Realized SemiCovariances Looking for Signs of Direction Inside the Covariance Matrix

Andrew J. Patton

Duke University

Joint work with: Tim Bollerslev, Jia Li, Rogier Quaedvlieg

July 2018

Patton	(Dui	ke)
Fatton	ιυu	ĸe,

- How do variances and covariances react to positive vs. negative returns? Do market participants process positive vs. negative returns differently?
- Is there any information in the signs of high frequency, intra-daily, returns?
 - It seems hard to believe, but we will show that indeed there is.
- Is it possible to extend the idea of semi-variances to covariances in a sensible way?
 - Are there any gains from doing so?

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Let $\mathbf{r}_{k,t} = [r_{1,k,t}, ..., r_{N,k,t}]'$ be the vector of returns on N assets over the k^{th} high frequency period on day t. Standard realized covariance is obtained as:

$$\mathsf{RCOV}_t^{(m)} = \sum_{k=1}^m \mathsf{r}_{k,t} \mathsf{r}'_{k,t}$$

< □ > < ^[] >

Let $\mathbf{r}_{k,t} = [r_{1,k,t}, ..., r_{N,k,t}]'$ be the vector of returns on N assets over the k^{th} high frequency period on day t. Standard realized covariance is obtained as:

$$\mathsf{RCOV}_t^{(m)} = \sum_{k=1}^m \mathsf{r}_{k,t} \mathsf{r}'_{k,t}$$

Define the vectors of positive and negative returns as:

$$\mathbf{r}_{k,t}^{+} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} \ge \mathbf{0} \right\}, \qquad \mathbf{r}_{k,t}^{-} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} < \mathbf{0} \right\}$$

where the indicator function is applied element by element.

Patton	(Du	ke

A D > A A

Let $\mathbf{r}_{k,t} = [r_{1,k,t}, ..., r_{N,k,t}]'$ be the vector of returns on N assets over the k^{th} high frequency period on day t. Standard realized covariance is obtained as:

$$\mathsf{RCOV}_t^{(m)} = \sum_{k=1}^m \mathsf{r}_{k,t} \mathsf{r}'_{k,t}$$

Define the vectors of positive and negative returns as:

$$\mathbf{r}_{k,t}^{+} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} \ge \mathbf{0} \right\}, \qquad \mathbf{r}_{k,t}^{-} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} < \mathbf{0} \right\}$$

where the indicator function is applied element by element.

Define four "realized semicovariance" matrices:

$$\mathbf{P}_{t}^{(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{+} \mathbf{r}_{k,t}^{+'},$$
$$\mathbf{N}_{t}^{(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{-} \mathbf{r}_{k,t}^{-'}$$

ADA A ADA A

Let $\mathbf{r}_{k,t} = [r_{1,k,t}, ..., r_{N,k,t}]'$ be the vector of returns on N assets over the k^{th} high frequency period on day t. Standard realized covariance is obtained as:

$$\mathsf{RCOV}_t^{(m)} = \sum_{k=1}^m \mathsf{r}_{k,t} \mathsf{r}'_{k,t}$$

Define the vectors of positive and negative returns as:

$$\mathbf{r}_{k,t}^{+} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} \ge \mathbf{0} \right\}, \qquad \mathbf{r}_{k,t}^{-} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} < \mathbf{0} \right\}$$

where the indicator function is applied element by element.

Define four "realized semicovariance" matrices:

$$\mathbf{P}_{t}^{(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{+} \mathbf{r}_{k,t}^{+\prime}, \qquad \mathbf{M}_{t}^{+(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{+} \mathbf{r}_{k,t}^{-\prime} \\ \mathbf{M}_{t}^{-(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{-} \mathbf{r}_{k,t}^{+\prime}, \qquad \mathbf{N}_{t}^{(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{-} \mathbf{r}_{k,t}^{-\prime}$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• Let $\mathbf{r}_{k,t} = [r_{1,k,t}, ..., r_{N,k,t}]'$ be the vector of returns on N assets over the k^{th} high frequency period on day t. Standard realized covariance is obtained as:

$$\mathsf{RCOV}_t^{(m)} = \sum_{k=1}^m \mathsf{r}_{k,t} \mathsf{r}'_{k,t}$$

Define the vectors of positive and negative returns as:

$$\mathbf{r}_{k,t}^{+} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} \ge \mathbf{0} \right\}, \qquad \mathbf{r}_{k,t}^{-} \equiv \mathbf{r}_{k,t} \odot \mathbf{1} \left\{ \mathbf{r}_{k,t} < \mathbf{0} \right\}$$

where the indicator function is applied element by element.

Define four "realized semicovariance" matrices:

$$\mathbf{P}_{t}^{(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{+} \mathbf{r}_{k,t}^{+\prime}, \qquad \mathbf{M}_{t}^{+(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{+} \mathbf{r}_{k,t}^{-\prime} \\ \mathbf{M}_{t}^{-(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{-} \mathbf{r}_{k,t}^{+\prime}, \qquad \mathbf{N}_{t}^{(m)} = \sum_{k=1}^{m} \mathbf{r}_{k,t}^{-} \mathbf{r}_{k,t}^{-\prime}$$

Note that

$$\mathbf{RCOV}_t^{(m)} = \mathbf{P}_t^{(m)} + \mathbf{M}_t^{+(m)} + \mathbf{M}_t^{-(m)} + \mathbf{N}_t^{(m)} \text{ for all } m$$

Image: A math a math

• Consider the positive semicovariance matrix:

$$\mathbf{P}_{t}^{(m)} = \begin{bmatrix} \sum_{k=1}^{m} r_{1,k,t}^{+2} & \sum_{k=1}^{m} r_{1,k,t}^{+} r_{2,k,t}^{+} \\ \bullet & \sum_{k=1}^{m} r_{2,k,t}^{+} \end{bmatrix} \equiv \begin{bmatrix} \mathcal{V}_{1,t}^{+} & \mathcal{P}_{t} \\ \bullet & \mathcal{V}_{2,t}^{+} \end{bmatrix}$$

• The negative semicovariance matrix is analogous:

$$\mathbf{N}_{t}^{(m)} = \begin{bmatrix} \sum_{k=1}^{m} r_{1,k,t}^{-2} & \sum_{k=1}^{m} r_{1,k,t}^{-} r_{2,k,t}^{-} \\ \bullet & \sum_{k=1}^{m} r_{2,k,t}^{-} \end{bmatrix} \equiv \begin{bmatrix} \mathcal{V}_{1,t}^{-} & \mathcal{N}_{t} \\ \bullet & \mathcal{V}_{2,t}^{-} \end{bmatrix}$$

The diagonal entries are the *realized semivariances* studied by Barndorff-Nielsen, Kinnebrock and Shephard (2010, book) and Patton and Sheppard (2015, *REStat*).

