Data-Based Ranking of Realised Volatility Estimators

Andrew Patton

Department of Economics, and Oxford-Man Institute of Quantitative Finance, University of Oxford

May 2008

1 / 57

Outline of the talk

- Introduction and overview of realised volatility
- 2 Comparisons of RV estimators in the literature
- Oata-based ranking of RV estimators
- Application to measuring IBM equity return volatility
- Summary and outline of future work

Background literature

- In the past 5-10 years there has been an explosion in financial econometrics research focussed on volatility *measurement* (as distinct from forecasting).
- These papers all focus on various aspects of the problem of measuring the (say) volatility of daily returns using *intra-daily* data:

Background literature, cont'd

Measuring volatility using high-frequency data

Aït-Sahalia, Mykland and Zhang (2005, RFS, 2005, JASA)

Andersen, Bollerslev, Diebold and Labys (2003, Econometrica)

Bandi and Russell (2008, REStud)

Barndorff-Nielsen and Shephard (2002, JRSS, 2004, Etca, 2004, J. F.Ects)

Hansen and Lunde (2006, JBES)

Recent surveys

Andersen, Bollerslev, Christoffersen and Diebold (2005, H'book Econ.For.) Barndorff-Nielsen and Shephard (2007, ES monograph)

'Older' papers in this area

Andersen and Bollerslev (1998, IER)

French, Schwert and Stambaugh (1987, JFE)

Merton (1980, JFE)

A few different RV estimators

$$\begin{array}{lcl} RV_t^{(m)} & = & \sum_{j=1}^m r_{t,j}^2 \\ RVACq_t^{(m)} & = & \sum_{j=1}^m r_{t,j}^2 + \sum_{h=1}^q \sum_{j=1}^m \left(r_{t,j} r_{t,j-h} + r_{t,j} r_{t,j+h} \right) \\ RVK_t^{(m)} & = & \sum_{j=1}^m r_{t,j}^2 + \sum_{h=1}^q k \left(\frac{h-1}{q} \right) \left\{ \sum_{j=1}^m \left(r_{t,j} r_{t,j-h} + r_{t,j} r_{t,j+h} \right) \right\} \\ RVtick_t^{(m)} & = & \sum_{k=1}^m r_{t,k}^2 \end{array}$$

 Under various conditions, these estimators are consistent and/or unbiased for the latent quadratic variation or integrated variance:

$$QV_{t}\equiv p\lim_{m
ightarrow\infty}\ \sum_{j=1}^{m}r_{t,j}^{2}$$
 , $IV_{t}\equiv\int_{t-1}^{t}\sigma^{2}\left(s
ight) ds$

Choosing a RV estimator: economic loss functions

- The previous contains just a few of the many RV estimators in the literature how should one choose a particular RV for application?
- The ideal case would be to use an *economic loss function*, which describes the economic costs of estimation error in a given application:
 - derivatives pricing: squared pricing errors, profits from a trading strategy
 - risk management: costs of VaR violations, costs of holding excess capital.
 - portfolio decisions and relative-value trading: realised utility from portfolio, risk-adjusted returns on strategy.

Choosing a RV estimator: statistical loss functions

- In most academic studies, the economic loss function of the end-user is unknown, and so a simple statistical loss function is employed.
- The most widely-used statistical loss function is MSE:

$$L(IV_t, RV_t) = (IV_t - RV_t)^2$$

- If the estimator is unbiased, then this measures the variance of the estimator, else it captures a bias-variance trade-off.
- Of course, we could also consider other measures of distance
- The key difficulty here, as in volatility forecasting, is that the target variable (IV_t) is *unobservable*. So how do we measure accuracy?

Comparisons of RV estimators in the literature

- 1. "Standard" RV theory: choose m as large as possible
- 2. **Zhou (1996):** assuming *iid* noise, derived MSE-optimal choice of *m* for standard RV
- 3. **Aït-Sahalia, Mykland and Zhang (2005):** derived expressions for the MSE-optimal choice of *m*, for standard *RV*, under *iid* noise, serially correlated noise and endogenous noise
- 4. Hansen and Lunde (2006): assuming iid noise, derived expression for optimal m for RVACq estimators

Comparisons of RV estimators in the literature, cont'd

- 5. **Oomen (2006)**: assuming a parametric "pure jump" DGP, compared calendar-time returns versus "tick time" returns
- 6. Andersen, Bollerslev and Meddahi (2007): assuming *iid* noise (possibly more), derived expression for optimal *m* for *RV* estimators, and compared *RVAC1*, *RVK* and the 2-scale estimator of ZMA
- 7. **Bandi and Russell (2006)**: assuming *iid* noise, derived expressions for the MSE-optimal choice of q/m in a RVACq estimator
- 8. **Bandi, Russell and Yang (2007)**: derived expressions for the MSE-optimal choice of *m* for a standard *RV* estimator, assuming mean-zero but heteroskedastic noise

- In contrast with previous comparisons, the proposed methods avoid the need to take a stand on important properties of the price process. e.g., there is no need to take a stand on the particular form of noise:
 - *iid vs.* correlated with efficient price, see Hansen and Lunde (2006) and Kalnina and Linton (2007)
 - constant vs. time-varying noise variance, see Bandi, Russell and Yang (2007)
 - ⇒ This approach does require assumptions on the time series properties of variables under analysis, and so this approach is a complement rather than a substitute for existing methods.
- Further, the proposed method avoids the need to estimate quantities like integrated quarticity or the variance of the noise process
- Finally, a data-based ranking method allows for comparisons that are hard/impossible using existing theory:

Comparisons that are hard/impossible using existing theory:

• RV based on trades vs. mid-quote prices

- RV based on trades vs. mid-quote prices
 - → Theoretical comparisons would require assumptions on the quote updating process, the issuance of market vs. limit orders, etc.

