Estimation of Copula Models for Time Series, with an Application to a Model of Euro
 Exchange Rates

Andrew Patton

1 November, 2001.

Motivation I

- Application of copula theory to economic problems is a fast-growing field: Rosenberg (1999) and (2000), Bouye, et al. (2000), Li (2000), Scaillet (2000), Embrechts, et al. (2001), Patton (2001a,b), Rockinger and J ondeau (2001).
- Time series dependence means that the estimation methods available in the statistics literature cannot be used
- There is a need for results on estimation of copula models for time series

Motivation

- The case that one variable has more data available than the other arises in many interesting cases:

1. Studies involving developed and emerging markets
2. Return on market and return on newly floated company
3. Return on market and return on company that went bankrupt
4. Studies involving euro and non-euro denominated assets

Contributions of this paper

This paper makes three main contributions:

1. We show how two-stage maximum likelihood theory may be applied to copula models for time series, extending existing statistics literature on estimation of copula models
2. We consider the possibility that the variables of interest have differing amounts of data available, and use copulas to extend existing literature
3. We investigate the small sample properties of the estimator in a simulation study.

Overview

1. Refresher on copulas
2. The estimator
i. Consistency and asymptotic normality
ii. Covariance matrix estimation
iii. Efficiency of the estimator
iv. A fully efficient two-stage estimator
3. Small sample properties of the estimator
4. Application to a model of euro and yen exchange rates
5. Summary and directions of future work

Refresher on copulas

- Sklar (1959) showed that we may decompose the distribution of (X, Y) into three parts:

Refresher on copulas

- Three ways to write Sklar's theorem:

CDF:

1. $H(x, y)=C(F(x), G(y))$

PDF:
2. $h(x, y)=f(x) \cdot g(y) \cdot c(F(x), G(y))$

Log-likelihood:
3. $\log \mathrm{h}(\mathrm{x}, \mathrm{y})=\log \mathrm{f}(\mathrm{x})+\log \mathrm{g}(\mathrm{y})+\log \mathrm{c}(\mathrm{F}(\mathrm{x}), \mathrm{G}(\mathrm{y}))$

$$
\text { so } \mathrm{LL}_{\mathrm{H}}=\mathrm{LL}_{F}+\mathrm{LL}_{G}+\mathrm{LL}_{\mathrm{C}}
$$

Log likelihood expression

- $\quad h(x, y)=f(x) \cdot g(y) \cdot c(F(x), G(y))$
- $L L_{H}=L L_{F}+L L_{G}+L L_{C}$

Now thinking about parametric models - consider the situation where:

- $h(x, y ; \theta)=f(x ; \varphi) \cdot g(y ; \gamma) \cdot c(F(x ; \varphi), G(y ; \gamma) ; \kappa)$
- $\quad \mathrm{LL}_{\mathrm{H}}(\theta)=\mathrm{LL}_{\mathrm{F}}(\varphi)+\mathrm{LL}_{\mathrm{G}}(\gamma)+\mathrm{LL}_{\mathrm{C}}(\varphi, \gamma, \kappa)$
- where $\theta=\left[\varphi^{\prime}, \gamma^{\prime}, \kappa^{\prime}\right]^{\prime}$.

Two stage Maximum Likelihood

$$
\mathrm{LL}_{H}(\theta)=\mathrm{LL}_{\mathrm{F}}(\varphi)+\mathrm{LL}_{\mathrm{G}}(\gamma)+\mathrm{LL}_{\mathrm{C}}(\varphi, \gamma, \kappa)
$$

- We may exploit the fact that the parameter φ is identified in $L L_{F}$ and that γ is identified in $L L_{G}$ to estimate these first, and then estimate κ in L_{C} conditioning on the estimates for φ and $\gamma \ldots$
\Rightarrow Two-stage maximum likelihood estimation of copula models.

Relation to Anderson(1957) and Stambaugh(1997)

- Anderson (1957) and Stambaugh (1997) use the marginal/conditional decomposition:
- $h(x, y)=f(x) \cdot h_{y \mid x}(y \mid x)$, so
- $\mathrm{LL}_{H}(\theta)=\mathrm{LL}_{\mathrm{F}}(\varphi)+\mathrm{LL}_{\gamma \mid X}(\varphi, \gamma, \kappa)$
- They propose estimating φ first, and then estimating $[\gamma, \kappa]$ conditioning on the estimate of φ.
- Via the use of copulas, we are thus able to simplify estimation one further step, by breaking $\mathrm{LL}_{Y \mid X}$ into the marginal likelihood of Y and the copula likelihood.

