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Motivation

How do variances and covariances react to positive vs. negative returns?
Do market participants process positive vs. negative returns differently?

Is there any information in the signs of high frequency, intra-daily, returns?

It seems hard to believe, but we will show that indeed there is.

Is it possible to extend the idea of semi-variances to covariances in a
sensible way?

Are there any gains from doing so?
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The main idea: Realized SemiCovariances

Let rk ,t = [r1,k ,t , ..., rN ,k ,t ]
′ be the vector of returns on N assets over the k th

high frequency period on day t. Standard realized covariance is obtained as:

RCOV(m)t =
∑m

k=1
rk ,t r′k ,t

Define the vectors of positive and negative returns as:

r+k ,t ≡ rk ,t � 1 {rk ,t ≥ 0} , r−k ,t ≡ rk ,t � 1 {rk ,t < 0}

where the indicator function is applied element by element.

Define four “realized semicovariance”matrices:

P(m)t =
∑m

k=1
r+k ,t r

+′
k ,t , M+(m)

t =
∑m

k=1
r+k ,t r

−′
k ,t

M−(m)t =
∑m

k=1
r_k ,t r

+′
k ,t , N(m)t =

∑m

k=1
r−k ,t r

−′
k ,t

Note that

RCOV(m)t = P(m)t +M+(m)
t +M−(m)t +N(m)t for all m

Patton (Duke) Realized SemiCovariance July 2018 — 3 —



The main idea: Realized SemiCovariances

Let rk ,t = [r1,k ,t , ..., rN ,k ,t ]
′ be the vector of returns on N assets over the k th

high frequency period on day t. Standard realized covariance is obtained as:

RCOV(m)t =
∑m

k=1
rk ,t r′k ,t

Define the vectors of positive and negative returns as:

r+k ,t ≡ rk ,t � 1 {rk ,t ≥ 0} , r−k ,t ≡ rk ,t � 1 {rk ,t < 0}

where the indicator function is applied element by element.

Define four “realized semicovariance”matrices:

P(m)t =
∑m

k=1
r+k ,t r

+′
k ,t , M+(m)

t =
∑m

k=1
r+k ,t r

−′
k ,t

M−(m)t =
∑m

k=1
r_k ,t r

+′
k ,t , N(m)t =

∑m

k=1
r−k ,t r

−′
k ,t

Note that

RCOV(m)t = P(m)t +M+(m)
t +M−(m)t +N(m)t for all m

Patton (Duke) Realized SemiCovariance July 2018 — 3 —



The main idea: Realized SemiCovariances

Let rk ,t = [r1,k ,t , ..., rN ,k ,t ]
′ be the vector of returns on N assets over the k th

high frequency period on day t. Standard realized covariance is obtained as:

RCOV(m)t =
∑m

k=1
rk ,t r′k ,t

Define the vectors of positive and negative returns as:

r+k ,t ≡ rk ,t � 1 {rk ,t ≥ 0} , r−k ,t ≡ rk ,t � 1 {rk ,t < 0}

where the indicator function is applied element by element.

Define four “realized semicovariance”matrices:

P(m)t =
∑m

k=1
r+k ,t r

+′
k ,t , M+(m)

t =
∑m

k=1
r+k ,t r

−′
k ,t

M−(m)t =
∑m

k=1
r_k ,t r

+′
k ,t , N(m)t =

∑m

k=1
r−k ,t r

−′
k ,t

Note that

RCOV(m)t = P(m)t +M+(m)
t +M−(m)t +N(m)t for all m

Patton (Duke) Realized SemiCovariance July 2018 — 3 —

ap172
Rectangle

ap172
Rectangle



The main idea: Realized SemiCovariances

Let rk ,t = [r1,k ,t , ..., rN ,k ,t ]
′ be the vector of returns on N assets over the k th

high frequency period on day t. Standard realized covariance is obtained as:

RCOV(m)t =
∑m

k=1
rk ,t r′k ,t

Define the vectors of positive and negative returns as:

r+k ,t ≡ rk ,t � 1 {rk ,t ≥ 0} , r−k ,t ≡ rk ,t � 1 {rk ,t < 0}

where the indicator function is applied element by element.