- RV based on trades vs. mid-quote prices
 - → Theoretical comparisons would require assumptions on the quote updating process, the issuance of market vs. limit orders, etc.
- RV based on calendar time vs. transaction time sampling

- RV based on trades vs. mid-quote prices
 - → Theoretical comparisons would require assumptions on the quote updating process, the issuance of market vs. limit orders, etc.
- RV based on calendar time vs. transaction time sampling
 - → Theoretical comparisons require assumptions on the arrival rate of trades and/or quotes, see Oomen (2006)

- RV based on trades vs. mid-quote prices
 - → Theoretical comparisons would require assumptions on the quote updating process, the issuance of market vs. limit orders, etc.
- RV based on calendar time vs. transaction time sampling
 - → Theoretical comparisons require assumptions on the arrival rate of trades and/or quotes, see Oomen (2006)
- The "multi-scale" RV estimator of Zhang (2006) vs. the 'alternation' estimator of Large (2005)

- RV based on trades vs. mid-quote prices
 - → Theoretical comparisons would require assumptions on the quote updating process, the issuance of market vs. limit orders, etc.
- RV based on calendar time vs. transaction time sampling
 - → Theoretical comparisons require assumptions on the arrival rate of trades and/or quotes, see Oomen (2006)
- The "multi-scale" RV estimator of Zhang (2006) vs. the 'alternation' estimator of Large (2005)
 - ightarrow Comparisons of estimators such as these would require some way of linking their underlying assumptions

Contributions of this paper

 The primary contribution of this paper is to present a method to consistently estimate

$$E\left[\Delta L\left(\theta_{t},\mathbf{X}_{t}\right)\right] \equiv E\left[L\left(\theta_{t},X_{i,t}\right)\right] - E\left[L\left(\theta_{t},X_{j,t}\right)\right]$$

- With such an estimator, many standard forecast comparison tests can then be employed:
 - Diebold-Mariano (1995), West (1996): pair-wise comparisons
 - White (2000), Hansen (2005): comparisons of many RV estimators
 - 3 Romano-Wolf (2005): 'step-wise' tests of RV estimators
 - 4 Hansen-Lunde-Nason (2005): 'model confidence sets'
 - 6 Giacomini-White (2006): conditional comparisons of RV estimators

Contributions of this paper - theory

- 1. I propose a formal data-based method to rank RV estimators in terms of their average distance from the latent target variable.
 - This method employs an instrumental variables-type estimator
 - 2 A bias term is identified and an estimator of it is proposed
 - I provide conditions under which existing tests in the forecast comparison literature can be used to rank RV estimators

Contributions of this paper - empirical

- 2. I implement these methods using high frequency data on IBM from 1996-2007, and I find:
 - Significant gains from using prices sampled at between 15 seconds and 2 minutes, relative to daily or 5-minute prices.
 - Tick-time sampling is preferred to calendar-time sampling, especially when trades are irregularly-spaced
 - Transaction prices are preferred to quote prices in the early part of the sample period, but there is no difference in the latter period.

Notation

θ_t	the \mathcal{F}_t -meas. latent target variable, eg: QV_t or IV_t
$X_{it}, i = 1, 2,, n$	the \mathcal{F}_t -meas. realised volatility estimators
m	the number of intra-daily observations
T	the number of daily observations
$L(\theta, X)$	the pseudo-distance measure
$ ilde{ heta}_t$	a \mathcal{F}_t -meas., noisy, but unbiased estimator of $ heta_t$
Y_t	the proxy or instrument for $ heta_t$

The pseudo-distance measure

 I rank RV estimators using the average distance between the estimator and the quantity of interest:

Infeasible
$$E[L(\theta_t, X_{it})] \gtrsim E[L(\theta_t, X_{jt})]$$

Feasible $E[L(Y_t, X_{it})] \gtrsim E[L(Y_t, X_{jt})]$

where Y_t is the proxy for θ_t .

• I use the class of pseudo-distance measures proposed in Patton (2006):

$$L(\theta, X) = \tilde{C}(X) - \tilde{C}(\theta) + C(X)(\theta - X)$$

Distance measures

Correlated measurement errors cause problems

• From Hansen and Lunde (2006) and Patton (2006), if

$$Cov_{t-1}\left[X_t - \theta_t, \tilde{\theta}_t - \theta_t\right] = 0$$

then MSE rankings using $\tilde{\theta}_t$ are equivalent to those using θ_t .

$$\star$$
 e.g.: $\theta_t \equiv V_{t-1}[r_t]$, $X_t \equiv \hat{V}_{t-1}[r_t]$, and $\tilde{\theta}_t \equiv r_t^2$.