Why two stage estimation?

- We know (Le Cam, 1970, inter alia) that the (onestage) MLE is the most efficient asymptotically normal estimator. So why think about alternatives?

1. Computational burden: for complicated models estimation becomes extremely difficult. Extension to models of higher dimension basically requires easier estimation methods
2. Modelling strategy: can work first on getting margins right, and then on copula, without iterating back and forth

Why two stage estimation?

3. Allows for the consideration of problems with unequal amounts of data

Unequal data lengths

- Let the amount of data on X, Y and the copula be denoted n_{x}, n_{y} and n_{c}. (Note that $\left.n_{c} \leq \min \left[n_{x}, n_{y}\right]\right)$
- We will let all of these be functions of n, and let $n_{x}=n$. Consider cases where $n_{y} / n_{x} \rightarrow \lambda_{y} \in(0,1]$ and $n_{c} / n_{x} \rightarrow \lambda_{c} \in(0,1]$ as $n \rightarrow \infty$
- If $n_{x}-n_{y}$ and $n_{x}-n_{c}$ are constant as $n \rightarrow \infty$, then $\lambda_{y}=\lambda_{c}=1$
- If n_{y} / n_{x} and n_{d} / n_{x} are constant as $n \rightarrow \infty$, then $\lambda_{y}, \lambda_{c} \leq 1$

Two stage maximum likelihood

$$
\begin{aligned}
& \hat{\varphi}_{n_{x}}=\underset{\varphi \in \Phi \subseteq R^{q}}{\arg \max } n_{x}^{-1} \sum_{t=1}^{n_{x}} \log f_{t}\left(Z^{t} ; \varphi\right) \\
& \hat{\gamma}_{n_{y}}=\underset{\gamma \in \Gamma \subseteq R^{r}}{\arg \max } n_{y}^{-1} \sum_{t=1}^{n_{y}} \log g_{t}\left(Z^{t} ; \gamma\right) \\
& \hat{\kappa}_{n_{c}}=\underset{\kappa \in K \subseteq R^{s}}{\arg \max } n_{c}^{-1} \sum_{t=1}^{n_{c}} \log c_{t}\left(F_{t}\left(Z^{t} ; \hat{\varphi}_{n_{x}}\right), G_{t}\left(Z^{t} ; \hat{\gamma}_{n_{y}}\right) ; \kappa\right) \\
& \hat{\theta}_{n} \equiv\left[\hat{\varphi}_{n_{x}}, \hat{\gamma}_{n_{y}}, \hat{\kappa}_{n_{c}}\right]
\end{aligned}
$$

Under standard conditions we obtain consistency and asymptotic normality:

Consistency result

- The use of data sets of differing lengths causes little complication for the consistency results of Newey and McFadden (1994) and White (1994) and we obtain:

$$
\begin{aligned}
& \hat{\varphi}_{n_{x}} \xrightarrow{p} \varphi_{0} \text { as } n \rightarrow \infty \\
& \hat{\gamma}_{n_{y}} \xrightarrow{p} \gamma_{0} \text { as } n \rightarrow \infty \\
& \hat{\kappa}_{n_{c}} \xrightarrow{p} \kappa_{0} \text { as } n \rightarrow \infty
\end{aligned}
$$

Asymptotic normality result

- A slight modification of the usual proof of the asymptotic normality of the two-stage MLE is required to deal with $n_{x} \neq n_{y} \neq n_{c}$.

$$
\begin{aligned}
& B_{n}^{0-1 / 2} \cdot N^{1 / 2} \cdot A_{n}^{0} \cdot\left(\hat{\theta}_{n}-\theta_{0}\right) \xrightarrow{D} \mathrm{~N}\left(0, I_{s}\right) \\
& N \equiv\left[\begin{array}{ccc}
n_{x} \cdot I_{p} & 0 & 0 \\
0 & n_{y} \cdot I_{q} & 0 \\
0 & 0 & n_{c} \cdot I_{r}
\end{array}\right]
\end{aligned}
$$

- The asymptotic covariance matrix can be estimated using standard methods, appropriately modified.