Next consider a "mixed" semicovariance matrix:

$$\mathbf{M}_{t}^{+(m)} = \begin{bmatrix} \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r_{1,k,t}} & \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r_{2,k,t}} \\ \sum_{k=1}^{m} r_{2,k,t}^{+} \bar{r_{2,k,t}} \end{bmatrix} \equiv \begin{bmatrix} 0 & \mathcal{M}_{t}^{+} \\ 0 & 0 \end{bmatrix}$$

Patton (I	Duke)
-----------	-------

• Next consider a "mixed" semicovariance matrix:

$$\mathbf{M}_{t}^{+(m)} = \begin{bmatrix} \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r}_{1,k,t}^{-} & \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r}_{2,k,t}^{-} \\ \sum_{k=1}^{m} r_{2,k,t}^{+} \bar{r}_{1,k,t}^{-} & \sum_{k=1}^{m} r_{2,k,t}^{+} \bar{r}_{2,k,t}^{-} \end{bmatrix} \equiv \begin{bmatrix} 0 & \mathcal{M}_{t}^{+} \\ \mathcal{M}_{t}^{-} & 0 \end{bmatrix}$$
$$= \left(\mathbf{M}_{t}^{-(m)} \right)^{\mathsf{T}}$$

・ロト ・回ト ・ ヨト

Next consider a "mixed" semicovariance matrix:

$$\mathbf{M}_{t}^{+(m)} = \begin{bmatrix} \sum_{k=1}^{m} r_{1,k,t}^{+} r_{1,k,t}^{-} & \sum_{k=1}^{m} r_{1,k,t}^{+} r_{2,k,t}^{-} \\ \sum_{k=1}^{m} r_{2,k,t}^{+} r_{1,k,t}^{-} & \sum_{k=1}^{m} r_{2,k,t}^{+} r_{2,k,t}^{-} \end{bmatrix} \equiv \begin{bmatrix} 0 & \mathcal{M}_{t}^{+} \\ \mathcal{M}_{t}^{-} & 0 \end{bmatrix}$$
$$= \left(\mathbf{M}_{t}^{-(m)} \right)^{\mathsf{T}}$$

 Clearly, it is the off-diagonal entries of the realized semicovariance matrices that are novel.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Next consider a "mixed" semicovariance matrix:

$$\mathbf{M}_{t}^{+(m)} = \begin{bmatrix} \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r}_{1,k,t}^{-} & \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r}_{2,k,t}^{-} \\ \sum_{k=1}^{m} r_{2,k,t}^{+} \bar{r}_{1,k,t}^{-} & \sum_{k=1}^{m} r_{2,k,t}^{+} \bar{r}_{2,k,t}^{-} \end{bmatrix} \equiv \begin{bmatrix} 0 & \mathcal{M}_{t}^{+} \\ \mathcal{M}_{t}^{-} & 0 \end{bmatrix}$$
$$= \left(\mathbf{M}_{t}^{-(m)} \right)^{\mathsf{T}}$$

- Clearly, it is the off-diagonal entries of the realized semicovariance matrices that are novel.
- Note that if the order of the assets is arbitrary, then it is natural to combine the mixed matrices, M^{+(m)}_t and M^{-(m)}_t into the (symmetric) matrix:

$$\mathbf{M}_t^{(m)} = \mathbf{M}_t^{+(m)} + \mathbf{M}_t^{-(m)}$$

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Next consider a "mixed" semicovariance matrix:

$$\mathbf{M}_{t}^{+(m)} = \begin{bmatrix} \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r}_{1,k,t}^{-} & \sum_{k=1}^{m} r_{1,k,t}^{+} \bar{r}_{2,k,t}^{-} \\ \sum_{k=1}^{m} r_{2,k,t}^{+} \bar{r}_{1,k,t}^{-} & \sum_{k=1}^{m} r_{2,k,t}^{+} \bar{r}_{2,k,t}^{-} \end{bmatrix} \equiv \begin{bmatrix} 0 & \mathcal{M}_{t}^{+} \\ \mathcal{M}_{t}^{-} & 0 \end{bmatrix}$$
$$= \left(\mathbf{M}_{t}^{-(m)} \right)^{\mathsf{T}}$$

- Clearly, it is the off-diagonal entries of the realized semicovariance matrices that are novel.
- Note that if the order of the assets is arbitrary, then it is natural to combine the mixed matrices, M^{+(m)}_t and M^{-(m)}_t into the (symmetric) matrix:

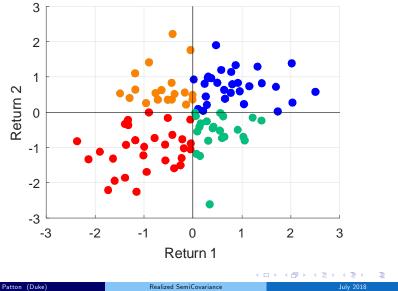
$$\mathsf{M}_t^{(m)} = \mathsf{M}_t^{+(m)} + \mathsf{M}_t^{-(m)}$$

In this case the decomposition has just three elements:

$$\mathsf{RCOV}_t^{(m)} = \mathsf{P}_t^{(m)} + \mathsf{N}_t^{(m)} + \mathsf{M}_t^{(m)} \text{ for all } m$$

ADA A ADA A

Example

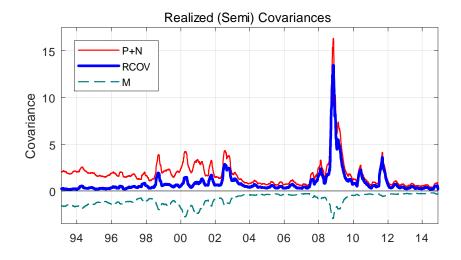


Patton (Duke)

Realized SemiCovariance

- 6 -

Realized Semicovariances across 500 pairs of stocks Jan 1993 – Dec 2014.

