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1 Motivation

� The e¤orts devoted to econometric modelling and forecasting generates
strong demand for forecast comparison methods

� The study of forecast evaluation and comparison methods has a long history,
back to at least Cowles (1933). (See West (2005) for a recent survey.) But

most existing methods rely on the target variable being observable.

� Many economic forecasting problems involve unobservable variables

� conditional variance or integrated variance

� default probabilities or �crash�probabilities

� �true�rates of GDP growth or in�ation (opposed to announced rates).



2 Motivation

� Forecast evaluation and comparison for latent variables often involves the
use of a �proxy�, (i.e., some imperfect estimate of the variable of interest).

For example:

� using squared returns to proxy for the conditional variance

� using an default indicator variable to proxy for conditional default prob-

abilities

� The use of proxies in forecast evaluation and comparison may or may not
lead to complications.

� See Andersen and Bollerslev (1998), Meddahi (2001) and Hansen and

Lunde (2006), for example.



3 �Robust� loss functions

� A property, �rst considered in Hansen and Lunde (2006), that will guide
my analysis of the forecast comparison problem is the following:

De�nition 1: A loss function, L, is �robust�if the ranking of any two (possibly

imperfect) volatility forecasts, h1t and h2t, by expected loss is the same whether

the ranking is done using the true conditional variance, �2t ; or some conditionally

unbiased proxy, �̂2t .

That is, if E
h
�̂2t jFt�1

i
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4 �Economic� loss functions

� The ideal scenario in forecasting is when the entire decision problem of the
forecast user is known to the forecast producer. In such cases we may use

the relevant �economic� loss function - see West, et al. (1993), Fleming,

et al. (2001) or Engle, et al. (1993) for examples.

� In such cases the forecast becomes just an input to the decision, and the
optimal volatility forecast will not generally be the true conditional variance.

� Unfortunately, the economic loss function of the user of a volatility forecast
is usually unknown, leading us to rely on �statistical� loss functions.

� This paper provides guidance on the choice of statistical loss functions

for volatility forecasting.



5 Notation

Returns : rtjFt�1 s Ft
�
0; �2t

�

Standardised returns : "t � rt=�t s Ft (0; 1)

Variance : Vt�1 [rt] = Et�1
h
r2t
i
= �2t

Volatility proxy : �̂2t , such that Et�1
h
�̂2t
i
= �2t

�Optimal�volatility forecast : h�t = argmin
ht

Et�1
h
L
�
�̂2t ; ht

�i



6 Outline of talk

1. Comparisons using squared returns as a proxy

2. Comparisons using more e¢ cient volatility proxies

3. A class of �robust� loss functions

4. Application to forecasting IBM stock return volatility

5. Conclusions and some extensions
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8 Loss function �robustness� in the literature

� Meddahi (2001) showed that the R2 from the Mincer-Zarnowitz regression:

�̂2t = �0 + �1hit + eit

yields a robust ranking of volatility forecasts.

� Hansen and Lunde (2006) showed that the R2 from the MZ regression in

logs is not robust. Further, Hansen and Lunde (2006) provide a su¢ cient

condition for a loss function to be robust:

@3L
�
�̂2t ; h

�
@h@

�
�̂2t

�2 = 0



9 Very brief summary of results

� I build on the the work of Andersen and Bollerslev (1998), Meddahi (2001),
and Hansen and Lunde (2006) to show two main results:

1. I analytically derive the problems cause by noise for the 9 most common

loss functions, revealing some to be worse than others.

� Using squared daily returns, the range and realised variance as proxies

2. I propose a necessary and su¢ cient class of loss functions for use with

a conditionally unbiased, but imperfect, proxy.

� I derive the homogeneous sub-set of this class of functions, which

nests the MSE and QLIKE loss functions, and provide moment con-

ditions for their use in forecast comparison tests



10 Diebold-Mariano (1995) - West (1996) test

� This is the most widely used test for forecast comparison. Let

dt = L
�
�̂2t ; h1;t

�
� L

�
�̂2t ; h2;t

�
eg dt =

�
�̂2t � h1;t

�2 � �
�̂2t � h2;t

�2

� If two forecasts yield equal expected loss, for some loss function, then

H0 : E [dt] = 0

vs. Ha : E [dt] 6= 0

� This test can be conducted as a t-test, with the standard error appropriately
adjusted for serial dependence (Diebold-Mariano) and/or estimation error

in the forecasts (West).



