”““)) = 3367 +e 31)

L (Yt, Rvﬁda“”) ) (Yt, RV® “’“’)) —24.94+17.85Z_ 1 + e (32)
(11.10)  (2.55)

where

1 10
Zi1 =log - ; Y.

The first of the above regression results show that daily squared

returns, RV®"Yare less accurate on average than RV based
on 5-min sampling. The positive and significant coefficient on
lagged volatility in the second regression is consistent with RV
distribution theory, and indicates that the relative accuracy of daily
squared returns deteriorates during high volatility periods. The p-
value from a test that both parameters in the second regression are
zero is less than 0.001, indicating a strong rejection of the null of
equal conditional accuracy.

Using an AR approximation and the bootstrap methods
presented in Proposition 5, very similar results are obtained'?:

L (Y[, Rvﬁd‘“‘”) .y (Yt, RV® m“’)) = 3354+ (33)

L (Yt, RV§‘“‘“”) ) (y[, RV® ”““)) =19.93+27.76 Z_, + e, (34)
(5.75)  (3.45)

with bootstrap p-values from tests that the parameters in both

models are zero less than 0.001 in both cases.

4.3.2. Tick-time versus calendar-time sampling

I next use the GW test of conditional accuracy to compare
calendar-time sampling with tick-time sampling. Theoretical
comparisons of tick-time and calendar-time sampling requires
assumptions on the arrival rate of trades, while the methods
presented in this paper allow us to avoid making any specific
assumptions about the trade arrival process. For example, in a
parametric “pure jump” model of high frequency asset prices,

18 Tests for zero autocorrelation in the regression residuals and squared regression
residuals, up to the tenth lag, yield p-values of less than 0.01 in all cases, motivating
the use of a block bootstrap to capture this serial dependence. The R? of the second
of these regressions is 0.005.

19 Tests for zero autocorrelation in the regression residuals and squared regression
residuals, up to the tenth lag, yield p-values of less than 0.01 in all cases, again
motivating the use of a block bootstrap to capture this serial dependence. The R?
of the second of these regressions is 0.011.

Oomen (2006) finds that tick-time sampling leads to more accurate
RV estimators than calendar-time sampling when trades arrive
at irregular intervals. In general, if the trade arrival rate is
correlated with the level of volatility, consistent with the work
of Easley and O’Hara (1992), Engle (2000) and Manganelli (2005),
then using tick-time sampling serves to make the sampled high-
frequency returns closer to homoskedastic, which theoretically
should improve the accuracy of RV estimation, see Hansen and
Lunde (2006a) and Oomen (2006). I use the log volatility of trade
durations to measure how irregularly-spaced trade observations
are: this volatility will be zero if trades arrive at evenly-spaced
intervals, and increases as trades arrive more irregularly.

I estimate a regression of the difference in the accuracy of a
calendar-time RV estimator and a tick-time estimator with the
same average sampling frequency, on a constant and the lagged log
volatility of trade durations, for each of the frequencies considered
in the earlier sections,?® and present the results in Table 7. The
first column of Table 7 reports a Diebold and Mariano (1995)-
type test of the difference in unconditional average accuracy,
across the sampling frequencies, using the RW approximation.
This difference is positive and significant for the highest three
frequencies (2, 5 and 15 s) and negative and significant for all
but one of other frequencies, indicating that tick-time sampling is
better than calendar-time sampling (has smaller average distance
from the true QV) for all but the very highest frequencies. Further,
Table 7 reveals that for all but one frequency the slope coefficient is
negative, and 6 out of 11 are significantly negative, indicating that
the accuracy of tick-time RV is even better relative to calendar-
time RV when trades arrive more irregularly. The results under
the AR approximation are very similar to those under the RW
approximation, though with slightly reduced significance.

4.3.3. Quote prices versus trade prices

Finally, I examine the difference in accuracy of RV estimators
based on trade prices versus quote prices. Theoretical comparisons
of RV estimators using quote prices versus trade prices require
assumptions about the behaviour of market participants: the
arrival rate of trades, the placing and removing of limit and market
orders, etc., and theoretical comparisons may be sensitive to these
assumptions. The data-based methods of this paper allow us to
avoid such assumptions.

As a simple measure of the potential informativeness of quotes
versus trades, I consider using the ratio of the number of quotes

20 Calendar-time sampling and tick-time sampling are equivalent for the 1-s and
1-day frequencies, and so these are not reported.
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Table 7
Tests of equal unconditional and conditional RV accuracy: tick-time versus calendar-time sampling.

