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Background literature

In the past 5-10 years there has been an explosion in �nancial
econometrics research focussed on volatility measurement (as distinct
from forecasting).

These papers all focus on various aspects of the problem of measuring
the (say) volatility of daily returns using intra-daily data:



Background literature, cont�d

Measuring volatility using high-frequency data
Aït-Sahalia, Mykland and Zhang (2005, RFS, 2005, JASA)
Andersen, Bollerslev, Diebold and Labys (2003, Econometrica)
Bandi and Russell (2008, REStud)
Barndor¤-Nielsen and Shephard (2002, JRSS, 2004, Etca, 2004, J. F.Ects)
Hansen and Lunde (2006, JBES)

Recent surveys
Andersen, Bollerslev, Christo¤ersen and Diebold (2005, H�book Econ.For.)
Barndor¤-Nielsen and Shephard (2007, ES monograph)

�Older�papers in this area
Andersen and Bollerslev (1998, IER)
French, Schwert and Stambaugh (1987, JFE)
Merton (1980, JFE)



A few di¤erent RV estimators
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Under various conditions, these estimators are consistent and/or
unbiased for the latent quadratic variation or integrated variance:
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Choosing a RV estimator: economic loss functions

The previous contains just a few of the many RV estimators in the
literature - how should one choose a particular RV for application?

The ideal case would be to use an economic loss function, which
describes the economic costs of estimation error in a given application:

derivatives pricing: squared pricing errors, pro�ts from a trading
strategy

risk management: costs of VaR violations, costs of holding excess
capital.

portfolio decisions and relative-value trading: realised utility from
portfolio, risk-adjusted returns on strategy.



Choosing a RV estimator: statistical loss functions

In most academic studies, the economic loss function of the end-user
is unknown, and so a simple statistical loss function is employed.

The most widely-used statistical loss function is MSE:

L (IVt ,RVt ) = (IVt � RVt )2

If the estimator is unbiased, then this measures the variance of the
estimator, else it captures a bias-variance trade-o¤.

Of course, we could also consider other measures of distance

The key di¢ culty here, as in volatility forecasting, is that the target
variable (IVt ) is unobservable. So how do we measure accuracy?



Comparisons of RV estimators in the literature

1. �Standard�RV theory: choose m as large as possible

2. Zhou (1996): assuming iid noise, derived MSE-optimal choice of m
for standard RV

3. Aït-Sahalia, Mykland and Zhang (2005): derived expressions for
the MSE-optimal choice of m, for standard RV , under iid noise,
serially correlated noise and endogenous noise

4. Hansen and Lunde (2006): assuming iid noise, derived expression
for optimal m for RVACq estimators



Comparisons of RV estimators in the literature, cont�d

5. Oomen (2006): assuming a parametric �pure jump�DGP, compared
calendar-time returns versus �tick time� returns

6. Andersen, Bollerslev and Meddahi (2007): assuming iid noise
(possibly more), derived expression for optimal m for RV estimators,
and compared RVAC1, RVK and the 2-scale estimator of ZMA

7. Bandi and Russell (2006): assuming iid noise, derived expressions
for the MSE-optimal choice of q/m in a RVACq estimator

8. Bandi, Russell and Yang (2007): derived expressions for the
MSE-optimal choice of m for a standard RV estimator, assuming
mean-zero but heteroskedastic noise



Motivations for a *data-based* ranking method

In contrast with previous comparisons, the proposed methods avoid
the need to take a stand on important properties of the price process.
e.g., there is no need to take a stand on the particular form of noise:

iid vs. correlated with e¢ cient price, see Hansen and Lunde (2006)
and Kalnina and Linton (2007)

constant vs. time-varying noise variance, see Bandi, Russell and Yang
(2007)

) This approach does require assumptions on the time series properties of
variables under analysis, and so this approach is a complement rather
than a substitute for existing methods.

Further, the proposed method avoids the need to estimate quantities
like integrated quarticity or the variance of the noise process

Finally, a data-based ranking method allows for comparisons that are
hard/impossible using existing theory:



Motivations for a *data-based* ranking method, cont�d

Comparisons that are hard/impossible using existing theory:

RV based on trades vs. mid-quote prices

! Theoretical comparisons would require assumptions on the quote
updating process, the issuance of market vs. limit orders, etc.