But if

$$Cov_{t-1}\left[X_t - \theta_t, \tilde{\theta}_t - \theta_t\right] \neq 0$$

then MSE rankings using $\tilde{\theta}_t$ are **not** equivalent to those using θ_t .

- \star The fact that $(\theta_t, X_t) \notin \mathcal{F}_{t-1}$ in RV comparison causes problems..
- I will break this correlation in a familiar way:

IV estimation for IV comparison

I will overcome the problem of correlated measurement errors:

$$Cov_{t-1}\left[X_t - \theta_t, \tilde{\theta}_t - \theta_t\right] \neq 0$$

in a standard way, by using a lead of the proxy:

$$Y_t = \tilde{\theta}_{t+1} = \theta_{t+1} + \nu_{t+1}.$$

This approach exploits two features of the problem:

- **1** The target variable (IV or QV) is known to be persistent, so θ_{t+1} is highly correlated with θ_t
- ② Almost all RV estimators in the literature are one-sided in nature: X_t uses data only up until day t (and usually *only* data from day t). So measurement error in X_t is uncorrelated with meas error in $\tilde{\theta}_{t+1}$

IV estimation for IV comparison, cont'd

- This problem is a non-linear instrumental variables problem, and we need to put more structure on the problem than just non-zero correlation.
 - It is not sufficient to simply assume $Cov\left[ilde{ heta}_{t+1}- heta_{t+1},X_t- heta_t
 ight]=0$ and $Cov\left[ilde{ heta}_{t+1}, heta_t
 ight]\neq 0$
- I will consider approximating the conditional mean of the target variable using two approaches:
 - A random walk approximation
 - 2 A general (stationary) AR(p) approximation
- I will show via simulation that both these models are reasonable approximations for a realistic DGP.

A random walk approximation for the target variable

- Numerous papers on the conditional variance or integrated variance have reported that these quantities are very persistent, close to being random walks.
 - Eg: The widely-used RiskMetrics model is based on a unit root assumption for the conditional variance.
 - See Bollerslev, et al. (1994), Andersen, et al., (2003, 2005), amongst many others, on the behaviour of conditional volatility
 - Note that Wright (1999) provides evidence against the presence of a unit root in daily conditional variance for many stocks.
- Given this, consider the following assumption:

Assumption T1: $\theta_t = \theta_{t-1} + \eta_t$, with $E[\eta_t | \mathcal{F}_{t-1}] = 0$.

Assumptions for the RW approximation

• The standard conditional unbiasedness assumption for the noisy proxy:

Assumption P1:
$$\tilde{\theta}_t = \theta_t + \nu_t$$
, with $E[\nu_t | \mathcal{F}_{t-1}, \theta_t] = 0$.

 \bullet It is simple to consider convex combinations of leads of $\tilde{\theta}_t$ as our proxy:

Assumption P2:
$$Y_t = \sum_{i=1}^J \omega_i \tilde{\theta}_{t+i}$$
, where $1 \leq J < \infty$, $\omega_i \geq 0 \ \forall \ i$ and $\sum_{i=1}^J \omega_i = 1$.

Rankings based on a RW approximation

Proposition

(a) Let assumptions T1, P1 and P2 hold. Then:

$$E\left[\Delta L\left(\boldsymbol{\theta}_{t},\boldsymbol{X}_{t};b\right)\right]=E\left[\Delta L\left(\boldsymbol{Y}_{t},\boldsymbol{X}_{t};b\right)\right]$$

for any vector of RV estimators, \mathbf{X}_t .

Rankings based on a RW approximation

• The intuition behind this result is based on:

$$\begin{array}{rcl} \tilde{\theta}_{t+1} & = & \theta_{t+1} + \nu_{t+1} \\ & = & \theta_t + \eta_{t+1} + \nu_{t+1} \\ & \equiv & \theta_t + \epsilon_{t+1} \end{array}$$
 with $Corr\left[\epsilon_{t+1}, X_t\right] = 0$

- Thus if θ_t is very persistent, then tomorrow's *proxy*, $\tilde{\theta}_{t+1}$ is a good estimate of today's target variable θ_t .
- Next, I draw on existing work on forecast comparison to obtain a distribution theory for the feasible estimate of the differences in distances.