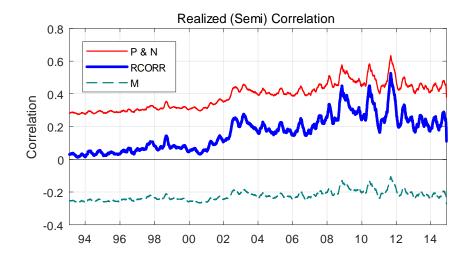


Patton (Duke)

< □ > < ^[] >

- 7 -

Realized Semicorrelations across 500 pairs of stocks Jan 1993 – Dec 2014.



Patton (Duke
----------	------

Summary of main findings

- **I** Asymptotic properties available under fairly general conditions
 - We present consistency and limit variation results for the estimators
 - Under some strong assumptions on the volatility process, we obtain a feasible limiting Normal distribution

Summary of main findings

I Asymptotic properties available under fairly general conditions

- We present consistency and limit variation results for the estimators
- Under some strong assumptions on the volatility process, we obtain a feasible limiting Normal distribution
- **2** We find striking differences in the **empirical properties** of these measures:
 - Negative semicovariance is much more useful for forecasting positive, negative, or total covariances.
 - Mixed semicovariances are markedly more persistent than concordant semicovariances.

• • • • • • • • • • • •

Summary of main findings

I Asymptotic properties available under fairly general conditions

- We present consistency and limit variation results for the estimators
- Under some strong assumptions on the volatility process, we obtain a feasible limiting Normal distribution
- 2 We find striking differences in the **empirical properties** of these measures:
 - Negative semicovariance is much more useful for forecasting positive, negative, or total covariances.
 - Mixed semicovariances are markedly more persistent than concordant semicovariances.
- **3 Portfolio variance forecasts** can be significantly improved by using our proposed decomposition.
 - We consider portfolios ranging from 2 to 100 assets; gains kick in early and plateau at around 30.
 - Decomposing using semicovariances significantly better than using semivariances; both are better than ignoring sign information completely.

イロン イヨン イヨン イヨン

Related work

- **Covariance matrix estimation:** Kendall (1953, *JRSS*), Elton and Gruber (1973, *JF*), Bauwens, Laurent and Rombouts (2006, *JAE*).
- Semivariances: Markowitz (1959, book), Mao (1970, *JF*), Hogan and Warren (1972, 1974 *JFQA*), Fishburn (1977, *AER*).
- Realized semivariance: Barndorff-Nielsen, Kinnebrock and Shephard (2010, book), Patton and Sheppard (2015, *REStat*), Segal, Shaliastovich, Yaron (2015, *JFE*).
- Asymmetric correlations: Longin and Solnik (2001, *JF*), Ang and Chen (2002, *JFE*), Patton (2004, *JFEC*), Hong, Tu and Zhou (2007, *RFS*).
- Jumps and Co-jumps: Das and Uppal (2004, JF), Bollerslev, Law and Tauchen (2008, JoE), Jacod and Todorov (2009, AoS), Li, Todorov and Tauchen (2017, ECMA).

・ロン ・聞と ・ヨン ・ヨン

Outline

Introduction

- 2 Theoretical properties of realized semicovariances
 - Definitions
 - Limit theory
 - Simulation results
- 3 Empirical properties of realized semicovariances
 - Daily measures for 749 US equities
 - Differences in dynamic dependencies
 - Application to portfolio volatility forecasting
- 4 Summary and conclusion

Patton (Duke
----------	------

Image: A math a math

Outline

Introduction

2 Theoretical properties of realized semicovariances

- Definitions
- Limit theory
- Simulation results
- 3 Empirical properties of realized semicovariances
 - Daily measures for 749 US equities
 - Differences in dynamic dependencies
 - Application to portfolio volatility forecasting
- 4 Summary and conclusion

Patton		
1 accon	Duke	١.

Semicovariances for a standard Normal

To build some intuition for the main theoretical results, consider these measures in population for a bivariate standard Normal:

$$\left[\begin{array}{c} Z_1\\ Z_2 \end{array}\right] \sim N\left(0, \left[\begin{array}{cc} 1 & \rho\\ \rho & 1 \end{array}\right]\right)$$

Clearly, here the (total) covariance is

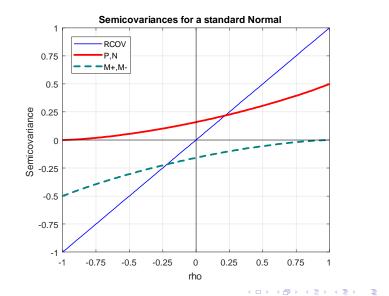
$$Cov\left[Z_1, Z_2\right] = \mathbb{E}\left[Z_1 Z_2\right] = \rho$$

Now consider semicovariances:

$$\begin{split} & \mathbb{E}\left[Z_1^+ Z_2^+\right] &= \mathbb{E}\left[Z_1^- Z_2^-\right] = \psi\left(\rho\right) \\ & \mathbb{E}\left[Z_1^+ Z_2^-\right] &= \mathbb{E}\left[Z_1^- Z_2^+\right] = -\psi\left(-\rho\right) \\ & \text{where} \quad \psi\left(\rho\right) &\equiv \frac{\sqrt{1-\rho^2} + \rho\left(\pi - \arccos\rho\right)}{2\pi} \end{split}$$

Image: A math a math

Semicovariances for a standard Normal At rho = 0, P = M = 1/(2*pi) and M + = M - = -1/(2*pi)



Patton (Duke)

uly 2018 – 14

Asymptotic analysis

Let X_t ≡ [X_{1t},..., X_{dt}]' denote the *d*-dim log-price process. As in Jacod and Protter (2012) we assume X_t is an Itô semimartingale of the form

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s + J_t$$

- *b* is a \mathbb{R}^d -valued drift process
- W is a q-dim standard Brownian motion, with $q \ge d$
- J is a pure jump process
- σ is a d imes q stochastic volatility matrix
- Define $c_s \equiv \sigma_s \sigma'_s$ as the spot covariance matrix of X_s , with $v_{js} \equiv \sqrt{c_{jj,s}}$ and $\rho_{jks} \equiv c_{jk,s} / (v_{js}v_{ks})$.
- Assumption 1: (i) *b* and *c* are càdlàg and adapted, (ii) *J* has finite variation, (iii) *X* is sampled on a regular time grid with sampling interval $\Delta \rightarrow 0$ over a fixed span T > 0.