Sampling frequency RW approximation AR approximation
Uncond Conditional Uncond Conditional
Avg Const Slope Joint p-val Avg Const Slope Joint p-val
(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

2s 0.01* 0.08* —0.01* 0.00 0.03* 0.27* —0.04* 0.00
(13.92) (3.52) (~2.73) (4.99) (2.98) (—-2.81)

5s 0.02* 0.07* —0.01* 0.00 0.04* 0.34* —0.05* 0.00
(12.95) .79 (~2.01) (4.73) (2.67) (—2.49)

15s 0.01* —0.15 0.03 0.00 0.01 —0.27* 0.05* 0.00
(4.03) (—3.88) (3.97) (1.20) (—2.83) (2.86)

30s —0.00 —0.02 0.00 0.08 —0.00 —0.14 0.02 0.06
(—1.35) (—0.48) (0.41) (—0.54) (—1.16) (1.13)

1 min —0.00* 0.07* —0.01* 0.01 0.01 0.16 —0.03 0.01
(—2.80) (2.29) (—2.39) (1.11) (1.83) (—1.78)

2 min —-0.01* 0.02 —0.00 0.00 0.01 0.22* —0.04* 0.02
(—=3.31) (0.57) (—0.71) (1.17) (2.02) (—2.03)

5 min —0.02* —0.01 —0.00 0.00 0.02 0.49* —0.09* 0.02
(—6.28) (—0.10) (—0.23) (0.67) (2.09) (—2.15)

15 min —0.06* 0.17 —0.04 0.00 —0.02 0.69* —0.13 0.03
(—6.93) (1.03) (—1.35) (—0.78) (2.09) (—2.20)

30 min —0.06* 0.70* —0.14* 0.00 —0.02 1.29* —0.24* 0.01
(—4.02) (2.22) (—2.39) (—0.49) (2.29) (—2.40)

1h —0.25* 1.97 —0.40 0.00 —0.14 2.99 —0.56 0.17
(~3.59) (1.63) (~1.78) (~1.52) (1.92) (—2.00)

2h —1.00* 10.66 -2.10* 0.00 —0.86 9.24 —1.82 0.10
(=2.75) (1.94) (—2.10) (=1.79) (1.15) (—1.25)

Notes: This table presents the estimated difference in average distance of tick-time and calendar-time RV estimators, L (Y,, RVfiCk(h)) —L (Y[, RVfa](h’), either unconditionally,

or via aregression on a constant and one-period lag of the log variance of intra-day trade durations, which is a measure of the irregularity of the arrivals of trade observations.
A negative slope coefficient indicates that higher volatility of durations leads to an improvement in the accuracy of the tick-time RV estimator relative to a calendar-time
RV estimator using the same (average) frequency. Trade prices are used for all RV estimators. The fourth and eighth columns present the p-values from a chi-squared test
that both coefficients are equal to zero. Two approximations for the dynamics of QV are considered: a random walk (RW) and a first-order autoregression (AR). Inference
under the RW approximation is based on Newey and West (1987) standard errors, while inference under the AR approximation is based on 1000 samples from the stationary
bootstrap. All parameter estimates that are significantly different from zero at the 0.05 level are marked with an asterisk.

Table 8
Tests of equal unconditional conditional RV accuracy: quote prices versus trade prices.

Sampling frequency RW approximation AR approximation

Uncond Conditional Uncond Conditional
Avg Const Slope Joint p-val Avg Const Slope Joint p-val
(t-stat) (t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

1s 0.11* 0.33* —0.14* 0.00 0.02 0.44* -0.27* 0.00
(9.20) (10.74) (~8.66) (034) (5.48) (~383)

2s 0.11* 0.34* —0.14* 0.00 0.02 0.43* —0.26* 0.00
(9.29) (1122) (~9.38) (051) (5.97) (~437)

5s 0.11* 0.34* —0.14* 0.00 0.03 0.41* —0.24* 0.00
(10.03) (12.30) (~10.59) (0.97) (6.16) (—4.50)

15s 0.11* 0.30* —0.13* 0.00 0.05* 0.34* —0.18* 0.00
(11.99) (13.75) (~11.52) 21 (6.67) (—5.06)

30s 0.08* 0.24* —0.10* 0.00 0.05* 0.25* —0.13* 0.00
(12.56) (13.70) (~11.43) (2.66) (6.52) (~5.53)