11 Loss functions used in DMW tests

MSE : L
�
�̂2t ; ht

�
=
�
�̂2t � ht

�2
QLIKE : L

�
�̂2t ; ht

�
= log ht +

�̂2t
ht

MSE-LOG : L
�
�̂2t ; ht

�
=
�
log �̂2t � log ht

�2
MSE-SD : L

�
�̂2t ; ht

�
=
�
�̂t �

p
ht
�2

MSE-prop : L
�
�̂2t ; ht

�
=

 
�̂2t
ht
� 1

!2
MAE : L

�
�̂2t ; ht

�
=
����̂2t � ht���

MAE-LOG : L
�
�̂2t ; ht

�
=
���log �̂2t � log ht���

MAE-SD : L
�
�̂2t ; ht

�
=
����̂t �p

ht
���

MAE-prop : L
�
�̂2t ; ht

�
=

������̂2tht � 1
�����



12 A necessary condition for robustness

� If a loss function is �robust�

E
h
L
�
�2t ; h1t

�i
R E

h
L
�
�2t ; h2t

�i
, E

h
L
�
�̂2t ; h1t

�i
R E

h
L
�
�̂2t ; h2t

�i

then it follows directly that the optimal forecast under that loss function

must be the conditional variance.

� We can thus check a necessary condition for robustness by determining
whether the loss function implies h�t = �

2
t :



13 Optimal forecasts under MSE loss

� MSE loss is the most commonly employed loss function. The optimal

forecast under MSE loss is the true conditional variance:

h�t � argmin
h

Et�1
��
r2t � h

�2�

FOC h�t = Et�1
h
r2t
i
= �2t

� Thus this loss function satis�es the necessary condition. (It also satis�es
Hansen and Lunde�s su¢ cient condition.)



14 Optimal forecasts under MAE loss

� One of the most commonly employed alternative loss functions is the
absolute-error criterion L

�
r2t ; ht

�
=
���r2t � ht���, which yields:

h�t = Mediant�1
h
r2t
i

= �2t �
� � 2
�

�Median
h
F1;�

i
; if rtjFt�1 s t

�
0; �2t ; �

�
, � > 2

= �2t �Median
h
�21

i
; if rtjFt�1 s N

�
0; �2t

�

� 0:45�2t

thus this loss function does not satisfy the necessary condition for robust-

ness. MAE is a non-robust loss function.



15 Optimal forecasts under MSE-SD loss

� Another commonly used loss function is the MSE on standard deviations:

L
�
r2t ; ht

�
=

�
jrtj �

p
ht
�2

h�t = (Et�1 [jrtj])2

=
� � 2
�

�
�
��1
2

�2
�
�
�
2

�2 �2t if returns are t distributed

=
2

�
�2t � 0:64�2t if returns are normally distributed

� For both the MAE and the MSE-SD loss functions the distortion is exac-
erbated when returns have excess kurtosis.



16 Optimal forecasts under various loss functions

Distribution of daily returns

Loss function rtjFt�1s
�
0; �2t

�
t
�
0; �2t ; 6

�
N
�
0; �2t

�
MSE, QLIKE �2t �2t �2t

MSE-LOG exp fEt�1 log "2t ]g�
2
t 0:22�2t 0:28�2t

MSE-SD (Et�1 jrtj])2 0:56�2t 0:64�2t

MSE-prop Kurtt�1 [rt]�2t 6:00�2t 3:00�2t

MAE Mediant�1
h
r2t

i
0:34�2t 0:45�2t

MAE-SD Mediant�1
h
r2t

i
0:34�2t 0:45�2t

MAE-prop n=a 2:73�2t 2:36�2t



17 Using better volatility proxies

� What if we employ volatility proxies that are known to have less noise?

� Consider the following simple DGP: there arem equally-spaced observations

per trade day, and let ri;m;t denote the ith intra-daily return on day t.

rt = d lnPt = �tdWt

�� = �t 8 � 2 (t� 1; t]

ri;m;t �
i=mZ

(i�1)=m

r�d� = �t

i=mZ
(i�1)=m

dW�

so
n
ri;m;t

om
i=1

s iid N

 
0;
�2t
m

!