Rankings based on a RW approximation, cont'd

Proposition

(b) If we further assume mixing and moment conditions (A1 and A2), then:

$$\sqrt{T}\left(\frac{1}{T}\sum_{t=1}^{T}\Delta L\left(Y_{t},\mathbf{X}_{t};b\right)-E\left[\Delta L\left(\theta_{t},\mathbf{X}_{t};b\right)\right]\right)\rightarrow^{d}N\left(0,\Omega\right)$$

Rankings based on a RW approximation, cont'd

Proposition

(c) If $p_T \to 0$ and $T \times p_T \to \infty$ as $T \to \infty$, where p_T is the inverse of the average block length in Politis and Romano's (1994) stationary bootstrap, then the stationary bootstrap may also be employed, as:

$$\sup_{z} \left| P^* \left[\left\| \frac{1}{T} \sum_{t=1}^{T} \Delta L \left(Y_t^*, \mathbf{X}_t^*; b \right) - \frac{1}{T} \sum_{t=1}^{T} \Delta L \left(Y_t, \mathbf{X}_t; b \right) \right\| \le z \right] - P \left[\left\| \frac{1}{T} \sum_{t=1}^{T} \Delta L \left(Y_t, \mathbf{X}_t; b \right) - E \left[\Delta L \left(\theta_t, \mathbf{X}_t; b \right) \right] \right\| \le z \right] \right| \to 0$$

An AR(p) approximation for the target variable

- Meddahi (2003, EJ) and Barndorff-Nielsen (2002, JRSS-B) show that the integrated variance follows an ARMA(p,q) model for a wide variety of stochastic volatility models for the spot volatility.
 - Eg: Meddahi shows that a p-factor SV model generates an ARMA(p, p) for the daily integrated variance
- Empirical and theoretical work by Andersen, Bollerslev and Meddahi (2004 IER, 2007 wp) reveals that an AR(1) performs no worse than the optimal ARMA(p,q) model for a range of realistic DGPs.
- The result below may be generalised to hold for invertible ARMA(p,q) processes, but in light of the empirical work in this area, I consider only AR(p) processes.

Rankings based on an AR(p) approximation

 The following assumption allows the target variable to follow (almost) any stationary AR(p) process:

Assumption T2:

$$\begin{array}{rcl} \theta_t & = & \phi_0 + \sum_{i=1}^p \phi_i \theta_{t-i} + \eta_t, \\ E\left[\eta_t | \mathcal{F}_{t-1}\right] & = & 0 \end{array}$$

with $\phi_1 \neq 0$ and $\Phi \equiv \left[\phi_0,\phi_1,...,\phi_p\right]'$ such that θ_t is covariance stationary.

• The following result uses an instrumental variables estimator to obtain the AR(p) parameters for θ_t .

Rankings based on an AR(p) approximation

Proposition

(a) Let assumptions T2, P1 and P2 hold, and let R2 hold if p>1. Then

$$\begin{split} E\left[\Delta L\left(\theta_{t},\mathbf{X}_{t};b\right)\right] &= E\left[\Delta L\left(Y_{t},\mathbf{X}_{t};b\right)\right] - \beta \\ where \;\; \beta &= \frac{\phi_{0}}{\phi_{1}}E\left[\Delta C\left(\mathbf{X}_{t};b\right)\right] \\ &+ \left(1 - \frac{1}{\phi_{1}}\right)E\left[\Delta C\left(\mathbf{X}_{t};b\right)Y_{t}\right] \\ &+ \sum_{i=0}^{p} \frac{\phi_{i}}{\phi_{t}}E\left[\Delta C\left(\mathbf{X}_{t};b\right)Y_{t-i}\right] \end{split}$$

Rankings based on an AR(p) approximation, cont'd

Proposition

(b) If we further assume mixing and moment conditions (A1 and A2), then:

$$\sqrt{T}\left(\frac{1}{T}\sum_{t=1}^{T}\Delta L\left(Y_{t},\mathbf{X}_{t};b\right)-\hat{\boldsymbol{\beta}}_{T}-E\left[\Delta L\left(\boldsymbol{\theta}_{t},\mathbf{X}_{t};b\right)\right]\right)\rightarrow^{d}N\left(0,\Omega\right)$$

Rankings based on an AR(p) approximation, cont'd

Proposition

(c) If $p_T \to 0$ and $T \times p_T \to \infty$ as $T \to \infty$ then the stationary bootstrap may also be employed, as:

$$\sup_{z} \left| P^* \left[\left\| \frac{1}{T} \sum_{t=1}^{T} \Delta L \left(Y_t^*, \mathbf{X}_t^*; b \right) - \hat{\beta}_T^* - \frac{1}{T} \sum_{t=1}^{T} \Delta L \left(Y_t, \mathbf{X}_t; b \right) + \hat{\beta}_T \right\| \le z \right] - P \left[\left\| \frac{1}{T} \sum_{t=1}^{T} \Delta L \left(Y_t, \mathbf{X}_t; b \right) - \hat{\beta}_T - E \left[\Delta L \left(\theta_t, \mathbf{X}_t; b \right) \right] \right\| \le z \right] \right| \to 0$$

Conditional rankings of RV estimators

- The final theoretical result in the paper is to consider conditional comparisons of RV estimators, using the framework of Giacomini and White (2006).
- The null hypothesis in a GW-type test is:

$$H_0: E\left[\Delta L\left(heta_t, \mathbf{X}_t
ight) \middle| \mathcal{G}_{t-1}
ight] = 0 \;\; ext{a.s.} \;\; t = 1, 2, \ldots$$