1 min 0.06 * 0.16* —0.07* 0.00 0.03* 0.16* —0.08* 0.00
(11.90) (12.34) (=10.21) (2.28) (5.97) (—5.36)

2 min 0.04* 0.11% —0.05* 0.00 0.02* 0.10* —0.05* 0.00
(11.08) (10.30) (~8.63) @.11) (4.40) (—4.33)

5 min 0.03* 0.10* —0.05* 0.00 0.02* 0.09* —0.04* 0.00
(8.72) (8.80) (~7.85) (3.25) (4.39) (—4.08)

15 min 0.03* 0.07* —0.03* 0.00 0.02* 0.07* —0.03* 0.00
(6.33) (5.21) (—4.07) (2.28) (3.63) (—3.25)

30 min 0.03* 0.07* —0.03* 0.00 0.03* 0.07* —0.03* 0.00
(4.38) (3.17) (—2.36) (4.38) (3.17) (—2.36)

1h —0.04 —0.17 0.08 0.63 —0.05 —0.13 0.05 0.67
(—0.77) (—0.90) (0.93) (—0.76) (—0.68) (0.52)

2h —0.19 —1.06 0.55 0.25 —0.21 —1.09 0.56 0.37
(—0.74) (—1.47) (1.63) (—0.74) (—1.34) (1.44)

1day 1.98 10.70 —5.52 0.62 1.51 10.76 —5.85 0.66
(0.41) (0.84) (~0.95) (0.25) (0.64) (~0.77)

Notes: This table presents the estimated difference in average distance of quote-price and trade-price RV estimators, L (Y[, RV?“me(h))

.y (Yt, RVF"’dE(m), either
unconditionally, or via a regression on a constant and one-period lag of the ratio of the number of quote observations per day to the number of trade observations per
day. A negative slope coefficient indicates that an increase in the number of quote observations relative to trade observations leads to an improvement in the accuracy of the
quote-price RV estimator relative to a trade-price RV estimator with the same frequency. Calendar time sampling is used for all estimators. The fourth and eighth columns
present the p-values from a chi-squared test that both coefficients are equal to zero. Two approximations for the dynamics of QV are considered: a random walk (RW) and
a first-order autoregression (AR). Inference under the RW approximation is based on Newey and West (1987) standard errors, while inference under the AR approximation
is based on 1000 samples from the stationary bootstrap. All parameter estimates that are significantly different from zero at the 0.05 level are marked with an asterisk.

per day to the number of trades per day. I regress the difference
in the accuracy of a quote-price RV and trade-price RV, with the
same calendar-time sampling frequency, on a constant and the
lagged ratio of the number of quotes to the number of trades. I do
this for each of the frequencies considered in the earlier sections,
and present the results in Table 8. The first column of Table 8
reveals that quote-price RV had larger average distance to the true

QV than trade-price RV for all but two sampling frequencies, and
for 10 out of 13 this difference is significant at the 0.05 level.
However, the results of the test of conditional estimator accuracy
reveal that quote-price RV improves relative to trade-price RV as
the number of quote observations increases relative to the number
of trades: 11 out of 13 slope coefficients are negative, and 10 of
these are statistically significant. Results are very similar under the
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AR approximation, though with slightly reduced t-statistics. The
ratio of quotes per day to trades per day for IBM has increased from
around 0.5 in 1996 to around 2.5 in 2007, and may explain the sub-
sample results in Table 5: as the relative number of quotes per day
has increased, its relative accuracy has also increased. In the early
part of the sample, quote-price RV was significantly less accurate
than trade-price RV, however that difference vanishes in the last
sub-sample, where quote and trade prices, of the same frequency,
yield approximately equally accurate RV estimators.>!

5. Conclusion

This paper considers the problem of ranking competing realised
volatility (RV) estimators, motivated by the growing literature
on nonparametric estimation of price variability using high-
frequency data, see Andersen et al. (2006) and Barndorff-Nielsen
and Shephard (2007) for recent surveys. I provide conditions
under which the relative average accuracy of competing estimators
for the latent target variable can be consistently estimated from
available data, using “large T"”, asymptotics, and show that existing
tests from the forecast evaluation literature, such as Diebold
and Mariano (1995), West (1996), White (2000), Hansen et al.
(forthcoming), Romano and Wolf (2005) and Giacomini and White
(2006), may then be applied to the problem of ranking these
estimators. The methods proposed in this paper eliminate the need
for specific assumptions about the properties of the microstructure
noise, and facilitate comparisons of RV estimators that would be
difficult using methods from the extant literature.