� One alternative volatility proxy is �realized volatility�, see Andersen, et al.
(2001a, 2003), and Barndor¤-Neilsen and Shephard (2002, 2004):

RV
(m)
t �

mX
i=1

r2i;m;t

� Another commonly-used alternative to squared returns is the intra-daily
range, see Parkinson (1980) and Feller (1951):

RGt � sup
�
logP� � inf� logP� , t� 1 < � � t

� E¢ ciency comparison under this DGP:

MSEt�1
h
r2t
i
= 2�4t

MSEt�1
�
RV

(m)
t

�
= 2�4t=m

MSEt�1
h
RG�2t

i
� 0:4073�4t



18 Optimal forecasts - analytical, constant vol

Realised volatility
Loss Daily: 30-min: 5-min: True:
function Range m = 1 m = 13 m = 78 m!1

MSE, QLIKE �2t �2t �2t �2t �2t

MSE-LOG 0:85�2t 0:28�2t 0:91�2t 0:98�2t �2t

MSE-SD 0:92�2t 0:56�2t 0:96�2t 0:99�2t �2t

MSE-prop 1:41�2t 3:00�2t 1:15�2t 1:03�2t �2t

MAE 0:83�2t 0:46�2t 0:95�2t 0:99�2t �2t

MAE-SD 0:83�2t 0:46�2t 0:95�2t 0:99�2t �2t

MAE-prop 1:19�2t 2:36�2t 1:10�2t 1:02�2t �2t



19 Optimal forecasts - simulation, GARCH SV

Realised volatility
Loss Daily: 30-min: 5-min: True:
function Range m = 1 m = 13 m = 78 m!1

MSE, QLIKE 0:99�2t �2t �2t �2t �2t

MSE-LOG 0:83�2t 0:28�2t 0:92�2t 0:98�2t �2t

MSE-SD 0:91�2t 0:63�2t 0:96�2t 0:99�2t �2t

MSE-prop 1:40�2t 3:02�2t 1:16�2t 1:03�2t �2t

MAE 0:82�2t 0:46�2t 0:94�2t 0:99�2t �2t

MAE-SD 0:82�2t 0:46�2t 0:94�2t 0:99�2t �2t

MAE-prop 1:18�2t 2:37�2t 1:10�2t 1:01�2t �2t



20 Optimal forecasts - simulation, log-normal SV

Realised volatility
Loss Daily: 30-min: 5-min: True:
function Range m = 1 m = 13 m = 78 m!1

MSE, QLIKE 0:99�2t �2t �2t �2t �2t

MSE-LOG 0:83�2t 0:28�2t 0:92�2t 0:98�2t �2t

MSE-SD 0:91�2t 0:63�2t 0:96�2t 0:99�2t �2t

MSE-prop 1:40�2t 3:03�2t 1:16�2t 1:03�2t �2t

MAE 0:82�2t 0:46�2t 0:94�2t 0:99�2t �2t

MAE-SD 0:82�2t 0:46�2t 0:94�2t 0:99�2t �2t

MAE-prop 1:18�2t 2:37�2t 1:10�2t 1:02�2t �2t



21 Optimal forecasts - simulation, two-factor SV

Realised volatility
Loss Daily: 30-min: 5-min: True:
function Range m = 1 m = 13 m = 78 m!1

MSE, QLIKE �2t 1:01�2t �2t �2t �2t

MSE-LOG 0:35�2t 0:12�2t 0:37�2t 0:41�2t �2t

MSE-SD 0:57�2t 0:40�2t 0:58�2t 0:62�2t �2t

MSE-prop 9:79�2t 20:6�2t 9:03�2t 6:70�2t �2t

MAE 0:31�2t 0:17�2t 0:32�2t 0:35�2t �2t

MAE-SD 0:31�2t 0:17�2t 0:32�2t 0:35�2t �2t

MAE-prop 3:47�2t 6:60�2t 3:33�2t 2:98�2t �2t



22 SV models used in the simulations

� For the simulations we used the same models and parameter values as used
in Gonçalves and Meddahi (2005):

1. GARCH di¤usion, as in Anderson and Bollerslev (1998):

d logPt = 0:0314dt+ �t

�
�0:576dW1t +

q
1� 0:5762dW2t

�
d�2t = 0:035

�
0:636� �2t

�
dt+ 0:144�2tdW1t

2. Log-normal di¤usion, as in Anderson, Benzoni and Lund (2002):

d logPt = 0:0314dt+ �t

�
�0:576dW1t +

q
1� 0:5762dW2t

�
d log �2t = �0:0136

�
0:8382 + log �2t

�
dt+ 0:1148dW1t



23 SV models used in the simulations, cont�d

3. Two-factor di¤usion, as in Chernov, Gallant, Ghysels and Tauchen (2003):

d logPt = 0:030dt+ �t

�
�0:30dW1t � 0:30dW2t

+
q
1� 0:32 � 0:32dW3t

�
�2t = s-exp

n
�1:2 + 0:04�21t + 1:5�22t

o
d�21t = �0:00137�21tdt+ dW1t

d�22t = �1:386�22tdt+
�
1 + 0:25�22t

�
dW2t

where s-exp fxg =

(
exp fxg ; x � x0
exp fx0g

q
1� x0 + x2=x0; x > x0



24 Generalising these results

� Using a 2nd-order mean-value expansion for L; the �rst-order condition is:

0 = Et�1

24@L
�
�̂2t ; h

�
t

�
@h

35 = @L
�
�2t ; h

�
t

�
@h

+
@3L

�
��2t ; h

�
t

�
@
�
�2t

�2
@h

� 1
2
Vt�1

h
�̂2t
i

1. If @3L=@
�
�2t

�2
@h = 0 for all

�
�2; h

�
, then h�t = �

2
t . This is a key result

of Hansen and Lunde (2006)

2. If @3L=@
�
�2t

�2
@h > 0 for all

�
�2; h

�
, then we must have @L=@h < 0,

implying h�t < �
2
t : Eg: MSE-SD and MSE-log loss functions.

3. If @3L=@
�
�2t

�2
@h < 0 for all

�
�2; h

�
, then we must have @L=@h > 0,

implying h�t > �
2
t : Eg: MSE-prop loss function.



25 A class of robust loss functions

� Both the MSE and QLIKE loss functions yielded the conditional variance
as the optimal forecast.

� This leads to the question: Is there a general class of such loss functions?

� The following proposition suggests a class of loss functions, related to the
linear-exponentional family of densities of Gourieroux, et al. (1984), and

to Gourieroux, et al. (1987).



Assumptions:

A1: E
h
�̂2t jFt�1

i
= �2t

A2: �̂2t jFt�1 s Ft 2 ~F , the set of all absolutely continuous distribution

functions on R+:

A3: L is twice continuously di¤erentiable with respect to h and �̂2, and has a

unique minimum at �̂2 = h:

A4: There exists some h�t 2 int (H) such that h�t = Et�1
h
�̂2t

i
, where H is a

compact subset of R++:

A5: L and Ft are such that: (a) Et�1
h
L
�
�̂2t ; h

�i
<1 for some h 2 H; (b)

Et�1
h
@L

�
�̂2t ; �

2
t

�
=@h

i
< 1; and (c)

���Et�1 h@2L � �̂2t ; �2t� =@h2i��� < 1
for all t:



.

Proposition 2:

Let assumptions A1 to A5 hold. Then a loss function L is �robust� if and only

if it takes the following form:

L
�
�̂2; h

�
= ~C (h) +B

�
�̂2
�
+ C (h)

�
�̂2 � h

�

where B and C are twice continuously di¤erentiable, C is a strictly decreasing

function on H, and ~C is the anti-derivative of C.



26 Sub-sets of robust loss functions - 1

Proposition 3:

(i) The �MSE�loss function is the only robust loss function that depends solely

on the forecast error, �̂2 � h:

(ii) The �QLIKE� loss function is the only robust loss function that depends

solely on the standardised forecast error, �̂2=h:



27 A parametric family of loss functions for

volatility forecast comparison

� We now seek to �nd a parametric family of loss functions within the broader
class of robust loss functions, that nests both MSE and QLIKE loss func-

tions.

� Note that both MSE and QLIKE loss functions have �rst-order conditions
that can be written as:

Et�1

24@L
�
�̂2t ; h

�
t

�
@h

35 = 0 = h�k�2t

�
Et�1

h
�̂2t
i
� h�t

�
; k 2 R



Proposition 4:

(i) The following family of functions

L
�
�̂2; h; k

�
=

8>>>>>>>><>>>>>>>>:

�
�̂2(k�1) � hk�1

�
= (k � 1)�

�
�̂2k � hk

�
=k; for k =2 f0; 1g

h� �̂2 + �̂2 log
�
�̂2=h

�
; for k = 1

�̂2=h� log
�
�̂2=h

�
� 1; for k = 0

satisfy L (h; h; k) = 0 for all h 2 H, and are of the form in Proposition 2.

(ii) The family of loss functions in part (i) corresponds to the entire sub-set of

homogeneous robust loss functions. The degree of homogeneity is equal to k:

Aside: Recall that homogeneity of degree k implies

L
�
a�̂2; ah

�
= akL

�
�̂2; h

�
; 8a > 0



28 Units of measurement and forecast rankings

� The choice of units in many economic and �nancial problems is arbitrary
(prices in dollars versus cents, returns in percentages versus decimals)

Proposition 5:

(i) The ranking of any two (possibly imperfect) volatility forecasts by expected

loss is invariant to a re-scaling of the data if the loss function is robust and

homogeneous.