 The above null is usually tested by looking at simple regressions of the form:

$$\Delta L\left(heta_{t},\mathbf{X}_{t}
ight)=oldsymbol{lpha}^{*\prime}\mathbf{Z}_{t-1}+e_{t}^{*}$$

where $\mathbf{Z}_{t-1} \in \mathcal{G}_{t-1}$ is some vector of variables, and then testing:

$$H_0'$$
 : $lpha^*=0$ vs. H_a' : $lpha^*
eq 0$

Conditional rankings of RV estimators, cont'd

• Infeasible regression:

$$\Delta L(\theta_t, \mathbf{X}_t) = \mathbf{\alpha}^{*\prime} \mathbf{Z}_{t-1} + e_t^*$$

 The following proposition provides conditions under which a feasible form of the above regression:

$$\Delta L(Y_t, \mathbf{X}_t) = \boldsymbol{\alpha}' \mathbf{Z}_{t-1} + e_t$$

provides consistent estimates of the parameter $\boldsymbol{\alpha}^*$ in the infeasible regression.

Conditional rankings of RV estimators

Proposition

(a) Let assumptions T1, P1 and P2 hold. Then

$$E\left[\Delta L\left(heta_{t},\mathbf{X}_{t};b
ight)|\mathcal{G}_{t-1}
ight]=E\left[\Delta L\left(Y_{t},\mathbf{X}_{t};b
ight)|\mathcal{G}_{t-1}
ight]$$
 a.s., $t=1,2,...$

for any vector of RV estimators, \mathbf{X}_t .

Conditional rankings of RV estimators, cont'd

Proposition

(b) Denote the OLS estimator of α as α_T . Then under mixing and moment conditions (A3 and A4):

$$\begin{array}{cccc} \hat{D}_{T}^{-1/2}\sqrt{T}\left(\hat{\boldsymbol{\alpha}}_{T}-\boldsymbol{\alpha}^{*}\right) & \rightarrow & {}^{d}N\left(0,I\right) \\ \\ & \text{where} & \hat{D}_{T} & \equiv & \hat{M}_{T}^{-1}\hat{\Omega}_{T}\hat{M}_{T}^{-1} \\ \\ & \hat{M}_{T} & \equiv & \frac{1}{T-1}\sum_{t=2}^{T}\mathbf{Z}_{t-1}\mathbf{Z}_{t-1}^{\prime} \\ \\ & \Omega_{T} & \equiv & V\left[\frac{1}{\sqrt{T-1}}\sum_{t=2}^{T}\mathbf{Z}_{t-1}e_{t}\right] \end{array}$$

and with $\hat{\Omega}_T$ some estimator such that $\hat{\Omega}_T - \Omega_T \rightarrow^p 0$.

A small simulation study - the DGP

- To check the finite-sample size properties of the proposed methods, I conducted a small simulation study:
- I use a standard log-normal stochastic volatility model with a leverage effect, with the same parameters as in Goncalves and Meddahi (2005):

$$d \log P_t^* = 0.0314 dt + \nu_t \left(-0.576 dW_{1t} + \sqrt{1 - 0.576^2} dW_{2t} \right)$$

$$d \log \nu_t^2 = -0.0136 \left(0.8382 + \log \nu_t^2 \right) dt + 0.1148 dW_{1t}$$

- In simulating from these processes I use a simple Euler discretization scheme, with the step size calibrated to one second (i.e., with 23,400 steps per simulated trade day).
- I look at sequences of 500 and 2500 'trade days'.

Simulation design - adding some noise

 To gain some insight into the impact of microstructure effects, I also consider a simple iid error term for the observed log-price:

$$\begin{array}{rcl} \log P\left(t_{j}\right) & = & \log P^{*}\left(t_{j}\right) + \xi\left(t_{j}\right) \\ & \xi\left(t_{j}\right) & \sim & \textit{iid} \; N\left(0, \sigma_{\xi}^{2}\right) \end{array}$$
 where $\frac{2\sigma_{\xi}^{2}}{V\left[r_{t}\right]\frac{5}{390} + 2\sigma_{\xi}^{2}} = 0.20$

- i.e., the variance of the noise is such that the proportion of the variance of the 5-minute return (5/390 of a trade day) that is attributable to microstructure noise is 20%.
 - The expression above is from Aït-Sahalia, et al. (2005)
 - The proportion of 20% is around the middle value considered in the simulation study of Huang and Tauchen (2005).

Goodness-of-fit of ARMA models for IV

 Meddahi (2003) and Barndorff-Nielsen and Shephard (2002) show theoretically that integrated variance follows an ARMA(p,q) model for a wide variety of stochastic volatility models for the instantaneous volatility (though they assume no noise and no leverage effect)

	Random walk	AR(1)	AR(2)	AR(5)	ARMA (1,1)	,
Avg R ²	0.9618	0.9622	0.9627	0.9631	0.9648	0.9650