Define four “realized semicovariance”matrices:

P(m)t =
∑m

k=1
r+k ,t r

+′
k ,t , M+(m)

t =
∑m

k=1
r+k ,t r

−′
k ,t

M−(m)t =
∑m

k=1
r_k ,t r

+′
k ,t , N(m)t =

∑m

k=1
r−k ,t r

−′
k ,t

Note that

RCOV(m)t = P(m)t +M+(m)
t +M−(m)t +N(m)t for all m

Patton (Duke) Realized SemiCovariance July 2018 — 3 —



The main idea: Realized SemiCovariances

Let rk ,t = [r1,k ,t , ..., rN ,k ,t ]
′ be the vector of returns on N assets over the k th

high frequency period on day t. Standard realized covariance is obtained as:

RCOV(m)t =
∑m

k=1
rk ,t r′k ,t

Define the vectors of positive and negative returns as:

r+k ,t ≡ rk ,t � 1 {rk ,t ≥ 0} , r−k ,t ≡ rk ,t � 1 {rk ,t < 0}

where the indicator function is applied element by element.

Define four “realized semicovariance”matrices:

P(m)t =
∑m

k=1
r+k ,t r

+′
k ,t , M+(m)

t =
∑m

k=1
r+k ,t r

−′
k ,t

M−(m)t =
∑m

k=1
r_k ,t r

+′
k ,t , N(m)t =

∑m

k=1
r−k ,t r

−′
k ,t

Note that

RCOV(m)t = P(m)t +M+(m)
t +M−(m)t +N(m)t for all m

Patton (Duke) Realized SemiCovariance July 2018 — 3 —



The bivariate case: Positive and negative semicovariances

Consider the positive semicovariance matrix:

P(m)t =

[ ∑m
k=1 r

+2
1,k ,t

∑m
k=1 r

+
1,k ,t r

+
2,k ,t

•
∑m

k=1 r
+2
2,k ,t

]
≡
[
V+1,t Pt
• V+2,t

]

The negative semicovariance matrix is analogous:

N(m)t =

[ ∑m
k=1 r

−2
1,k ,t

∑m
k=1 r

−
1,k ,t r

−
2,k ,t

•
∑m

k=1 r
−2
2,k ,t

]
≡
[
V−1,t Nt
• V−2,t

]

The diagonal entries are the realized semivariances studied by
Barndorff-Nielsen, Kinnebrock and Shephard (2010, book) and
Patton and Sheppard (2015, REStat).
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The bivariate case: Mixed semicovariances

Next consider a “mixed” semicovariance matrix:

M+(m)
t =

[ ∑m
k=1 r

+
1,k ,t r

−
1,k ,t

∑m
k=1 r

+
1,k ,t r

−
2,k ,t∑m

k=1 r
+
2,k ,t r

−
1,k ,t

∑m
k=1 r

+
2,k ,t r

−
2,k ,t

]
≡
[

0 M+
t

M−t 0

]
=

(
M−(m)t

)ᵀ

Clearly, it is the off-diagonal entries of the realized semicovariance matrices
that are novel.

Note that if the order of the assets is arbitrary, then it is natural to
combine the mixed matrices, M+(m)

t and M−(m)t into the (symmetric)
matrix:

M(m)
t = M+(m)

t +M−(m)t

In this case the decomposition has just three elements:

RCOV(m)t = P(m)t +N(m)t +M(m)
t for all m
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Realized Semicovariances across 500 pairs of stocks
Jan 1993 — Dec 2014.
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Realized Semicorrelations across 500 pairs of stocks
Jan 1993 — Dec 2014.
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Summary of main findings

1 Asymptotic properties available under fairly general conditions

We present consistency and limit variation results for the estimators

Under some strong assumptions on the volatility process, we obtain a feasible
limiting Normal distribution

2 We find striking differences in the empirical properties of these measures:

Negative semicovariance is much more useful for forecasting positive, negative,
or total covariances.

Mixed semicovariances are markedly more persistent than concordant
semicovariances.

3 Portfolio variance forecasts can be significantly improved by using our
proposed decomposition.

We consider portfolios ranging from 2 to 100 assets; gains kick in early and
plateau at around 30.

Decomposing using semicovariances significantly better than using
semivariances; both are better than ignoring sign information completely.
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Semicovariances for a standard Normal

To build some intuition for the main theoretical results, consider these
measures in population for a bivariate standard Normal:[

Z1
Z2

]
∼ N

(
0,
[
1 ρ
ρ 1

])
Clearly, here the (total) covariance is

Cov [Z1,Z2] = E [Z1Z2] = ρ

Now consider semicovariances:

E
[
Z+1 Z

+
2

]
= E

[
Z−1 Z

−
2

]
= ψ (ρ)

E
[
Z+1 Z

−
2

]
= E

[
Z−1 Z

+
2

]
= −ψ (−ρ)

where ψ (ρ) ≡
√
1− ρ2 + ρ (π − arccosρ)