I apply the proposed methods to high frequency IBM stock
price data between 1996 and 2007 in a detailed empirical study.
I consider simple RV estimators based on either quote or trade
prices, sampled in either calendar-time or in tick-time, for several
different sampling frequencies. Romano and Wolf (2005) tests
reject the squared daily return and the 5-min calendar-time RV in
favour of an RV estimator using data sampled at between 15 s and
5 min. In general, I found that using tick-time sampling leads to
more accurate RV estimation than using calendar-time sampling,
particularly when trades arrivals are very irregularly-spaced, and
RV estimators based on quote prices are significantly less accurate
than those based on trade prices in the early part of the sample,
but this difference disappears in the most recent sub-sample of the
data.
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21 Using data from the first half of 2007, corresponding to the end of the last sub-
sample in this paper, Barndorff-Nielsen et al. (2009) also find that estimators based
on quote prices are very similar to those based on trade prices, when kernel-based
estimators of the type in Barndorff-Nielsen et al. (2008) are used, or when standard
RV estimators are used on slightly-lower frequency data (1-5-min sampling rather
than 1-s sampling).

Appendix. Proofs

Additional assumptions used in parts of the proofs below:
Let A, = [AL(6, Xo), AC(X)' (Y: — 6,)]’, let Ar denote the
sample mean of A;, and let A; ; denote the ith element of A;.

Assumption A1. E [|A,-,1 |6+8] < oo for some & > 0 and for all i.

Assumption A2. {A;}is o-mixing of size —3 (6 + ¢) /¢.
Assumption A3. E [Z;_qe;] = Oforall t.

Assumption A4(a). {[Z;_,, &]} is a-mixing of size — (2 +¢) /¢
for some & > 0.

Assumption A4(b). E [|Zt_1,ié[|2+s] <oofori=1,2,...,qand
all t.

Assumption A4(c). V; =V [T‘l/ 230, Z[,1é[] is uniformly pos-
itive definite.

Assumption A4(d). E [|Z[_1,,A < oo for some § > 0 and

alli=1,2,...,qandallt.

|2+s+28]

Assumption A4(e). M\ = E [T*1 ZrT=1 Z[_1Z;71] is uniformly
positive definite.

Assumption B1. If pr is the inverse of the average block length in
Politis and Romano’s (1994) stationary bootstrap, then pr — 0and
T X pr — 0.

Proof of Proposition 1. The proof of part (a) is given in Hansen
and Lunde (2006b). I repeat part of it here to show where that
proof breaks down in part (b). Consider a second-order mean-

value expansion of the pseudo-distance measure L (ét, X,-[) around
(O, Xie):

= oL (0r, Xit) (5
L (thit) =1L (Qtvxi[) + T (9t - 9[)

10%L (0. Xit) 2
+ 3 902 ( b — et)
= LX) + (€ (X0 = C @) (B —0,)

2 @) (G-0)

where 6; = A0, + (1=2xp) 6, for some A, € [0, 1], and using the
functional form of L in Eq. (5). The third term in the above equation
does not depend on X;;, and so will not affect the ranking of
(X1¢, Xo¢). In volatility forecasting applications, 6; is the conditional
variance and so 6; € %;_1, and X;; is a volatility forecast, and so
Xir € F:_1. In that case, this allows

E[c o —c@n- (5 o) 17]

= (€ X —C@)- (E[alFq]-0)=0
by the unbiasedness of ét for 6; conditional on #;_1. Using the law
of iterated expectations we obtain E [(C Xit) — C(6)) - (ét — 9[)]

— 0, and thus E [AL (ét, xt)] — E[AL (6., X)].

(b) When X;; is a realised volatility estimator and 6; is the in-
tegrated variance or quadratic variation we have 6, € #; and
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(Xi[, ét) € %;, which means we cannot employ the above reason-
ing directly. If we could assume that Corr[C Xit) — C(6y), 6 —
9[|T[_1] = 0Vi,in addition to E [§[|Tt] = 6;, then we would have

B[ o —c@ (- 60) 171
= E[C () — C (60 %1 1E [0 — 60171

= E[C (%) = C (00 1] E [E [l Fir, 6] — 00l Ficr |
=0.