Simulation design - the competing RV estimators

- Next I consider the finite-sample size of pair-wise comparisons obtained via a bootstrap verison of a Diebold-Mariano (1995) test.
- I set the each RV estimator equal to the true IV plus some noise:

$$\begin{array}{rcl} X_{it} & = & IV_t + \zeta_{it}, & i = 1,2 \\ \zeta_{1t} & = & \omega v_t^{30\, \mathrm{min}} + (1-\omega)\, \sigma_u \, U_{1t} \\ \zeta_{2t} & = & \omega v_t^{30\, \mathrm{min}} + (1-\omega)\, \sigma_u \, U_{2t} + \sqrt{\sigma_{\zeta 2}^2 - \sigma_{\zeta 1}^2} \, U_{3t} \\ [U_{1t}, \, U_{2t}, \, U_{3t}]' & \sim & iid \, \, N \, (0,I) \\ v_t^{30\, \mathrm{min}} & \equiv & R V_t^{30\, \mathrm{min}} - IV_t \end{array}$$

Simulation design - the competing RV estimators

- Next I consider the finite-sample size of pair-wise comparisons obtained via a bootstrap verison of a Diebold-Mariano (1995) test.
- I set the each RV estimator equal to the true IV plus some noise:

$$\begin{array}{rcl} X_{it} & = & IV_{t} + \zeta_{it}, & i = 1, 2 \\ \zeta_{1t} & = & \omega v_{t}^{30\, \mathrm{min}} + (1 - \omega)\, \sigma_{u} U_{1t} \\ \zeta_{2t} & = & \omega v_{t}^{30\, \mathrm{min}} + (1 - \omega)\, \sigma_{u} U_{2t} + \sqrt{\sigma_{\zeta2}^{2} - \sigma_{\zeta1}^{2}}\, U_{3t} \\ \left[U_{1t}, \, U_{2t}, \, U_{3t} \right]' & \sim & iid \, \, N \, (0, \, I) \\ v_{t}^{30\, \mathrm{min}} & \equiv & R V_{t}^{30\, \mathrm{min}} - IV_{t} \end{array}$$

• I set $\mathit{Corr}\left[\nu_t^{30\,\mathrm{min}},\zeta_{1t}\right]=0.5.$

Simulation design - the competing RV estimators

- Next I consider the finite-sample size of pair-wise comparisons obtained via a bootstrap verison of a Diebold-Mariano (1995) test.
- I set the each RV estimator equal to the true IV plus some noise:

$$\begin{array}{rcl} X_{it} & = & IV_{t} + \zeta_{it}, & i = 1,2 \\ \zeta_{1t} & = & \omega \nu_{t}^{30\, \mathrm{min}} + (1-\omega)\,\sigma_{u}\,U_{1t} \\ \zeta_{2t} & = & \omega \nu_{t}^{30\, \mathrm{min}} + (1-\omega)\,\sigma_{u}\,U_{2t} + \sqrt{\sigma_{\zeta2}^{2} - \sigma_{\zeta1}^{2}}\,U_{3t} \\ \left[U_{1t},\,U_{2t},\,U_{3t}\right]' & \sim & iid\,\,N\,(0,I) \\ \nu_{t}^{30\, \mathrm{min}} & \equiv & RV_{t}^{30\, \mathrm{min}} - IV_{t} \end{array}$$

- I set $Corr\left[v_t^{30\,\mathrm{min}},\zeta_{1t}\right]=0.5.$
- In the study of the size of the tests I set $\sigma_{\zeta 1}^2 = \sigma_{\zeta 2}^2 = 0.1 \times V[IV_t]$. To study the power, I fix $\sigma_{\zeta 1}^2$, and let $\sigma_{\zeta 2}^2/V[IV_t] = 0.15$, 0.2, 0.5, 1.

Finite-sample size and power, T=500, using MSE

		IV		RV-30min		RV-daily	
γ	IV*	R.W.	AR(1)	R.W.	AR(1)	R.W.	AR(1)
0.10	0.05	0.03	0.02	0.04	0.00	0.06	0.01
0.15	0.98	0.89	0.88	0.40	0.02	0.14	0.00
0.20	1.00	1.00	1.00	0.74	0.06	0.23	0.02
0.50	1.00	1.00	1.000	1.00	0.56	0.60	0.06
1.00	1.00	1.00	1.000	1.00	0.70	0.89	0.07

Simulation design - conditional comparisons

 Next I consider a simple design to check the finite-sample size of GW tests for this application.

$$\begin{array}{rcl} X_{1t} & = & IV_{t} + \zeta_{1t} \\ X_{2t} & = & IV_{t} - \lambda IV_{t-1} + \zeta_{2t} \\ \zeta_{it} & = & \omega v_{t}^{30\,\text{min}} + (1 - \omega)\,\sigma_{u}\,U_{it}, \quad i = 1, 2 \\ \left[U_{1t},\,U_{2t}\right]' & \sim & \textit{iid}\,\,N\left(0,I\right) \end{array}$$

Simulation design - conditional comparisons

 Next I consider a simple design to check the finite-sample size of GW tests for this application.

$$\begin{array}{rcl} X_{1t} & = & IV_{t} + \zeta_{1t} \\ X_{2t} & = & IV_{t} - \lambda IV_{t-1} + \zeta_{2t} \\ \zeta_{it} & = & \omega v_{t}^{30\,\text{min}} + (1 - \omega)\,\sigma_{u}U_{it}, \quad i = 1, 2 \\ \left[U_{1t}, \, U_{2t}\right]' & \sim & \textit{iid} \,\,N\left(0, I\right) \end{array}$$