イロト イヨト イヨト イヨト

Theorem 1: Under Assumption 1, the (j, k) elements of each realized semicovariance matrix satisfy:

$$\begin{bmatrix} P_{jk,T} \\ N_{jk,T} \\ M_{jk,T}^+ \\ M_{jk,T}^- \\ M_{jk,T}^- \end{bmatrix} \xrightarrow{\rho} \int_0^T v_{js} v_{ks} \begin{bmatrix} \psi\left(\rho_{jks}\right) \\ \psi\left(\rho_{jks}\right) \\ \left(-\psi\left(-\rho_{jks}\right)\right) \\ \left(-\psi\left(-\rho_{jks}\right)\right) \end{bmatrix} ds + \sum_{s \le T} \begin{bmatrix} \Delta X_{js}^+ \Delta X_{ks}^+ \\ \Delta X_{js}^- \Delta X_{ks}^- \\ \Delta X_{js}^- \Delta X_{ks}^- \\ \Delta X_{js}^- \Delta X_{ks}^+ \end{bmatrix}$$

• This holds for j = k and so covers semivariances as well.

Patton (Duke)
----------	-------

・ロト ・回ト ・ヨト ・ヨ

Theorem 1: Under Assumption 1, the (j, k) elements of each realized semicovariance matrix satisfy:

$$\begin{bmatrix} P_{jk,T} \\ N_{jk,T} \\ M_{jk,T}^+ \\ M_{jk,T}^- \end{bmatrix} \xrightarrow{p} \int_0^T v_{js} v_{ks} \begin{bmatrix} \psi\left(\rho_{jks}\right) \\ \psi\left(\rho_{jks}\right) \\ \left(-\psi\left(-\rho_{jks}\right)\right) \\ \left(-\psi\left(-\rho_{jks}\right)\right) \end{bmatrix} ds + \sum_{s \le T} \begin{bmatrix} \Delta X_{js}^+ \Delta X_{ks}^+ \\ \Delta X_{js}^- \Delta X_{ks}^- \\ \Delta X_{js}^+ \Delta X_{ks}^- \\ \Delta X_{js}^- \Delta X_{ks}^+ \end{bmatrix}$$

• This holds for j = k and so covers semivariances as well.

Note that the first-order asymptotic behavior of $P_{jk,T} - N_{jk,T}$ is completely determined by the "directional co-jumps"

$$P_{jk,T} - N_{jk,T} \xrightarrow{p} \sum_{s \leq T} \left(\Delta X_{js}^+ \Delta X_{ks}^+ - \Delta X_{js}^- \Delta X_{ks}^- \right)$$

Patton (Duke)

(日) (同) (三) (三)

Limit variation of the estimators

- Assumption 2: J is of finite activity.
- **Assumption 3:** The process σ has the form

$$\sigma_t = \sigma_0 + \int_0^t \tilde{b}_s ds + \int_0^t \tilde{\sigma}_s dW_s + \tilde{M}_t + \tilde{L}_t + \sum_{s \le t} \Delta \sigma_s \mathbf{1} \{ \| \Delta \sigma_s \| > 1 \}$$

such that:

- $\blacksquare ~\tilde{\sigma}$ is a $d \times d \times d$ càdlàg adapted process of full rank
- \tilde{M}_t is a local martingale orthog to W with $\left\|\Delta \tilde{M}\right\| \leq 1$ and its predictable quadratic covariation process has the form $\int_0^t \tilde{a}_s ds$ for some locally bounded process \tilde{a}
- \tilde{L}_t is a long-memory component: locally α -Hölder continuous for some $\alpha \in (1/2, 1)$
- \blacksquare the compensator of the pure jump process $\sum\limits_{s\leq t}\Delta\sigma_s {\bf 1}\left\{\|\Delta\sigma_s\|>1\right\}$ has the

form $\int_0^t a_s ds$ for some locally bounded process a.

<ロ> (四)、(四)、(日)、(日)、

Second-order asymptotic analysis

• Theorem 2: Under assumptions 2 and 3,

$$\Delta^{-1/2} \begin{bmatrix} \operatorname{vech} (\mathbf{P}_{T} - \mathbf{P}) \\ \operatorname{vech} (\mathbf{N}_{T} - \mathbf{N}) \\ \operatorname{vec}^{*} (\mathbf{M}_{T} - \mathbf{M}) \end{bmatrix} \xrightarrow{\mathcal{L} \cdot s} \begin{bmatrix} B_{P}^{(1)} \\ B_{N}^{(1)} \\ B_{M}^{(1)} \end{bmatrix} + \begin{bmatrix} B_{P}^{(2)} \\ B_{N}^{(2)} \\ B_{M}^{(2)} \end{bmatrix} \\ + \begin{bmatrix} \zeta_{P} \\ \zeta_{N} \\ \zeta_{M} \end{bmatrix} + \begin{bmatrix} \tilde{\zeta}_{P} \\ \tilde{\zeta}_{N} \\ \tilde{\zeta}_{M} \end{bmatrix} + \begin{bmatrix} \xi_{P} \\ \xi_{N} \\ \xi_{M} \end{bmatrix}$$

B⁽¹⁾: bias term related to price drift

- B⁽²⁾: bias term related to leverage effects
- ζ : sampling error term spanned by diffusive price risk
- $\tilde{\zeta}$: sampling error term orthogonal to diffusive price risk
- ξ : sampling error term related to jump price risk

Cannot use this theorem for confidence intervals or the like.