RV based on calendar time vs. transaction time sampling

! Theoretical comparisons require assumptions on the arrival rate of
trades and/or quotes, see Oomen (2006)

The �multi-scale�RV estimator of Zhang (2006) vs. the �alternation�
estimator of Large (2005)

! Comparisons of estimators such as these would require some way of
linking their underlying assumptions
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Contributions of this paper

The primary contribution of this paper is to present a method to
consistently estimate

E [∆L (θt ,Xt )] � E [L (θt ,Xi ,t )]� E [L (θt ,Xj ,t )]

With such an estimator, many standard forecast comparison tests can
then be employed:

1 Diebold-Mariano (1995), West (1996): pair-wise comparisons

2 White (2000), Hansen (2005): comparisons of many RV estimators

3 Romano-Wolf (2005): �step-wise�tests of RV estimators

4 Hansen-Lunde-Nason (2005): �model con�dence sets�

5 Giacomini-White (2006): conditional comparisons of RV estimators



Contributions of this paper - theory

1. I propose a formal data-based method to rank RV estimators in terms
of their average distance from the latent target variable.

1 This method employs an instrumental variables-type estimator

2 A bias term is identi�ed and an estimator of it is proposed

3 I provide conditions under which existing tests in the forecast
comparison literature can be used to rank RV estimators



Contributions of this paper - empirical

2. I implement these methods using high frequency data on IBM from
1996-2007, and I �nd:

1 Signi�cant gains from using prices sampled at between 15 seconds and
2 minutes, relative to daily or 5-minute prices.

2 Tick-time sampling is preferred to calendar-time sampling, especially
when trades are irregularly-spaced

3 Transaction prices are preferred to quote prices in the early part of the
sample period, but there is no di¤erence in the latter period.



Notation

θt the Ft -meas. latent target variable, eg: QVt or IVt

Xit , i = 1, 2, ..., n the Ft -meas. realised volatility estimators

m the number of intra-daily observations

T the number of daily observations

L (θ,X ) the pseudo-distance measure

θ̃t a Ft -meas., noisy, but unbiased estimator of θt

Yt the proxy or instrument for θt



The pseudo-distance measure

I rank RV estimators using the average distance between the
estimator and the quantity of interest:

Infeasible E [L (θt ,Xit )] R E [L (θt ,Xjt )]

Feasible E [L (Yt ,Xit )] R E [L (Yt ,Xjt )]

where Yt is the proxy for θt .

I use the class of pseudo-distance measures proposed in Patton
(2006):

L (θ,X ) = C̃ (X )� C̃ (θ) + C (X ) (θ � X )



Distance measures
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Correlated measurement errors cause problems

From Hansen and Lunde (2006) and Patton (2006), if

Covt�1
�
Xt � θt , θ̃t � θt

�
= 0

then MSE rankings using θ̃t are equivalent to those using θt .

? e.g.: θt � Vt�1 [rt ], Xt � V̂t�1 [rt ], and θ̃t � r2t .

But if
Covt�1

�
Xt � θt , θ̃t � θt

�
6= 0

then MSE rankings using θ̃t are not equivalent to those using θt .

? The fact that (θt ,Xt ) /2 Ft�1 in RV comparison causes problems..

I will break this correlation in a familiar way:



IV estimation for IV comparison

I will overcome the problem of correlated measurement errors:

Covt�1
�
Xt � θt , θ̃t � θt

�
6= 0

in a standard way, by using a lead of the proxy:

Yt = θ̃t+1 = θt+1 + νt+1.

This approach exploits two features of the problem:

1 The target variable (IV or QV) is known to be persistent, so θt+1 is
highly correlated with θt

2 Almost all RV estimators in the literature are one-sided in nature: Xt
uses data only up until day t (and usually only data from day t). So
measurement error in Xt is uncorrelated with meas error in θ̃t+1



IV estimation for IV comparison, cont�d

This problem is a non-linear instrumental variables problem, and we
need to put more structure on the problem than just non-zero
correlation.