2π
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Semicovariances for a standard Normal
At rho = 0, P = M = 1/(2*pi) and M+ = M- = -1/(2*pi)
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Asymptotic analysis

Let Xt ≡ [X1t , ...,Xdt ]
′ denote the d-dim log-price process. As in Jacod and

Protter (2012) we assume Xt is an Itô semimartingale of the form

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdWs + Jt

b is a Rd -valued drift process
W is a q-dim standard Brownian motion, with q ≥ d
J is a pure jump process
σ is a d × q stochastic volatility matrix

Define cs ≡ σsσ′s as the spot covariance matrix of Xs ,
with vjs ≡

√
cjj ,s and ρjks ≡ cjk ,s/ (vjsvks ) .

Assumption 1: (i) b and c are càdlàg and adapted, (ii) J has finite
variation, (iii) X is sampled on a regular time grid with sampling interval
∆→ 0 over a fixed span T > 0.
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Consistency

Theorem 1: Under Assumption 1, the (j , k) elements of each realized
semicovariance matrix satisfy:

Pjk ,T
Njk ,T
M+
jk ,T

M−jk ,T

 p−→
∫ T

0
vjsvks


ψ
(
ρjks
)

ψ
(
ρjks
)(

−ψ
(
−ρjks

))(
−ψ

(
−ρjks

))
 ds +

∑
s≤T


∆X+js ∆X+ks
∆X−js ∆X−ks
∆X+js ∆X−ks
∆X−js ∆X+ks


This holds for j = k and so covers semivariances as well.

Note that the first-order asymptotic behavior of Pjk ,T − Njk ,T is completely
determined by the “directional co-jumps”

Pjk ,T − Njk ,T
p−→
∑
s≤T

(
∆X+js ∆X+ks −∆X−js ∆X−ks

)
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Limit variation of the estimators

Assumption 2: J is of finite activity.
Assumption 3: The process σ has the form

σt = σ0 +

∫ t

0
b̃sds +

∫ t

0
σ̃sdWs + M̃t + L̃t +

∑
s≤t

∆σs1 {‖∆σs‖ > 1}

such that:

σ̃ is a d × d × d càdlàg adapted process of full rank
M̃t is a local martingale orthog to W with

∥∥∥∆M̃
∥∥∥ ≤ 1 and its predictable

quadratic covariation process has the form
∫ t
0 ãsds for some locally bounded

process ã
L̃t is a long-memory component: locally α-Hölder continuous for some
α ∈ (1/2, 1)
the compensator of the pure jump process

∑
s≤t

∆σs1 {‖∆σs‖ > 1} has the

form
∫ t
0 asds for some locally bounded process a.
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Second-order asymptotic analysis

Theorem 2: Under assumptions 2 and 3,

∆−1/2

 vech (PT − P)
vech (NT −N)
vec∗ (MT −M)

 L-s−→
 B(1)P
B(1)N
B(1)M

+

 B(2)P
B(2)N
B(2)M


+

 ζP
ζN
ζM

+

 ζ̃P
ζ̃N
ζ̃M

+

 ξP
ξN
ξM


B (1): bias term related to price drift
B (2): bias term related to leverage effects
ζ: sampling error term spanned by diffusive price risk
ζ̃: sampling error term orthogonal to diffusive price risk
ξ: sampling error term related to jump price risk

Cannot use this theorem for confidence intervals or the like.
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Truncated realized semicovariances I

It may be of interest to separate the contribution of jumps to semicovariances.

We do this using a truncation method (Mancini, 2009 SJS), which exploits a
sequence uT � ∆$ for some $ ∈ (0, 1/2) .

Then

PC (m)t ≡
∑m

k=1
r+k ,t r

+′
k ,t1 {|rkt | ≤ uT }

p−→
∫ t

t−1
vjsvksψ

(
ρjks
)
ds

PJ(m)t ≡ P(m)t − PC (m)t
p−→

∑
s∈(t−1,t ]

∆X+js ∆X+ks

Truncated versions of negative and mixed semicovariances are defined
analogously.
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Truncated realized semicovariances II

Theorem 4: Under Assumptions 2 and 3,

∆−1/2

 vech
(
PCT − PC

)
vech

(
NCT −NC

)
vec∗

(
MC
T −MC

)
 L-s−→

 B(1)P
B(1)N
B(1)M

+

 B(2)P
B(2)N
B(2)M


+

 ζP
ζN
ζM

+

 ζ̃P
ζ̃N
ζ̃M


and

∆−1/2

 vech
(
PJT − PJ

)
vech

(
NJT −NJ

)
vec∗

(
MJ
T −MJ

)
 L-s−→

 ξP
ξN
ξM
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Truncated realized semicovariances III
Assumption 4: σ̃ = 0 and the volatility process σ more generally is
independent of the Brownian motion W (ie, no leverage effects).