Patton (Duke)
----------	------	---

ADA A ADA A

- 18 -

- It may be of interest to separate the contribution of jumps to semicovariances.
- We do this using a truncation method (Mancini, 2009 *SJS*), which exploits a sequence $u_T \simeq \Delta^{\varpi}$ for some $\varpi \in (0, 1/2)$.

Then

Patto

$$\mathbf{P}_{t}^{C(m)} \equiv \sum_{k=1}^{m} \mathbf{r}_{k,t}^{+} \mathbf{r}_{k,t}^{+\prime} \mathbf{1} \{ |\mathbf{r}_{kt}| \le u_{T} \} \xrightarrow{p} \int_{t-1}^{t} v_{js} v_{ks} \psi(\rho_{jks}) ds$$
$$\mathbf{P}_{t}^{J(m)} \equiv \mathbf{P}_{t}^{(m)} - \mathbf{P}_{t}^{C(m)} \xrightarrow{p} \sum_{s \in (t-1,t]} \Delta X_{js}^{+} \Delta X_{ks}^{+}$$

 Truncated versions of negative and mixed semicovariances are defined analogously.

on (Duke)	Realized SemiCovariance	July 2018	- 19 -

Theorem 4: Under Assumptions 2 and 3,

$$\Delta^{-1/2} \begin{bmatrix} \operatorname{vech} \left(\mathbf{P}_{T}^{C} - \mathbf{P}^{C} \right) \\ \operatorname{vech} \left(\mathbf{N}_{T}^{C} - \mathbf{N}^{C} \right) \\ \operatorname{vec}^{*} \left(\mathbf{M}_{T}^{C} - \mathbf{M}^{C} \right) \end{bmatrix} \xrightarrow{\mathcal{L} \cdot \mathbf{s}} \begin{bmatrix} B_{P}^{(1)} \\ B_{N}^{(1)} \\ B_{M}^{(1)} \end{bmatrix} + \begin{bmatrix} B_{P}^{(2)} \\ B_{N}^{(2)} \\ B_{M}^{(2)} \end{bmatrix} \\ + \begin{bmatrix} \zeta_{P} \\ \zeta_{N} \\ \zeta_{M} \end{bmatrix} + \begin{bmatrix} \zeta_{P} \\ \zeta_{N} \\ \zeta_{M} \end{bmatrix} + \begin{bmatrix} \zeta_{P} \\ \zeta_{N} \\ \zeta_{M} \end{bmatrix}$$
and

$$\Delta^{-1/2} \begin{bmatrix} \operatorname{vech} \left(\mathbf{P}_{\mathcal{T}}^{J} - \mathbf{P}^{J} \right) \\ \operatorname{vech} \left(\mathbf{N}_{\mathcal{T}}^{J} - \mathbf{N}^{J} \right) \\ \operatorname{vec}^{*} \left(\mathbf{M}_{\mathcal{T}}^{J} - \mathbf{M}^{J} \right) \end{bmatrix} \xrightarrow{\mathcal{L} \cdot \mathbf{s}} \begin{bmatrix} \xi_{P} \\ \xi_{N} \\ \xi_{M} \end{bmatrix}$$

メロト メロト メヨト メ

Truncated realized semicovariances III

• Assumption 4: $\tilde{\sigma} = 0$ and the volatility process σ more generally is independent of the Brownian motion W (ie, no leverage effects).

Theorem 5: Under Assumptions 2–4,

$$\left(\hat{Q} + \tilde{Q}\right)^{-1/2} \left(\Delta^{-1/2} \left[\begin{array}{c} \operatorname{vech} \left(\mathbf{P}_{T}^{C} - \mathbf{P}^{C} \right) \\ \operatorname{vech} \left(\mathbf{N}_{T}^{C} - \mathbf{N}^{C} \right) \\ \operatorname{vec}^{*} \left(\mathbf{M}_{T}^{C} - \mathbf{M}^{C} \right) \end{array} \right] - \left[\begin{array}{c} B_{P}^{(1)} + B_{P}^{(2)} \\ B_{N}^{(1)} + B_{N}^{(2)} \\ B_{M}^{(1)} + B_{M}^{(2)} \end{array} \right] \right)$$
$$\xrightarrow{\mathcal{L} \cdot s} N(0, I)$$

where

$$Q^*\equiv\int_0^T \Gamma_s ds$$
 and $Q^{**}\equiv\int_0^T \widetilde{\Gamma}_s ds$

and Γ_s and $\tilde{\Gamma}_s$ are known, continuous (but messy) functions of the spot covariance matrix, which can be consistenty estimated using Li, Todorov and Tauchen (2017, *JoE*).

The bias terms cannot be consistently estimated (at least using only infill asymptotics).

イロト イヨト イヨト イヨト

- 21 -

- The bias terms that appear in the limit distribution can be interpreted using the continuous-time version of the Kyle (1985, ECMA) model due to Back (1992, RFS).
 - \blacksquare Simplify presentation and focus on single asset case \Rightarrow semivariances only

■ Assume there are *m* ≥ 1 periods per day.

- At start of k^{th} period, the asset value is drawn log $(V_k) \sim N(\bar{V}_k, \sigma_{Vk}^2)$.
- Informed trader observes V_k, and trades continuously through the period to maximize her profit.
- **Uninformed traders** have price inelastic net demand, with order flow given by $\sigma_{Lt} dW_t$.
- Market maker observes aggregated order flow Y_t and sets $P_t = E\left[V_k | (Y_s)_{s \le t}\right], t \in [k-1, k]$

Link to the Kyle model (tentative) II

In equilibrium of this model:

$$d \log P_s = b_s ds + \sigma_{Vk} dW_s$$
, for $s \in [k-1, k]$
where $b_s = \frac{\log V_k - \log P_s}{k-s}$

i.e. a continuous Itô process with stochastic drift and constant volatility.

■ Note that the drift b_s is proportional to the **amount of mispricing** ⇔ the "profit margin" of the informed trader.