It is not su¢ cient to simply assume Cov
�
θ̃t+1 � θt+1,Xt � θt

�
= 0

and Cov
�
θ̃t+1, θt

�
6= 0

I will consider approximating the conditional mean of the target
variable using two approaches:

1 A random walk approximation

2 A general (stationary) AR(p) approximation

I will show via simulation that both these models are reasonable
approximations for a realistic DGP.



A random walk approximation for the target variable

Numerous papers on the conditional variance or integrated variance
have reported that these quantities are very persistent, close to being
random walks.

Eg: The widely-used RiskMetrics model is based on a unit root
assumption for the conditional variance.

See Bollerslev, et al. (1994), Andersen, et al., (2003, 2005), amongst

many others, on the behaviour of conditional volatility

Note that Wright (1999) provides evidence against the presence of a
unit root in daily conditional variance for many stocks.

Given this, consider the following assumption:

Assumption T1: θt = θt�1 + ηt , with E [ηt jFt�1] = 0.



Assumptions for the RW approximation

The standard conditional unbiasedness assumption for the noisy proxy:

Assumption P1: θ̃t = θt + νt , with E [νt jFt�1, θt ] = 0.

It is simple to consider convex combinations of leads of θ̃t as our
proxy:

Assumption P2: Yt = ∑J
i=1 ωi θ̃t+i , where 1 � J < ∞, ωi � 0 8 i and

∑J
i=1 ωi = 1.



Rankings based on a RW approximation

Proposition
(a) Let assumptions T1, P1 and P2 hold. Then:

E [∆L (θt ,Xt ; b)] = E [∆L (Yt ,Xt ; b)]

for any vector of RV estimators, Xt .



Rankings based on a RW approximation

The intuition behind this result is based on:

θ̃t+1 = θt+1 + νt+1

= θt + ηt+1 + νt+1

� θt + εt+1

with Corr [εt+1,Xt ] = 0

Thus if θt is very persistent, then tomorrow�s proxy, θ̃t+1 is a good
estimate of today�s target variable θt .

Next, I draw on existing work on forecast comparison to obtain a
distribution theory for the feasible estimate of the di¤erences in
distances.



Rankings based on a RW approximation, cont�d

Proposition
(b) If we further assume mixing and moment conditions (A1 and A2), then:

p
T

 
1
T

T

∑
t=1

∆L (Yt ,Xt ; b)� E [∆L (θt ,Xt ; b)]
!
!d N (0,Ω)



Rankings based on a RW approximation, cont�d

Proposition
(c) If pT ! 0 and T � pT ! ∞ as T ! ∞, where pT is the inverse of
the average block length in Politis and Romano�s (1994) stationary
bootstrap, then the stationary bootstrap may also be employed, as:

sup
z

�����P�
"




 1T T

∑
t=1

∆L (Y �t ,X
�
t ; b)�

1
T

T

∑
t=1

∆L (Yt ,Xt ; b)
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#
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"




 1T T

∑
t=1

∆L (Yt ,Xt ; b)� E [∆L (θt ,Xt ; b)]





 � z

#�����! 0



An AR(p) approximation for the target variable

Meddahi (2003, EJ) and Barndor¤-Nielsen (2002, JRSS-B) show that
the integrated variance follows an ARMA(p,q) model for a wide
variety of stochastic volatility models for the spot volatility.

Eg: Meddahi shows that a p-factor SV model generates an
ARMA(p, p) for the daily integrated variance

Empirical and theoretical work by Andersen, Bollerslev and Meddahi
(2004 IER, 2007 wp) reveals that an AR(1) performs no worse than
the optimal ARMA(p,q) model for a range of realistic DGPs.

The result below may be generalised to hold for invertible ARMA(p,q)
processes, but in light of the empirical work in this area, I consider
only AR(p) processes.



Rankings based on an AR(p) approximation

The following assumption allows the target variable to follow (almost)
any stationary AR(p) process:

Assumption T2:

θt = φ0 +
p

∑
i=1

φi θt�i + ηt ,

E [ηt jFt�1] = 0

with φ1 6= 0 and Φ �
h
φ0, φ1, ..., φp

i0
such that θt is covariance

stationary.