However it is not true that Corr[C (Xi¢) — C (8) , O — 6| Fi_1]
= 0 for all empirically relevant combinations of RV estimators and
volatility proxies. In fact, if Xy = 6; and L = MSE, a very nat~ura1
case to consider, then C(z) = —z and Corr[C Xit) —C(6), 6, —
49t|3"t,1] = Corr[@t — ét, ét — 9[|7~"[,1] = —1. In general, we
should expect Corr[C (Xi) — C (6,) , 6, — 6;|F;_1] # 0. This is the
correlation between the error in &, and something similar to the
“generalised forecast error”, see Patton and Timmermann (2010)
for example, of Xj;. If the proxy, 6;, and the RV estimators, Xj;, use
the same or similar data then their errors will generally be corre-
lated and this zero correlation restriction will not hold, and thus
E[(C (Xit) — C (6)) (6 — 6;)] # 0, which breaks the equivalence

of the ranking obtained using 6 with that using ;. 0O

Proof of Proposition 2. (a) See the proof of part (a) Proposition 4
and set §;_4 to be the trivial information set.
(b) Note that

1 T
7 D AL(Ye X)) — E[AL (0, X0)]

t=1

1 T
= 2 AL® X)) —E[AL (. X0)]

t=1

1 T
+z Z {AL (Ye, X;) — AL (6, Xp)}

t=1

1 T
= ? Z AL (9[, Xt) —E [AL (etaxf)]

t=1

1 T
+ 5 D ACXK) (Y —6)
t=1

=Ar — E[A/]
where
A= [AL(6, X)), AC (X (Y: — 6]
since E[AC (X;¢) (Y; — 6;)] = 0 from part (a). Under Assump-

tions A1 and A2, Theorem 3 of Politis and Romano (1994) provides:
VT (Ar —E[Ac]) =N (0, Vs)

where V, is the long-run covariance matrix of A;. Let v denote a
vector of ones, and note that

1 T
T (T Z AL (Y, X)) — E[AL (6, X»])

=1
= VT (Ar —E[A]) >IN (0, 2)
where £2; = /V,t. It should be noted that Assumptions A1 and

A2 can hold despite the random walk Assumption T1, if 6; and X;;
obey a some form of cointegration, linked to the distance measure

employed. If MSE is employed, T1, A1 and A2 require that these
variables obey standard linear cointegration, with cointegrating
vector [1, —1]. For other distance measures a form of non-linear
cointegration must hold.

(c) Follows directly from Theorem 3 of Politis and Romano (1994),
under the additional Assumption B1. O

Proof of Proposition 3. (a) Using the second-order mean-value
expansion of the loss function from the proof of Proposition 4, we
obtain E [AL (Y;, X;)] = E[AL (6, X;)] + B, where B = E[ AC (X,)
(Ye —0)] = Y, E[AC (Xo) (Besj — 0)] = Ty wE[AC (Xo)
(B — 00)] = Y @E[AC (Xo) (E¢ [0e+j] —6:) ] under P1and P2.
Allowing for] > 1requires computingj (> 1)-step ahead forecasts
from an AR(p) process, E; [6;+;]. This is simplified by using the
companion form for the AR(p) process governing 6;:

T = - =y O

0 1 - 0 ||64

o 0o - 1]l6,
®o 00 --- 0 Or—1 Ve
0 10 0| 62 0

= +1. . o+
0 00 1] L6ps 0

redefine as
PZ; = Q + QZ1 +V;
SO
Z, =P 'Q+P'QZ_, + PV,
with
ElZ]=(1-P'Q) P 'Q
and so
E (2] = (1-P7'Q1) ' P+ (PT'1)
x (z—(1-P'Q) " P Q)
- {(1 — (P*1Q1)j) (1-p'qQ)" P’lQD] + (P 'Yz
and so

E; [9r+j] = gé’) + Zg,-(’)GHH
i=1

i=
where g is the first element of (I-(P7'Qy )j) (1 —P*‘Ql)qP”QO,
and g is the (1, i) element of (P~'Qi)’. Next I use this result to

obtain:

E[AC (X)) Ec [6r47]] = &) EIAC (X01 +gE[AC (Xo) 6]

p B
+ D& EIAC (X)) O]
i=2

SO

1 ~
ELAC (6 = —GE[AC K0 fuy] - S5E(aC G0

1

P gﬁ)
— Z %E [AC (Xt) Or+1-i]
i=2 &1
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which yields
E[ac®) (B - 6]

) i I
- (1 _ m) E [AC (x[)ew] + %E [AC (X,)]
g1 gl

P g0 -
+ Zz 17-)5 [AC (Xe) 9t+17i:|
i=

g/
since E [AC (X;) 6;41-i] = E [AC X¢) §t+1_,»] for i > 2 under
Assumption R1. With this result we can now compute §:
J

B =D [ACK (E [ous] ~6)]

j=1
J
=Yg (1 - glm) E [AC (xt)étﬂ]

1

J g(i)
+ ) o TE[AC (X,) 6]

=1 &
J P gﬁ) .