The two stage Hessian matrix

$$
A_{n}^{0} \equiv\left[\begin{array}{ccc}
n_{x}^{-1} \sum_{t=1}^{n_{x}} E\left[\nabla_{\varphi \varphi} \log f_{t}^{0}\right] & 0 & 0 \\
0 & n_{y}^{-1} \sum_{t=1}^{n_{y}} E\left[\nabla_{\gamma} \log g_{t}^{0}\right] & 0 \\
n_{c}^{-1} \sum_{t=1}^{n_{c}} E\left[\nabla_{\varphi \kappa} \log c_{t}^{0}\right] & n_{c}^{-1} \sum_{t=1}^{n_{c}} E\left[\nabla_{\gamma \kappa} \log c_{t}^{0}\right] & n_{c}^{-1} \sum_{t=1}^{n_{c}} E\left[\nabla_{\kappa \kappa} \log c_{t}^{0}\right]
\end{array}\right]
$$

The two stage outer product of score matrix

$$
\begin{aligned}
& B_{n}^{0} \equiv \operatorname{var}\left(\sum_{t=1}^{n}\left[n_{x}^{-1 / 2} s_{1 t}^{0^{\prime}}, n_{y}^{-1 / 2} s_{2 t}^{0^{\prime}}, n_{c}^{-1 / 2} s_{3 t}^{0^{\prime}}\right]\right) \\
& =\left[\begin{array}{ccc}
n_{x}^{-1} \sum_{t=1}^{n_{x}} E\left[s_{1 t}^{0} \cdot s_{1 t}^{0^{\prime}}\right] & \left(n_{x} n_{y}\right)^{-1 / 2} \sum_{t=1}^{n_{y}} E\left[s_{1 t}^{0} \cdot s_{2 t}^{0^{\prime}}\right] & \left(n_{x} n_{c}\right)^{-1 / 2} \sum_{t=1}^{n_{c}} E\left[s_{1 t}^{0} \cdot s_{3 t}^{0^{\prime}}\right] \\
\left(n_{x} n_{y}\right)^{-1 / 2} \sum_{t=1}^{n_{y}} E\left[s_{2 t}^{0} \cdot s_{1 t}^{0^{\prime}}\right] & n_{y}^{-1} \sum_{t=1}^{n_{y}} E\left[s_{2 t}^{0} \cdot s_{2 t}^{0^{\prime}}\right] & \left(n_{y} n_{c}\right)^{-1 / 2} \sum_{t=1}^{n_{c}} E\left[s_{2 t}^{0} \cdot s_{3 t}^{0^{\prime}}\right] \\
\left(n_{x} n_{c}\right)^{-1 / 2} \sum_{t=1}^{n_{c}} E\left[s_{3 t}^{0} \cdot s_{1 t}^{0^{\prime}}\right] & \left(n_{y} n_{c}\right)^{-1 / 2} \sum_{t=1}^{n_{c}} E\left[s_{3 t}^{0} \cdot s_{2 t}^{0^{\prime}}\right] & n_{c}^{-1} \sum_{t=1}^{n_{c}} E\left[s_{3 t}^{0} \cdot s_{3 t}^{0^{\prime}}\right]
\end{array}\right]
\end{aligned}
$$

Asymptotic efficiency of the estimator

- When $n_{x}=n_{y}=n_{c}$, we know that the one-stage MLE is asymptotically most efficient
- When $n_{\mathrm{x}} \neq n_{\mathrm{y}} \neq n_{\mathrm{c}}$ but $n_{\mathrm{y}} / n_{\mathrm{x}} \rightarrow 1$ and $n_{\mathrm{c}} / n_{\mathrm{x}} \rightarrow 1$, then $\mathrm{N}_{\infty}=\mathrm{n} \cdot \mathrm{I}$, and one-stage is also more efficient than two-stage on data of different lengths
- But when $n_{x} \neq n_{y} \neq n_{c}$ and $n_{y} / n_{x} \rightarrow c<1$ and/or $n_{\mathrm{c}} n_{\mathrm{x}} \rightarrow \mathrm{d}<1$, then there exist cases when the two-stage estimator is not less efficient than the one-stage MLE...

Proposition

- Let M be the asymptotic covariance matrix of the onestage MLE
- Let two-stage cov matrix be $\mathrm{V} \equiv \mathrm{A}^{-1} \cdot \mathrm{~N}_{\infty}^{*}{ }^{-1 / 2} \cdot \mathrm{~B} \cdot \mathrm{~N}_{\infty}^{*}{ }^{-1 / 2} \cdot \mathrm{~A}^{-1}$
- Let $C=A^{-1} \cdot B \cdot A^{-1}$
- Let $M_{i j}$ denote the $(i, j)^{\text {th }}$ element of the matrix M

Prop'n: If $\lim n_{x} / n_{c} \equiv \mathrm{~d}>\mathrm{C}_{11} / \mathrm{M}_{11}$, then the two-stage estimator obtained using all available data is not less efficient than the one-stage MLE.