• In this set-up, the second bias term $B^{(2)} = 0$ and

$$B_{P}^{(1)} = -B_{N}^{(1)} = \sqrt{\frac{2}{\pi}} \sum_{k=1}^{T} \sigma_{Vk} \int_{k-1}^{k} b_{s} ds$$

Thus B_P⁽¹⁾ can be interpreted as the weighted average mis-pricing across the day, with larger weights when asymmetric information is greater.

Patton	(Dul	ke)

July 2018

・ロト ・日下・ ・ ヨト・

Outline

Introduction

2 Theoretical properties of realized semicovariances

- Definitions
- Limit theory
- Simulation results
- 3 Empirical properties of realized semicovariances
 - Daily measures for 749 US equities
 - Differences in dynamic dependencies
 - Application to portfolio volatility forecasting
- 4 Summary and conclusion

Patton	(Duke
--------	-------

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Outline

Introduction

2 Theoretical properties of realized semicovariances

- Definitions
- Limit theory
- Simulation results

3 Empirical properties of realized semicovariances

- Daily measures for 749 US equities
- Differences in dynamic dependencies
- Application to portfolio volatility forecasting

4 Summary and conclusion

Patton	(Du	ke

• We use data from TAQ, January 1993 to December 2014.

• T = 5541 days (maximum).

We consider all stocks that were ever a constituent of the S&P 500 index and have at least 2000 daily observations.

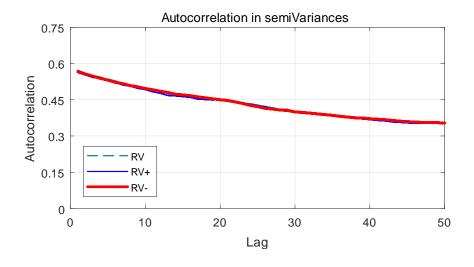
■ *N* = 749 unique stocks.

We use 15-minute sampling.

• m = 26 observations per day.

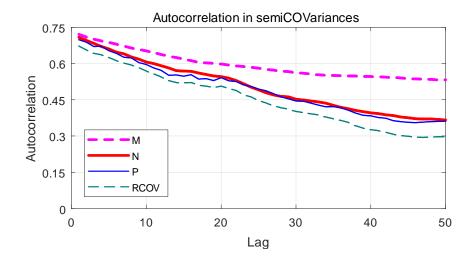
Time series dependence in semivariances

ACF-IV of Hansen and Lunde (2014, ET). Essentially no differences.



		지 문 지 지 문 지	-	-)40-
Patton (Duke)	Realized SemiCovariance	July 2018		- 27 -

Time series dependence in semicovariances ACF-IV of Hansen and Lunde (2014, ET). M is most persistent, RCOV is least.



	4	1 2 1 1 2 1	-	\$) Q (\$
Patton (Duke)	Realized SemiCovariance	July 2018		- 28 -

A HAR model for realized semicovariances

- We consider predictions using the HAR model of Corsi (2009, JFEC).
- For each of 500 randomly-chosen pairs of assets (i, j), we estimate:

$$\begin{bmatrix} \mathcal{P}_{ij,t} \\ \mathcal{N}_{ij,t} \\ \mathcal{M}_{ij,t} \end{bmatrix} = \begin{bmatrix} \phi_{\mathcal{P}ij} \\ \phi_{\mathcal{N}ij} \\ \phi_{\mathcal{M}ij} \end{bmatrix} + \Phi_{ij,\mathcal{D}} \begin{bmatrix} \mathcal{P}_{ij,t-1} \\ \mathcal{N}_{ij,t-1} \\ \mathcal{M}_{ij,t-1} \end{bmatrix} + \Phi_{ij,\mathcal{W}} \begin{bmatrix} \mathcal{P}_{ij,t-2:t-5} \\ \mathcal{N}_{ij,t-2:t-5} \\ \mathcal{M}_{ij,t-2:t-5} \end{bmatrix} + \Phi_{ij,\mathcal{M}} \begin{bmatrix} \mathcal{P}_{ij,t-6:t-22} \\ \mathcal{N}_{ij,t-6:t-22} \\ \mathcal{M}_{ij,t-6:t-22} \end{bmatrix} + \begin{bmatrix} \epsilon_{t}^{\mathcal{P}ij} \\ \epsilon_{t}^{\mathcal{N}ij} \\ \epsilon_{t}^{\mathcal{M}ij} \end{bmatrix}$$

where $\mathcal{P}_{ij,t-2:t-5} \equiv \frac{1}{4} \sum_{j=2}^{5} \mathcal{P}_{ij,t-j}$.

Recall that $RCOV_{ij,t} = \mathcal{P}_{ij,t} + \mathcal{N}_{ij,t} + \mathcal{M}_{ij,t}$ and so this model can be interpreted as a "decomposed" model for RCOV.

<ロ> (日) (日) (日) (日) (日)

Avg coefficient estimates from the HAR model

Signif at 0.05 level for 75% and 50% of all 1000 pairs indicated by ** and *

	Dependent variable			
	$\mathcal{P}_{ij,t}$	$\mathcal{N}_{ij,t}$	$\mathcal{M}_{ij,t}$	RCOV _{ij,t}
$\mathcal{P}_{ij,t-1}$	0.038*	0.050*	-0.035*	0.052**
$\mathcal{P}_{ij,t-2:t-5}$	0.004	0.057	-0.002	0.059
$\mathcal{P}_{ij,t-6:t-22}$	-0.074	0.023	0.009	0.048
$\mathcal{N}_{ij,t-1}$	0.248**	0.192**	-0.096**	0.344**
$\mathcal{N}_{ij,t-2:t-5}$	0.312**	0.250**	-0.090*	0.472**
$\mathcal{N}_{ij,t-6:t-22}$	0.349**	0.206*	-0.021	0.534**
$\mathcal{M}_{ij,t-1}$	-0.075*	-0.072*	0.141**	-0.006
$\mathcal{M}_{ij,t-2:t-5}$	-0.044	-0.049	0.209**	0.116
$\mathcal{M}_{ij,t-6:t-22}$	0.028	-0.020	0.409**	0.417**

• The three lags of \mathcal{N} are significant for both \mathcal{P} and \mathcal{N} .