The following result uses an instrumental variables estimator to
obtain the AR(p) parameters for θt .



Rankings based on an AR(p) approximation

Proposition
(a) Let assumptions T2, P1 and P2 hold, and let R2 hold if p > 1. Then

E [∆L (θt ,Xt ; b)] = E [∆L (Yt ,Xt ; b)]� β

where β =
φ0
φ1
E [∆C (Xt ; b)]

+

�
1� 1

φ1

�
E [∆C (Xt ; b)Yt ]

+
p

∑
i=2

φi
φ1
E [∆C (Xt ; b)Yt�i ]



Rankings based on an AR(p) approximation, cont�d

Proposition
(b) If we further assume mixing and moment conditions (A1 and A2), then:

p
T

 
1
T

T

∑
t=1

∆L (Yt ,Xt ; b)� β̂T � E [∆L (θt ,Xt ; b)]
!
!d N (0,Ω)



Rankings based on an AR(p) approximation, cont�d

Proposition
(c) If pT ! 0 and T � pT ! ∞ as T ! ∞ then the stationary bootstrap
may also be employed, as:

sup
z

�����P�
"




 1T T

∑
t=1

∆L (Y �t ,X
�
t ; b)� β̂

�
T �

1
T

T
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∆L (Yt ,Xt ; b) + β̂T
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Conditional rankings of RV estimators

The �nal theoretical result in the paper is to consider conditional
comparisons of RV estimators, using the framework of Giacomini and
White (2006).

The null hypothesis in a GW-type test is:

H0 : E [∆L (θt ,Xt ) jGt�1] = 0 a.s. t = 1, 2, ...

The above null is usually tested by looking at simple regressions of
the form:

∆L (θt ,Xt ) = α�0Zt�1 + e�t

where Zt�1 2 Gt�1 is some vector of variables, and then testing:

H 00 : α� = 0

vs. H 0a : α� 6= 0



Conditional rankings of RV estimators, cont�d

Infeasible regression:

∆L (θt ,Xt ) = α�0Zt�1 + e�t

The following proposition provides conditions under which a feasible
form of the above regression:

∆L (Yt ,Xt ) = α0Zt�1 + et

provides consistent estimates of the parameter α� in the infeasible
regression.



Conditional rankings of RV estimators

Proposition
(a) Let assumptions T1, P1 and P2 hold. Then

E [∆L (θt ,Xt ; b) jGt�1] = E [∆L (Yt ,Xt ; b) jGt�1] a.s., t = 1, 2, ...

for any vector of RV estimators, Xt .



Conditional rankings of RV estimators, cont�d

Proposition
(b) Denote the OLS estimator of α as α̂T . Then under mixing and
moment conditions (A3 and A4):

D̂�1/2
T

p
T (α̂T � α�) ! dN (0, I )

where D̂T � M̂�1
T Ω̂T M̂

�1
T

M̂T � 1
T � 1

T

∑
t=2
Zt�1Z0t�1

ΩT � V

"
1p
T � 1

T

∑
t=2
Zt�1et

#

and with Ω̂T some estimator such that Ω̂T �ΩT !p 0.



A small simulation study - the DGP

To check the �nite-sample size properties of the proposed methods, I
conducted a small simulation study:

I use a standard log-normal stochastic volatility model with a leverage
e¤ect, with the same parameters as in Goncalves and Meddahi (2005):

d logP�t = 0.0314dt + νt
�
�0.576dW1t +

p
1� 0.5762dW2t

�
d log ν2t = �0.0136

�
0.8382+ log ν2t

�
dt + 0.1148dW1t

In simulating from these processes I use a simple Euler discretization
scheme, with the step size calibrated to one second (i.e., with 23,400
steps per simulated trade day).

I look at sequences of 500 and 2500 �trade days�.