(ii) The ranking of any two (possibly imperfect) volatility forecasts by expected

loss may not be invariant to a re-scaling of the data if the loss function is robust

but not homogeneous.



Proof: (ii) Consider the following example: �2t = 1 8t; (h1t; h2t) = (1; 2) 8t,
and �̂2t is such that Et�1

h
�̂2t

i
= 1 a.s. 8t: As a robust but non-homogeneous

loss we will use the one generated by the following speci�cation for C0:

C0 (h) = � log (1 + h)

Given this set-up, we have

E
h
L
�
a�̂2t ; ahit

�i
=

1

4

h
ai (3ai + 2)� 2 (1 + ai)2 log (1 + ai)

i
+a [ai � (1 + ai) log (1 + ai)] (1� i) + const

Then de�ne

dt (1; 2; a) � L
�
a�̂2t ; a1

�
� L

�
a�̂2t ; a2

�
Then note that

E [dt (0:33; 1:5; 1)] = �0:0087

but E [dt (0:33; 1:5; 2)] = +0:0061



Proposition 6(ii):

Let dt (k) = L
�
�̂2t ; h1t; k

�
� L

�
�̂2t ; h2t; k

�

Su¢ cient conditions for E
h
dt (k)

2
i
<1 are:

1) inf Hi � ci > 0 for i = 1; 2;

2) E
h
h
p
it

i
<1, i = 1; 2; and E

h
�̂
q
t

i
<1,

where p and q are as follows:

p = max [0; 2k] ; q = max [4 + �; 4k] , k =2 f0; 1g

p = 2 (e+ 1) =e � 2:74; q = 4 (e+ 1) =e � 5:47, k = 1

p = 2=e+ � � 0:74 + �; q = 4 + �, k = 0

for � > 0.



29 Forecasting IBM return volatility

� Daily and intra-daily data on IBM from January 1993 to December 2003,

2772 observations

� I consider two simple but widely-used volatility models:

Rolling window : h1t =
1

60

X60

j=1
r2t�j

RiskMetrics : h2t = �h2t�1 + (1� �) r2t�1, � = 0:94

� First 272 observations are used for estimation, last 2500 observations are
used for forecast comparison
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Figure 1: Loss functions for various choices of k. True �̂2=2 in this example,

with the volatility forecast ranging between 0 and 4.
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Figure 2: Ratio of losses from negative forecast errors to positive forecast errors,

for various choices of b. True �̂2=2 in this example, with the volatility forecast

ranging between 0 and 4.



30 Mincer-Zarnowitz regression results

� MZ regressions: �̂2t = �0 + �1hit + eit

Volatility proxy
Daily squared return 5-min realised vol

�̂0
(s:e:)

2:13�
(0:48)

2:33�
(0:40)

Rolling window �̂1
(s:e:)

0:55�
(0:09)

0:53�
(0:07)

�22-stat 25:63� 43:86�

�̂0
(s:e:)

2:39�
(0:46)

2:43�
(0:42)

RiskMetrics �̂1
(s:e:)

0:50�
(0:09)

0:51�
(0:09)

�22-stat 32:99� 35:93�

� So it is clear that we are comparing two imperfect forecasts.
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Figure 3: Conditional variance forecasts from the two simple models, January

1994 to December 2003.



31 DMW forecast comparison tests

t-statistics Volatility proxy
Daily 65-min 15-min 5-min

Loss function squared return realised vol realised vol realised vol
k = 3 -1.58 -1.66 -1.30 -1.35
k = 2 (MSE) -0.59 -0.80 -0.03 -0.13
k = 1 1.30 1.04 1.65 -1.55
k = 0 (QLIKE) 1.94 2.21� 2.73� 2.41�

k = -3 -0.17 0.25 1.63 0.65

� Under QLIKE loss, RiskMetrics signi�cantly out-performs the rolling win-
dow forecasts.

� Under MSE loss, the rolling window forecasts are weakly out-performs the
RiskMetrics forecasts.



35 Conclusions

� We have shown some of the problems that arise when an imperfect proxy is
employed to compare volatility forecasts, extending the work of Andersen

and Bollerslev (1998), Meddahi (2001) and Hansen and Lunde (2006).

� More accurate volatility proxies were shown to alleviate these problems,

but they do not completely remove them.

� A necessary and su¢ cient condition on the form of loss functions used for

volatility forecast comparison was presented, ruling out some previously-

used loss functions

� A new parametric family of loss functions was proposed, which nests

MSE and QLIKE, and works with noisy volatility proxies.