+ ij Z; ﬁE [AC (X)) em,,-] .
= 1= 1

Substituting in this expression for 8, we thus have
E[AL (0, X¢)] = E[AL (Y, X)]

J
1 ~
Yo (1 _ m) E [AC (X) 9[+j]
j=1 &1
I, g9 J P g0 3
= Y PEIACKO] = Yy Y SE [ACK) ]
=1 & j=1 i=2 &1
(b) This is proved by invoking a multivariate CLT for the sample
mean of the loss differentials using the true volatility and all of the

elements that enter into the estimated bias term, ﬁT.This collection
of elements is defined as:

Bt = I:AL (etv Xt)/ ) AC (Xt)/ B AC (xf)/ ét+1v ey AC (Xt)/ ét+]»

AC (X)) 1, .-, ACXD) Gt py1, B,

o~ o~ o~ !
68, OBy | (35)

and with Assumptions A1 and A2 applied to B; we have JT
(Br — E [B¢]) =N (0, V) using Theorem 3 of Politis and Romano
(1994). _

Note that the last 2p + 1 elements of Br are sufficient to
obtain estimates of the mean and the first 2p autocovariances of

6, since E [ét] = E|[6;] by Assumption P1, and E [ététﬂ-] =
E[(6: + ve) (Or4j + vetj)] = E [6:6:+5] by Assumptions P1 and T2.

Let y; = Cov [9[, 9[_1-], then by the properties of an AR(p) process
we have ¥ ¢ = V, where

Vp VWw-1 - N
Vp+1 Vp N2
v = . . . . )
: : . (36)
Y2p—1 V-2 - Yp

d=[p1.....¢]

and by Assumption T2 we can obtain (f) = lf/*]\ir, where & and
V¥ are the equivalents of ¥ and V¥ using sample autocovariances

¥ = [J’p+1a Vp+25 -+ Vzp]/,

rather than population autocovariances. From <i) we can obtain
estimates of P, Qg, and Q; and thus estimates of the parameters gi(’),
fori=0,1,...,pandj =1, 2,...,]J, from these we can compute
the estimated bias term ﬁT. Given asymptotic normality of By and
the fact that 7 S ALY, X)) — B, is a smooth function of the
elements of By, we can then apply the delta method, see Lemma
2.5 of Hayashi (2000) for example, to obtain asymptotic normality
of % Zthl AL (Y, X¢) — éT and obtain its covariance matrix.

(c) Follows directly from Theorem 4 of Politis and Romano (1994),
under the additional Assumption B1. O

Proof of Proposition 4. (a) Consider again a second-order mean-
value expansion of the pseudo-distance measure L (Y;, X;;) given in
Eq. (5) around (6;, X;):

oL (6, Xit)
L(Ye, Xie) = L (6, Xit) + By Yr —60)
102L (6, X;
,M Y, — 6,)*

2 002
= L6, Xi) + (C Xit) — C(6)) (Y, —6,)

1 ..
-5C (Be) (Y — 602,
where 6, = A6, + (1 — Ap) Y; for some A; € [0, 1], and using the
functional form of L in Eq. (5). Thus

AL (Ye, X¢) = AL (6, X¢) + AC (Xp) (Ye — 6r)

where

C (X1t) — C (Xar)
AC (X) = :

C X1e) — € Xue)
Next, note:

E[AC(Xo) (Ye — 6) [Ge—1]

J
=E |:AC Xo) (Z 0+ — 9r>

i=1

9t1:|

J i J
=E {Ac (Xo) (Z O ) Mess + Zwivm)
i=1  j=1 i=1
J i
= E[Ac (Xo) (Z o; ) E[nesjl 7]
i=1

=1

J
+ ZwiE[Vt+i|Tr]> 9[—1:| =0

i=1
by the law of iterated expectations, since $;—1 C %;. This thus
yields E [AL (6, X¢) 1G¢—1]1 = E[AL (Y, X¢) |G¢—1] as claimed.