- \mathcal{M} seems to be mostly driven by its own lags.
- The coefficients for RCOV are the sum of those for \mathcal{P} , \mathcal{N} and \mathcal{M} .

Patton (Duke)

イロト 不得 トイヨト イヨト

Portfolio volatility forecasting using "semi" decompositions

The variance of a portfolio of assets with weight vector **w** is:

 $RV_t^p = \mathbf{w}' \mathbf{RCOV}_t \mathbf{w}$

The portfolio variance can be decomposed using semivariances, following BNKS (2010, book) and Patton and Sheppard (2015, *REStat*):

$$RV_t^p = \mathcal{V}_t^{+p} + \mathcal{V}_t^{-p}$$

It can alternatively be decomposed using semicovariances:

$$RV_t^{p} = \mathbf{w}' \mathbf{P}_t \mathbf{w} + \mathbf{w}' \mathbf{N}_t \mathbf{w} + \mathbf{w}' \mathbf{M}_t \mathbf{w}$$
$$\equiv \mathcal{P}_t^{p} + \mathcal{N}_t^{p} + \mathcal{M}_t^{p}$$

Note that unlike the semiVariance decomposition, the semiCOVariance decomposition uses returns data on all of the constituent assets.

Patton ((Duke)
----------	--------

July 2018 -

(日) (同) (三) (三)

- 31 -

HAR, from Corsi (2009, *JFEC*):

 $RV_{t+1|t}^{p} = \phi_{0} + \phi_{d}RV_{t}^{p} + \phi_{w}RV_{t-1:t-4}^{p} + \phi_{m}RV_{t-5:t-21}^{p}$

イロン イ団と イヨン イヨン

HAR, from Corsi (2009, *JFEC*):

$$RV_{t+1|t}^{p} = \phi_{0} + \phi_{d}RV_{t}^{p} + \phi_{w}RV_{t-1:t-4}^{p} + \phi_{m}RV_{t-5:t-21}^{p}$$

2 Semivariance HAR (SHAR), from Patton and Sheppard (2015, REStat):

 $RV_{t+1|t}^{p} = \phi_{0} + \phi_{d}^{+} \mathcal{V}_{t}^{+p} + \phi_{d}^{-} \mathcal{V}_{t}^{-p} + \phi_{w} RV_{t-1:t-4}^{p} + \phi_{m} RV_{t-5:t-21}^{p}$

HAR, from Corsi (2009, *JFEC*):

$$RV_{t+1|t}^{p} = \phi_{0} + \phi_{d}RV_{t}^{p} + \phi_{w}RV_{t-1:t-4}^{p} + \phi_{m}RV_{t-5:t-21}^{p}$$

2 Semivariance HAR (SHAR), from Patton and Sheppard (2015, *REStat*): $RV_{t+1|t}^{p} = \phi_{0} + \phi_{d}^{+} \mathcal{V}_{t}^{+p} + \phi_{d}^{-} \mathcal{V}_{t}^{-p} + \phi_{w} RV_{t-1:t-4}^{p} + \phi_{m} RV_{t-5:t-21}^{p}$

Semicovariance HAR (SCHAR):

$$\begin{aligned} RV_{t+1|t}^{\rho} &= \phi_0 + \phi_{d,\mathcal{P}}\mathcal{P}_t^{\rho} + \phi_{w,\mathcal{P}}\mathcal{P}_{t-1:t-4}^{\rho} + \phi_{m,\mathcal{P}}\mathcal{P}_{t-5:t-21}^{\rho} \\ &+ \phi_{d,\mathcal{N}}\mathcal{N}_t^{\rho} + \phi_{w,\mathcal{N}}\mathcal{N}_{t-1:t-4}^{\rho} + \phi_{m,\mathcal{N}}\mathcal{N}_{t-5:t-21}^{\rho} \\ &+ \phi_{d,\mathcal{M}}\mathcal{M}_t^{\rho} + \phi_{w,\mathcal{M}}\mathcal{M}_{t-1:t-4}^{\rho} + \phi_{m,\mathcal{M}}\mathcal{M}_{t-5:t-21}^{\rho} \end{aligned}$$

《曰》《聞》《臣》《臣》 [] 臣

HAR, from Corsi (2009, *JFEC*):

$$RV_{t+1|t}^{p} = \phi_{0} + \phi_{d}RV_{t}^{p} + \phi_{w}RV_{t-1:t-4}^{p} + \phi_{m}RV_{t-5:t-21}^{p}$$

2 Semivariance HAR (**SHAR**), from Patton and Sheppard (2015, *REStat*): $RV_{t+1|t}^{p} = \phi_{0} + \phi_{d}^{+} \mathcal{V}_{t}^{+p} + \phi_{d}^{-} \mathcal{V}_{t}^{-p} + \phi_{w} RV_{t-1:t-4}^{p} + \phi_{m} RV_{t-5:t-21}^{p}$

3 Semicovariance HAR (SCHAR):

$$\begin{aligned} RV_{t+1|t}^{p} &= \phi_{0} + \phi_{d,\mathcal{P}}\mathcal{P}_{t}^{p} + \phi_{w,\mathcal{P}}\mathcal{P}_{t-1:t-4}^{p} + \phi_{m,\mathcal{P}}\mathcal{P}_{t-5:t-21}^{p} \\ &+ \phi_{d,\mathcal{N}}\mathcal{N}_{t}^{p} + \phi_{w,\mathcal{N}}\mathcal{N}_{t-1:t-4}^{p} + \phi_{m,\mathcal{N}}\mathcal{N}_{t-5:t-21}^{p} \\ &+ \phi_{d,\mathcal{M}}\mathcal{M}_{t}^{p} + \phi_{w,\mathcal{M}}\mathcal{M}_{t-1:t-4}^{p} + \phi_{m,\mathcal{M}}\mathcal{M}_{t-5:t-21}^{p} \end{aligned}$$

4 Reduced semicovariance HAR (SCHAR-r):

$$RV_{t+1|t}^{p} = \phi_{0} + \phi_{d,\mathcal{N}} \mathcal{N}_{t}^{p} + \phi_{w,\mathcal{N}} \mathcal{N}_{t-1:t-4}^{p} + \phi_{m,\mathcal{N}} \mathcal{N}_{t-5:t-21}^{p} + \phi_{m,\mathcal{M}} \mathcal{M}_{t-5:t-21}^{p}$$