• To study finite-sample size, I set $\lambda=0$. To study power, set $\lambda=0.1,0.2,0.4,0.8$. Tests are based on regressions of the form:

$$\begin{array}{lcl} L\left(\tilde{\boldsymbol{\theta}}_{t+1}, X_{1t}\right) - L\left(\tilde{\boldsymbol{\theta}}_{t+1}, X_{2t}\right) & = & \alpha_0^u + e_t^u, \quad \text{or} \\ L\left(\tilde{\boldsymbol{\theta}}_{t+1}, X_{1t}\right) - L\left(\tilde{\boldsymbol{\theta}}_{t+1}, X_{2t}\right) & = & \alpha_0 + \alpha_1 \log \frac{1}{10} \sum_{i=1}^{10} \tilde{\boldsymbol{\theta}}_{t-i} + e_t \end{array}$$

Finite-sample size and power, T=500, using MSE

	Cond	itional -	- slope test	Cond	itional -	- joint test
		Volatility proxy			Volat	ility proxy
λ	IV*	IV	RV-daily	IV^*	IV	RV-daily
0	0.06	0.08	0.04	0.06	0.06	0.04
0.1	0.28	0.16	0.05	0.33	0.21	0.05
0.2	0.93	0.80	0.05	0.92	0.86	0.08
0.4	1.00	1.00	0.11	1.00	1.00	0.34
8.0	1.00	1.00	0.47	1.00	1.00	0.88

Summary of simulation results

- For a realistic DGP, with noise and a leverage effect, I find that the finite-sample size is reasonable, with rejection frequencies close to 0.05.
- The results for the power of the tests are as expected:
 - power of the new tests are worse than would be obtained if IV were observable
 - 2 power is worse when a noisier instrument is used (daily squared returns versus 30-minute RV versus true IV)
 - \odot power of the tests based on the AR(1) assumption are worse than those based on the random walk assumption.
 - opower of the tests are better when a larger sample size is available

Application to IBM stock returns

- I consider estimating the quadratic variation of the daily return on IBM, using data from TAQ from Jan 1996 to June 2007, yielding 2893 daily observations.
 - I break this sample into three sub-periods (1996-1999, 2000-2003, 2004-2007) to allow for changes in market rules and conditions.
- I use standard RV, based on:
 - 1 trade prices and mid-quote prices
 - 2 calendar-time sampling and tick-time sampling
 - 3 sampling frequencies of 1, 2, 5, 15, 30 seconds, 1, 2, 5, 15, 30 minutes, 1, 2 hours and 1 day.
- The total number of RV estimators is $2 \times 2 \times 13 4 = 48$

Data-based comparisons of the 48 RV estimators

- Raw rankings of the RV estimators based on estimated average differences in distance
- The stepwise multiple testing method of Romano-Wolf (2005)
 - Which estimators significant beat (or are beaten by) daily RV?
 - Which estimators significant beat (or are beaten by) 5-minute RV?
- The conditional comparison test of Giacomini-White (2006)
 - Does high frequency data help more during volatile periods?
 - When are quote prices more or less informative than transaction prices?
 - Does tick-time sampling help when trades arrive irregularly?

Estimated differences in distance under MSE

Estimated differences in distance under QLIKE

The Romano-Wolf stepwise test

 The Romano-Wolf test looks at each of 47 null and alternative hypotheses separately:

$$\begin{aligned} & H_0^{(i)} & : & E\left[L\left(\theta_t, X_{0t}\right) - L\left(\theta_t, X_{it}\right)\right] \leq 0 \\ & H_1^{(i)} & : & E\left[L\left(\theta_t, X_{0t}\right) - L\left(\theta_t, X_{it}\right)\right] > 0 \end{aligned}$$

and identifies which null hypotheses can be rejected.

- Romano-Wolf's procedure controls the 'family-wise error rate' of these 47 tests
 - FWE is the probability that we reject at least one true null hypothesis, and reduces to the size of the test if we examine only one null.

The Romano-Wolf stepwise test - results

Daily RV on transaction prices as the benchmark

MSE			QLIKE			
Better	Not Diff	Worse	Better	Not Diff	Worse	
33	14	0	46	1	0	

- Under QLIKE, daily RV is significantly beaten by every other estimator, except for daily RV using quote prices.
- Under MSE it is beaten by 33 estimators. Those that do not beat it are RV using 30-min or lower sampling.

The Romano-Wolf stepwise test - results

5-minute calendar-time RV on transaction prices as the benchmark

MSE			QLIKE			
Better	Not Diff	Worse	Better	Not Diff	Worse	
0	47	0	9	9	29	

- Under MSE, no estimator can be distinguished from 5-min RV. (Power problem with this application.)
- Under QLIKE, most estimators are worse than 5-min RV, but a few are significantly better: those based on trade prices sampled at between 15 seconds and 5 minutes.