(b) Using Exercise 5.21 of White (2001) for example, we have
ﬁ;l/zﬁ (&T — 6() —4N (0, I), where f)T is given in the statement
of the proposition.

To show that @ = o note that AL (Y;, X;) = AL, X;) +
AC(Xp) (Ye — 6) = o'Zi_y+e+AC(Xp) (Y — 6) = o'+,
WithE [6:Z;—1] = E [e:Ze_1]4+E [AC (X¢) (Y; — ) Ze_1] = 0,since
E[AC(Xe) (Ye — 0) Ze 1] = E[E[AC (X) (Ve — 00) |Ge-11Zc1] =
0 by part (a), and E [e;Z;—1] = O under A3. Thus ¢ = « as
claimed. O

9r1:|

Proof of Proposition 5. (a) We first obtain E [ AL (Y, X;) Z;—p | us-
ing calculations previously presented in the proof of Proposition 3:
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E[AL(Y:, X)) Zi—p|

= ga)jE [AC X¢) (ér+j - 9[) Zt—P]

E[ac ) (s - 6) 2]

— E[AL 6, X0) Ze—p]

. p . -
=g E[ACXOZi ]+ Y 8PE[ACK) B2y
i=2

n (gl(j) - 1) E[AC (X)) 6Z: ]

and
1 _
E[aCX) 62 5] = -F [ac X0 812, ]

- %E [AC (X)) Zep]

- Z —E [AC (Xe) Org1-iZ— p]

Pulling these results together we obtain:

E[AL(Ye, X)) Zi—p| — E[AL (6, Xe) Ze—p ]

= ng-E [AC X¢) (ér+j - et) fop]

w180 E [AC (X)) Zip)

I
+ T NMe
o g

||
]

g E[ACXK) bii1-iZiy] + (80 - 1)

E[ACX)bunzi,] - (p—E [AC(X)Ziy)]

P E[ACX) 112 ]

1
o <g0 _gl(;)%) 4P $o

I
M" |-

Il
]

J
=E[ACX)Zp] {1

j=1 ¢1 ¢]

p ~
+ [AC (Xe) 0t+1fizt7pi|

Zw ( 0 _ 1(,) ¢i> b

j=1 ¢ d’l

J ()
g 1

+E [AC(Xt)GtHZ[ p] Z]wja s

p
= —hoE [AC(X)Zip] — S AE [AC X 9[+1_,-z[_p]
i=2
—E [AC X)) émzt_p] .

Thus with AL/(Q\t,/Xt) defined as in the proposition, we obtain
E [AL @ xt)zt,p] = E[AL (6. X) Ze_p)-

(b) Similar to the proof of Proposition 3(b), this part is proved
by invoking a multivariate CLT for the sample mean of the loss
differentials using the true volatility and all of the elements that
enter into the estimated adjustment terms, ):,;T, i=20,1,...,p.

This collection of elements is:

D, [AL(O[,XI)Z AC(X)Z_., AC (X)) BrisZ.

t—p°

L AC (Xo) 612,

t—p> t—ps -

AC (X)) BriyZ,

t—pr t—p> o

0, ] (37)

and with Assumptions A1 and A2 applied to D, we have
VT (D — E[D]) %N (0, Vp) using Theorem 3 of Politis and
Romano (1994). As in the proof of Proposition 3, the last 2p + 1
elements of Dr are sufficient to obtain estimates of P, Qg, and Q;
and thus estimates of the parameters g,-(’), fori =0,1,...,pand
j = 1,2,...,]. With these we obtain the estimated adjustment
terms ii,T, i=0,1, , p. Given asymptotic normality of Dy and
the fact that ar is a smooth function of the elements of Dr, we can
then apply the delta method, see Lemma 2.5 of Hayashi (2000) for
example, to show asymptotic normality of (&T — &), and obtain its
covariance matrix. To show that & = o we use the result from part

(a) which provides & = (E [Zt—pzéfp])_l E [Zt_,,AL/(gt_,/Xt)] =
, -1

(E [zt,sz,J) E[Z:pAL(6:, X)] =

(c) Again follows directly from Theorem 4 of Politis and Romano

(1994). O

AC (X¢) O—p+1Z,_, Z,, Or, 0011, ..

t—p°
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