Theorem 5: Under Assumptions 2—4,

(
Q̂ + Q̃

)−1/2∆−1/2

 vech
(
PCT − PC

)
vech

(
NCT −NC

)
vec∗

(
MC
T −MC

)
−

 B(1)P + B(2)P
B(1)N + B(2)N
B(1)M + B(2)M




L-s−→ N (0, I )

where

Q∗ ≡
∫ T

0
Γsds and Q∗∗ ≡

∫ T

0
Γ̃sds

and Γs and Γ̃s are known, continuous (but messy) functions of the spot
covariance matrix, which can be consistenty estimated using Li, Todorov and
Tauchen (2017, JoE ).

The bias terms cannot be consistently estimated (at least using only infill
asymptotics).
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Link to the Kyle model (tentative) I

The bias terms that appear in the limit distribution can be interpreted using
the continuous-time version of the Kyle (1985, ECMA) model due to Back
(1992, RFS).

Simplify presentation and focus on single asset case ⇒ semivariances only

Assume there are m ≥ 1 periods per day.

At start of k th period, the asset value is drawn log (Vk ) ∼ N
(
V̄k , σ2Vk

)
.

Informed trader observes Vk , and trades continuously through the period to
maximize her profit.

Uninformed traders have price inelastic net demand, with order flow given by
σLtdWt .

Market maker observes aggregated order flow Yt and sets
Pt = E

[
Vk | (Ys )s≤t

]
, t ∈ [k − 1, k ]
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Link to the Kyle model (tentative) II

In equilibrium of this model:

d logPs = bsds + σVkdWs , for s ∈ [k − 1, k]

where bs =
logVk − logPs

k − s

i.e. a continuous Itô process with stochastic drift and constant volatility.

Note that the drift bs is proportional to the amount of mispricing
⇔ the “profit margin”of the informed trader.

In this set-up, the second bias term B(2) = 0 and

B(1)P = −B(1)N =

√
2
π

T∑
k=1

σVk

∫ k

k−1
bsds

Thus B(1)P can be interpreted as the weighted average mis-pricing across the
day, with larger weights when asymmetric information is greater.
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Data

We use data from TAQ, January 1993 to December 2014.

T = 5541 days (maximum).

We consider all stocks that were ever a constituent of the S&P 500 index and
have at least 2000 daily observations.

N = 749 unique stocks.

We use 15-minute sampling.

m = 26 observations per day.
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Time series dependence in semivariances
ACF-IV of Hansen and Lunde (2014, ET). Essentially no differences.
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Time series dependence in semicovariances
ACF-IV of Hansen and Lunde (2014, ET). M is most persistent, RCOV is least.
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A HAR model for realized semicovariances

We consider predictions using the HAR model of Corsi (2009, JFEC ).

For each of 500 randomly-chosen pairs of assets (i , j), we estimate: Pij ,tNij ,t
Mij ,t

 =

 φP ij
φN ij
φMij

+ Φij ,D

 Pij ,t−1Nij ,t−1
Mij ,t−1

+ Φij ,W

 Pij ,t−2:t−5Nij ,t−2:t−5
Mij ,t−2:t−5


+Φij ,M

 Pij ,t−6:t−22Nij ,t−6:t−22
Mij ,t−6:t−22

+

 εP ijt

εN ijt

εMij
t


where Pij ,t−2:t−5 ≡ 1

4

∑5
j=2 Pij ,t−j .

Recall that RCOVij ,t = Pij ,t +Nij ,t +Mij ,t and so this model can be
interpreted as a “decomposed”model for RCOV.
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Avg coeffi cient estimates from the HAR model
Signif at 0.05 level for 75% and 50% of all 1000 pairs indicated by ** and *

Dependent variable
Pij ,t Nij ,t Mij ,t RCOVij ,t

Pij ,t−1 0.038* 0.050* -0.035* 0.052**
Pij ,t−2:t−5 0.004 0.057 -0.002 0.059
Pij ,t−6:t−22 -0.074 0.023 0.009 0.048
Nij ,t−1 0.248** 0.192** -0.096** 0.344**
Nij ,t−2:t−5 0.312** 0.250** -0.090* 0.472**
Nij ,t−6:t−22 0.349** 0.206* -0.021 0.534**
Mij ,t−1 -0.075* -0.072* 0.141** -0.006
Mij ,t−2:t−5 -0.044 -0.049 0.209** 0.116
Mij ,t−6:t−22 0.028 -0.020 0.409** 0.417**

The three lags of N are significant for both P and N .