High-frequency vs. Low-frequency RV estimators

Conditional on recent volatility

$$\begin{array}{lcl} L\left(Y_{t},RV_{t}^{\textit{daily}}\right) - L\left(Y_{t},RV_{t}^{5\,\text{min}}\right) & = & 36.14 + e_{t} \\ L\left(Y_{t},RV_{t}^{\textit{daily}}\right) - L\left(Y_{t},RV_{t}^{5\,\text{min}}\right) & = & 26.71 + 19.20Z_{t-1} + e_{t} \\ & \text{where} \quad Z_{t-1} & = & \log\frac{1}{10}\sum_{j=1}^{10}\tilde{\theta}_{t-j} \end{array}$$

- The positive constant in the 1st regression reveals that daily squared returns are worse than 5-min RV
- The positive and significant slope coefficient in the 2nd regression reveals that daily squared returns are particularly bad proxies during high liquidity periods. (pval on joint test is <0.000)

Tick-time vs. Calendar-time sampling

Conditional on the volatility of trade durations

$$L\left(Y_{t}, RVtick_{t}^{(hmin)}\right) - L\left(Y_{t}, RV_{t}^{(hmin)}\right) = \alpha^{u} + e_{t}^{u}$$

$$L\left(Y_{t}, RVtick_{t}^{(hmin)}\right) - L\left(Y_{t}, RV_{t}^{(hmin)}\right) = \alpha_{0} + \alpha_{1}Z_{t-1} + e_{t}$$

$$\text{where} \quad Z_{t-1} \equiv V\left[\text{Duration}_{j,t-1}\right]^{1/2}$$

• I run these regressions for each value of h:

Tick-time vs. Calendar-time sampling

Conditional on the volatility of trade durations

Frequency	Average (t-stat)	Intercept (t-stat)	Slope (t-stat)	Joint <i>p</i> -val
2 sec	0.01 * (10.81)	0.08* (3.91)	-0.01^* (-3.26)	0.00
15 sec	0.00 (1.91)	-0.07 (-1.52)	0.01 (1.56)	0.14
30 sec	-0.01^* (-2.90)	0.06 (1.15)	-0.01 (-1.22)	0.01
2 min	-0.01^* (-3.55)	$0.06 \\ (1.65)$	-0.01 (-1.80)	0.00
15 min	-0.06* (-7.94)	$0.30^{*}_{(1.96)}$	-0.06^* (-2.32)	0.00
30 min	-0.08* (-4.76)	0.82* (2.37)	-0.16^* (-2.57)	0.00
2 hr	-1.23^{*} (-2.39)	17.49* (2.33)	-3.37^* (-2.40)	0.03
Joint	-0.06 (-7.94)	0.07* (2.50)	-0.01^{*} (-2.22)	0.00

Quote prices vs. Trade prices

Conditional on the ratio of number of quotes to number of trades

$$\begin{split} L\left(Y_{t},RV_{t}^{quote(hmin)}\right) - L\left(Y_{t},RV_{t}^{trade(hmin)}\right) &= \alpha^{u} + e_{t}^{u} \\ L\left(Y_{t},RV_{t}^{quote(hmin)}\right) - L\left(Y_{t},RV_{t}^{trade(hmin)}\right) &= \alpha_{0} + \alpha_{1}Z_{t-1} + e_{t} \\ &\text{where} \quad Z_{t-1} &\equiv \frac{\#\left\{quotes\right\}_{t-1}}{\#\left\{trades\right\}_{t-1}} \end{split}$$

• I again run these regressions for each value of h:

Quote prices vs. Trade prices

Conditional on the ratio of number of quotes to number of trades

Frequency	Average	Intercept	Slope	Joint <i>p</i> -val
	(t-stat)	(t-stat)	(t-stat)	
2 sec	0.14* (9.63)	0.38 *	-0.16^* (-8.53)	0.00
15 sec	0.13 * (11.78)	0.35 * (12.50)	-0.14 * (-10.39)	0.00
30 sec	$0.10^{\ *}_{(12.03)}$	$0.28^{\ *}_{(12.34)}$	-0.11 * (-10.25)	0.00
2 min	$0.05^{*} \atop (10.65)$	$0.14^{*} \\ {}_{(10.00)}$	-0.06* (-8.47)	0.00
15 min	0.03* (6.78)	0.09 * (5.88)	-0.03* (-4.58)	0.00
30 min	$0.03* \atop (4.95)$	0.08 * (3.67)	-0.03^* (-2.70)	0.00
2 hr	-0.29 (-1.10)	-1.47 (-1.70)	0.75 (1.83)	0.17
Joint	0.06 * (11.54)	0.17* (11.32)	$-0.07^* \ (-9.51)$	0.00

Conclusion and summary of results

- This paper presents conditions under which the relative average accuracy of competing RV estimators can be consistently $(T \to \infty)$ estimated from available data
 - Based on plausible assumptions about the time series properties of the data
 - No need for precise assumptions about the underlying price process or market microstructure noise process
- This "data-based" ranking approach facilitates the use of standard forecast comparison tests for ranking RV estimators:
 - Diebold-Mariano (1995), West (1996), White (2000), Hansen (2005), Romano-Wolf (2005), Hansen et al. (2005), Giacomini-White (2006), for example.