《曰》《聞》《臣》《臣》 [] 臣

Portfolio volatility out-of-sample forecast results

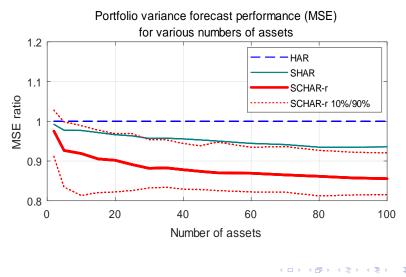
The SCHAR-r model performs the best, with gains of around 10%

	MSE		QL	LIKE		
	Avg	Ratio	Avg	Ratio		
	N = 1					
HAR	35.112	1.000	0.239	1.000		
SHAR	34.981	0.997	0.238	0.998		
		N =	= 10			
HAR	1.849	1.000	0.141	1.000		
SHAR	1.671	0.966	0.139	0.986		
SCHAR	1.643	0.955	0.210	1.318		
SCHAR-r	1.567	0.908	0.139	0.979		
	N = 100					
HAR	0.048	1.000	0.119	1.000		
SHAR	0.045	0.935	0.115	0.957		
SCHAR	0.045	0.976	0.236	1.495		
SCHAR-r	0.041	0.862	0.111	0.925		

<ロト <回ト < 回ト < 回ト

Portfolio volatility forecast results: MSE

The SCHAR-r model performs the best for N>=2



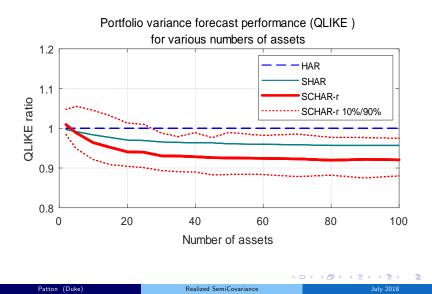
Patton (Du	

July 2018

- 34 -

Portfolio volatility forecast results: QLIKE

The SCHAR-r model performs the best for N>=3



Why does the SCHAR model outperform?

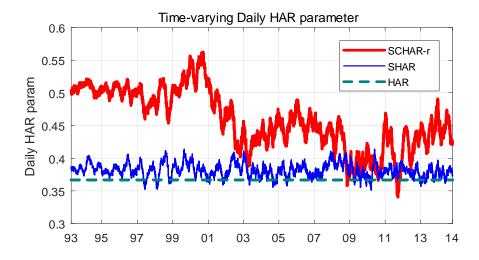
- The semicovariance-HAR can be interpreted as a **time-varying parameter** version of the baseline HAR model.
- Consider a simplified case with just one lag:

$$\begin{aligned} \mathsf{R}V_{t+1|t}^{p} &= \phi_{0} + \phi_{d,\mathcal{P}}\mathcal{P}_{t}^{p} + \phi_{d,\mathcal{N}}\mathcal{N}_{t}^{p} + \phi_{d,\mathcal{M}}\mathcal{M}_{t}^{p} \\ &= \phi_{0} + \left(\phi_{d,\mathcal{P}}\frac{\mathcal{P}_{t}^{p}}{RV_{t}^{p}} + \phi_{d,\mathcal{N}}\frac{\mathcal{N}_{t}^{p}}{RV_{t}^{p}} + \phi_{d,\mathcal{M}}\frac{\mathcal{M}_{t}^{p}}{RV_{t}^{p}}\right)RV_{t}^{p} \\ &\equiv \phi_{0} + \phi_{1,t}RV_{t}^{p} \end{aligned}$$

- The parameters $(\phi_{d,\mathcal{P}}, \phi_{d,\mathcal{N}}, \phi_{d,\mathcal{M}})$ and the values of \mathcal{P}_t^p , \mathcal{N}_t^p , and \mathcal{M}_t^p determine how much weight is given to the most recent value of RV.
 - The same logic applies to the weekly and monthly variables in the HAR model.

Implied time-varying HAR parameters: Daily

The semicovariance model puts a lot more weight on daily information

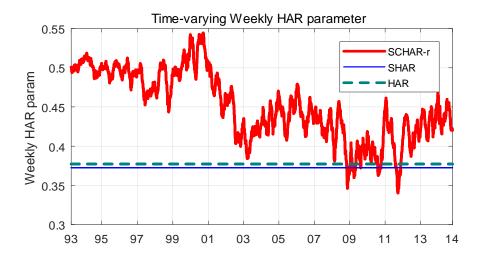


< □ > < ^[] >

- 37 –

Implied time-varying HAR parameters: Weekly

The semicovariance model puts a lot more weight on weekly information

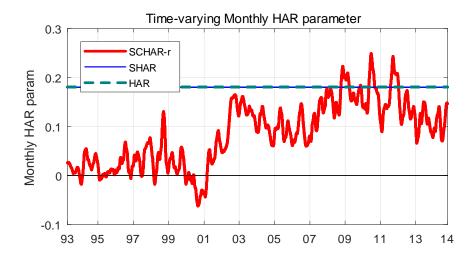


Patton (Duke
----------	------

< 17 →

Implied time-varying HAR parameters: Monthly

The semicovariance model puts little weight on monthly information



Patton (Duke)

uly 2018

< □ > < ^[] >

We propose a new decomposition of the realized covariance matrix into four components, based on the signs of the underlying returns.

 $\mathsf{RCOV}_t = \mathsf{P}_t + \mathsf{N}_t + \mathsf{M}_t^+ + \mathsf{M}_t^-$

- Under a standard continuous semimartingale assumption we derive the joint limiting behavior of these measures and propose tests for symmetry of semicovariances.
 - We find strong evidence against symmetry, associated with news ann'ments.
- Using data on over 700 US stock returns we find the realized semicovariances have distinct features:
 - Persistence is stronger for "discordant" than "concordant" semicovariances.
 - Negative semicovariances are most important for forecasting (total) covariance.

・ロト ・個ト ・ヨト ・ヨト

- 40 -