M seems to be mostly driven by its own lags.

The coeffi cients for RCOV are the sum of those for P, N andM.
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Portfolio volatility forecasting using "semi" decompositions

The variance of a portfolio of assets with weight vector w is:

RV pt = w′RCOVtw

The portfolio variance can be decomposed using semivariances, following
BNKS (2010, book) and Patton and Sheppard (2015, REStat):

RV pt = V+pt + V−pt

It can alternatively be decomposed using semicovariances:

RV pt = w′Ptw +w′Ntw +w′Mtw
≡ Ppt + N p

t + Mp
t

Note that unlike the semiVariance decomposition, the semiCOVariance
decomposition uses returns data on all of the constituent assets.
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Models for forecasting portfolio volatility

1 HAR, from Corsi (2009, JFEC ):

RV pt+1|t = φ0 + φdRV
p
t + φwRV

p
t−1:t−4 + φmRV

p
t−5:t−21

2 Semivariance HAR (SHAR), from Patton and Sheppard (2015, REStat):

RV pt+1|t = φ0 + φ+d V
+p
t + φ−d V

−p
t + φwRV

p
t−1:t−4 + φmRV

p
t−5:t−21

3 Semicovariance HAR (SCHAR):

RV pt+1|t = φ0 + φd ,PP
p
t + φw ,PP

p
t−1:t−4 + φm,PP

p
t−5:t−21

+ φd ,NN
p
t + φw ,NN

p
t−1:t−4 + φm,NN

p
t−5:t−21

+ φd ,MM
p
t + φw ,MM

p
t−1:t−4 + φm,MM

p
t−5:t−21

4 Reduced semicovariance HAR (SCHAR-r):

RV pt+1|t = φ0 +φd ,NN
p
t +φw ,NN

p
t−1:t−4 +φm,NN

p
t−5:t−21 +φm,MM

p
t−5:t−21
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Portfolio volatility out-of-sample forecast results
The SCHAR-r model performs the best, with gains of around 10%

MSE QLIKE
Avg Ratio Avg Ratio

N = 1
HAR 35.112 1.000 0.239 1.000
SHAR 34.981 0.997 0.238 0.998

N = 10
HAR 1.849 1.000 0.141 1.000
SHAR 1.671 0.966 0.139 0.986
SCHAR 1.643 0.955 0.210 1.318
SCHAR-r 1.567 0.908 0.139 0.979

N = 100
HAR 0.048 1.000 0.119 1.000
SHAR 0.045 0.935 0.115 0.957
SCHAR 0.045 0.976 0.236 1.495
SCHAR-r 0.041 0.862 0.111 0.925
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Portfolio volatility forecast results: MSE
The SCHAR-r model performs the best for N>=2
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Portfolio volatility forecast results: QLIKE
The SCHAR-r model performs the best for N>=3
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Why does the SCHAR model outperform?

The semicovariance-HAR can be interpreted as a time-varying parameter
version of the baseline HAR model.

Consider a simplified case with just one lag:

RV pt+1|t = φ0 + φd ,PP
p
t + φd ,NN

p
t + φd ,MM

p
t

= φ0 +

(
φd ,P

Ppt
RV pt

+ φd ,N
N p
t

RV pt
+ φd ,M

Mp
t

RV pt

)
RV pt

≡ φ0 + φ1,tRV
p
t

The parameters
(
φd ,P , φd ,N , φd ,M

)
and the values of Ppt , N p

t , andMp
t

determine how much weight is given to the most recent value of RV.

The same logic applies to the weekly and monthly variables in the HAR model.
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Implied time-varying HAR parameters: Daily
The semicovariance model puts a lot more weight on daily information
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Implied time-varying HAR parameters: Weekly
The semicovariance model puts a lot more weight on weekly information
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Implied time-varying HAR parameters: Monthly
The semicovariance model puts little weight on monthly information
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Summary

We propose a new decomposition of the realized covariance matrix into four
components, based on the signs of the underlying returns.

RCOVt = Pt +Nt +M+
t +M−t

Under a standard continuous semimartingale assumption we derive the joint
limiting behavior of these measures and propose tests for symmetry of
semicovariances.

We find strong evidence against symmetry, associated with news ann’ments.

Using data on over 700 US stock returns we find the realized semicovariances
have distinct features:

Persistence is stronger for “discordant” than “concordant” semicovariances.

Negative semicovariances are most important for forecasting (total) covariance.
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