Simulation design - adding some noise

To gain some insight into the impact of microstructure e¤ects, I also
consider a simple iid error term for the observed log-price:

logP (tj ) = logP� (tj ) + ξ (tj )

ξ (tj ) s iid N
�
0, σ2ξ

�
where

2σ2ξ

V [rt ] 5
390 + 2σ2ξ

= 0.20

i.e., the variance of the noise is such that the proportion of the
variance of the 5-minute return (5/390 of a trade day) that is
attributable to microstructure noise is 20%.

The expression above is from Aït-Sahalia, et al. (2005)

The proportion of 20% is around the middle value considered in the
simulation study of Huang and Tauchen (2005).



Goodness-of-�t of ARMA models for IV

Meddahi (2003) and Barndor¤-Nielsen and Shephard (2002) show
theoretically that integrated variance follows an ARMA(p,q) model
for a wide variety of stochastic volatility models for the instantaneous
volatility (though they assume no noise and no leverage e¤ect)

Random ARMA ARMA
walk AR(1) AR(2) AR(5) (1,1) (2,2)

Avg R2 0.9618 0.9622 0.9627 0.9631 0.9648 0.9650



Simulation design - the competing RV estimators

Next I consider the �nite-sample size of pair-wise comparisons
obtained via a bootstrap verison of a Diebold-Mariano (1995) test.

I set the each RV estimator equal to the true IV plus some noise:

Xit = IVt + ζ it , i = 1, 2

ζ1t = ων30 mint + (1�ω) σuU1t

ζ2t = ων30 mint + (1�ω) σuU2t +
q

σ2ζ2 � σ2ζ1U3t

[U1t ,U2t ,U3t ]
0 s iid N (0, I )

ν30 mint � RV 30 mint � IVt

I set Corr
�
ν30 mint , ζ1t

�
= 0.5.

In the study of the size of the tests I set σ2ζ1 = σ2ζ2 = 0.1� V [IVt ].
To study the power, I �x σ2ζ1,and let σ2ζ2/V [IVt ] = 0.15, 0.2, 0.5, 1.
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Finite-sample size and power, T=500, using MSE

IV RV-30min RV-daily

γ IV� R.W. AR(1) R.W. AR(1) R.W. AR(1)

0.10 0.05 0.03 0.02 0.04 0.00 0.06 0.01
0.15 0.98 0.89 0.88 0.40 0.02 0.14 0.00
0.20 1.00 1.00 1.00 0.74 0.06 0.23 0.02
0.50 1.00 1.00 1.000 1.00 0.56 0.60 0.06
1.00 1.00 1.00 1.000 1.00 0.70 0.89 0.07



Simulation design - conditional comparisons

Next I consider a simple design to check the �nite-sample size of GW
tests for this application.

X1t = IVt + ζ1t
X2t = IVt � λIVt�1 + ζ2t
ζ it = ων30 mint + (1�ω) σuUit , i = 1, 2

[U1t ,U2t ]
0 s iid N (0, I )

To study �nite-sample size, I set λ = 0. To study power, set
λ = 0.1, 0.2, 0.4, 0.8. Tests are based on regressions of the form:

L
�
θ̃t+1,X1t

�
� L

�
θ̃t+1,X2t

�
= αu0 + e

u
t , or

L
�
θ̃t+1,X1t

�
� L

�
θ̃t+1,X2t

�
= α0 + α1 log

1
10

10

∑
j=1

θ̃t�j + et



Simulation design - conditional comparisons

Next I consider a simple design to check the �nite-sample size of GW
tests for this application.

X1t = IVt + ζ1t
X2t = IVt � λIVt�1 + ζ2t
ζ it = ων30 mint + (1�ω) σuUit , i = 1, 2

[U1t ,U2t ]
0 s iid N (0, I )

To study �nite-sample size, I set λ = 0. To study power, set
λ = 0.1, 0.2, 0.4, 0.8. Tests are based on regressions of the form:

L
�
θ̃t+1,X1t

�
� L

�
θ̃t+1,X2t

�
= αu0 + e

u
t , or

L
�
θ̃t+1,X1t

�
� L

�
θ̃t+1,X2t

�
= α0 + α1 log

1
10

10

∑
j=1

θ̃t�j + et



Finite-sample size and power, T=500, using MSE

Conditional - slope test Conditional - joint test

Volatility proxy Volatility proxy

λ IV� IV RV-daily IV� IV RV-daily

0 0.06 0.08 0.04 0.06 0.06 0.04
0.1 0.28 0.16 0.05 0.33 0.21 0.05
0.2 0.93 0.80 0.05 0.92 0.86 0.08
0.4 1.00 1.00 0.11 1.00 1.00 0.34
0.8 1.00 1.00 0.47 1.00 1.00 0.88



Summary of simulation results

For a realistic DGP, with noise and a leverage e¤ect, I �nd that the
�nite-sample size is reasonable, with rejection frequencies close to
0.05.

The results for the power of the tests are as expected:

1 power of the new tests are worse than would be obtained if IV were
observable

2 power is worse when a noisier instrument is used (daily squared returns
versus 30-minute RV versus true IV)

3 power of the tests based on the AR(1) assumption are worse than
those based on the random walk assumption.

4 power of the tests are better when a larger sample size is available



Application to IBM stock returns

I consider estimating the quadratic variation of the daily return on
IBM, using data from TAQ from Jan 1996 to June 2007, yielding
2893 daily observations.

I break this sample into three sub-periods (1996-1999, 2000-2003,
2004-2007) to allow for changes in market rules and conditions.

I use standard RV, based on:

1 trade prices and mid-quote prices

2 calendar-time sampling and tick-time sampling

3 sampling frequencies of 1, 2, 5, 15, 30 seconds, 1, 2, 5, 15, 30 minutes,
1, 2 hours and 1 day.

The total number of RV estimators is 2� 2� 13� 4 = 48



Data-based comparisons of the 48 RV estimators

1 Raw rankings of the RV estimators based on estimated average
di¤erences in distance

2 The stepwise multiple testing method of Romano-Wolf (2005)

Which estimators signi�cant beat (or are beaten by) daily RV?

Which estimators signi�cant beat (or are beaten by) 5-minute RV?

3 The conditional comparison test of Giacomini-White (2006)

Does high frequency data help more during volatile periods?

When are quote prices more or less informative than transaction prices?

Does tick-time sampling help when trades arrive irregularly?



Estimated di¤erences in distance under MSE
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Estimated di¤erences in distance under QLIKE
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The Romano-Wolf stepwise test

The Romano-Wolf test looks at each of 47 null and alternative
hypotheses separately:

H (i )0 : E [L (θt ,X0t )� L (θt ,Xit )] � 0
H (i )1 : E [L (θt ,X0t )� L (θt ,Xit )] > 0

and identi�es which null hypotheses can be rejected.

Romano-Wolf�s procedure controls the �family-wise error rate�of
these 47 tests

FWE is the probability that we reject at least one true null hypothesis,
and reduces to the size of the test if we examine only one null.



The Romano-Wolf stepwise test - results
Daily RV on transaction prices as the benchmark

MSE QLIKE

Better Not Di¤ Worse Better Not Di¤ Worse

33 14 0 46 1 0

Under QLIKE, daily RV is signi�cantly beaten by every other
estimator, except for daily RV using quote prices.

Under MSE it is beaten by 33 estimators. Those that do not beat it
are RV using 30-min or lower sampling.



The Romano-Wolf stepwise test - results
5-minute calendar-time RV on transaction prices as the benchmark

MSE QLIKE

Better Not Di¤ Worse Better Not Di¤ Worse

0 47 0 9 9 29

Under MSE, no estimator can be distinguished from 5-min RV.
(Power problem with this application.)

Under QLIKE, most estimators are worse than 5-min RV, but a few
are signi�cantly better: those based on trade prices sampled at
between 15 seconds and 5 minutes.



High-frequency vs. Low-frequency RV estimators
Conditional on recent volatility

L
�
Yt ,RV

daily
t

�
� L

�
Yt ,RV 5 mint

�
= 36.14

(8.75)
+ et

L
�
Yt ,RV

daily
t

�
� L

�
Yt ,RV 5 mint

�
= 26.71

(10.70)
+ 19.20

(2.94)
Zt�1 + et

where Zt�1 = log
1
10

10

∑
j=1

θ̃t�j

The positive constant in the 1st regression reveals that daily squared
returns are worse than 5-min RV

The positive and signi�cant slope coe¢ cient in the 2nd regression
reveals that daily squared returns are particularly bad proxies during
high liquidity periods. (pval on joint test is <0.000)



Tick-time vs. Calendar-time sampling
Conditional on the volatility of trade durations

L
�
Yt ,RVtick

(hmin)
t

�
� L

�
Yt ,RV

(hmin)
t

�
= αu + eut

L
�
Yt ,RVtick

(hmin)
t

�
� L

�
Yt ,RV

(hmin)
t

�
= α0 + α1Zt�1 + et

where Zt�1 � V [Durationj ,t�1]
1/2

I run these regressions for each value of h :



Tick-time vs. Calendar-time sampling
Conditional on the volatility of trade durations

Frequency Average
(t-stat)

Intercept
(t-stat)

Slope
(t-stat)

Joint p-val

2 sec 0.01
(10.81)

� 0.08
(3.91)

� �0.01
(�3.26)

� 0.00

15 sec 0.00
(1.91)

�0.07
(�1.52)

0.01
(1.56)

0.14

30 sec �0.01
(�2.90)

� 0.06
(1.15)

�0.01
(�1.22)

0.01

2 min �0.01
(�3.55)

� 0.06
(1.65)

�0.01
(�1.80)

0.00

15 min �0.06
(�7.94)

� 0.30
(1.96)

� �0.06
(�2.32)

� 0.00

30 min �0.08
(�4.76)

� 0.82
(2.37)

� �0.16
(�2.57)

� 0.00

2 hr �1.23
(�2.39)

� 17.49
(2.33)

� �3.37
(�2.40)

� 0.03

Joint �0.06
(�7.94)

0.07
(2.50)

� �0.01
(�2.22)

� 0.00



Quote prices vs. Trade prices
Conditional on the ratio of number of quotes to number of trades

L
�
Yt ,RV

quote(hmin)
t

�
� L

�
Yt ,RV

trade(hmin)
t

�
= αu + eut

L
�
Yt ,RV

quote(hmin)
t

�
� L

�
Yt ,RV

trade(hmin)
t

�
= α0 + α1Zt�1 + et

where Zt�1 �
# fquotesgt�1
# ftradesgt�1

I again run these regressions for each value of h :



Quote prices vs. Trade prices
Conditional on the ratio of number of quotes to number of trades

Frequency Average
(t-stat)

Intercept
(t-stat)

Slope
(t-stat)

Joint p-val

2 sec 0.14
(9.63)

� 0.38
(10.42)

� �0.16
(�8.53)

� 0.00

15 sec 0.13
(11.78)

� 0.35
(12.50)

� �0.14
(�10.39)

� 0.00

30 sec 0.10
(12.03)

� 0.28
(12.34)

� �0.11
(�10.25)

� 0.00

2 min 0.05
(10.65)

� 0.14
(10.00)

� �0.06
(�8.47)

� 0.00

15 min 0.03
(6.78)

� 0.09
(5.88)

� �0.03
(�4.58)

� 0.00

30 min 0.03
(4.95)

� 0.08
(3.67)

� �0.03
(�2.70)

� 0.00

2 hr �0.29
(�1.10)

�1.47
(�1.70)

0.75
(1.83)

0.17

Joint 0.06
(11.54)

� 0.17�
(11.32)

�0.07
(�9.51)

� 0.00



Conclusion and summary of results

This paper presents conditions under which the relative average
accuracy of competing RV estimators can be consistently (T ! ∞)
estimated from available data

Based on plausible assumptions about the time series properties of the
data

No need for precise assumptions about the underlying price process or
market microstructure noise process

This �data-based� ranking approach facilitates the use of standard
forecast comparison tests for ranking RV estimators:

Diebold-Mariano (1995), West (1996), White (2000), Hansen (2005),
Romano-Wolf (2005), Hansen et al. (2005), Giacomini-White (2006),
for example.
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