Proposition (cont'd)

Proof: Efficiency is determined by looking at the definiteness of the asymp. covariance matrices: V-M

Proposition (cont'd)

Proof: Efficiency is determined by looking at the definiteness of the asymp. covariance matrices: V-M Let $\lambda=[\lambda, 0]$, where $\lambda \in \mathfrak{R} /\{0\}$, then

$$
\begin{aligned}
\lambda^{\prime}(\mathrm{V}-\mathrm{C}) \lambda & =\lambda^{\prime}\left(\mathrm{A}^{-1} \cdot \mathrm{~N}_{\infty}^{*}-1 / 2 \cdot \mathrm{~B} \cdot \mathrm{~N}_{\infty}^{*}{ }^{-1 / 2} \cdot \mathrm{~A}^{-1} \cdot-\mathrm{M}\right) \lambda \\
& =\lambda\left(\mathrm{d}^{-1} \mathrm{C}_{11}-\mathrm{M}_{11}\right) \lambda \\
& <\lambda\left(\mathrm{M}_{11} / \mathrm{C}_{11} \cdot \mathrm{C}_{11}-\mathrm{M}_{11}\right) \lambda=0
\end{aligned}
$$

Proposition (cont'd)

Proof: Efficiency is determined by looking at the definiteness of the asymp. covariance matrices: V-M
Let $\lambda=[\lambda, \mathbf{0}]$, where $\lambda \in \mathfrak{R} /\{0\}$, then

$$
\begin{aligned}
\lambda^{\prime}(\mathrm{V}-\mathrm{C}) \lambda & =\lambda^{\prime}\left(\mathrm{A}^{-1} \cdot \mathrm{~N}_{\infty}^{*}-1 / 2 \cdot \mathrm{~B} \cdot \mathrm{~N}_{\infty}^{*}{ }^{-1 / 2} \cdot \mathrm{~A}^{-1} \cdot-\mathrm{M}\right) \lambda \\
& =\lambda\left(\mathrm{d}^{-1} \mathrm{C}_{11}-\mathrm{M}_{11}\right) \lambda \\
& <\lambda\left(\mathrm{M}_{11} / \mathrm{C}_{11} \cdot \mathrm{C}_{11}-\mathrm{M}_{11}\right) \lambda=0
\end{aligned}
$$

But, let $\lambda=[\mathbf{O}, \lambda]$ where $\lambda \in \mathfrak{R} /\{0\}$, then

$$
\begin{aligned}
\lambda^{\prime}(\mathrm{V}-\mathrm{C}) \lambda & =\lambda^{\prime}\left(\mathrm{A}^{-1} \cdot \mathrm{~N}_{\infty}^{*}-1 / 2 \cdot \mathrm{~B} \cdot \mathrm{~N}_{\infty}^{*}{ }^{-1 / 2} \cdot \mathrm{~A}^{-1}-\mathrm{M}\right) \lambda \\
& =\lambda\left(\mathrm{C}_{\mathrm{ss}}-\mathrm{M}_{\mathrm{ss}}\right) \lambda \quad(\text { recall } \mathrm{C} \text { and } \mathrm{M} \text { are sxs) } \\
& \geq 0, \text { by efficiency of one-stage MLE }
\end{aligned}
$$

Proposition (cont'd)

Proof: Efficiency is determined by looking at the definiteness of the asymp. covariance matrices: V-M
Let $\lambda=[\lambda, 0]$, where $\lambda \in \mathfrak{R} /\{0\}$, then

$$
\begin{aligned}
\lambda^{\prime}(\mathrm{V}-\mathrm{C}) \lambda & =\lambda^{\prime}\left(\mathrm{A}^{-1} \cdot \mathrm{~N}_{\infty}{ }^{-1 / 2} \cdot \mathrm{~B} \cdot \mathrm{~N}_{\infty}^{*}{ }^{-1 / 2} \cdot \mathrm{~A}^{-1}-\mathrm{M}\right) \lambda \\
& =\lambda\left(\mathrm{d}^{-1} \mathrm{C}_{11}-\mathrm{M}_{11}\right) \lambda \\
& <\lambda\left(\mathrm{M}_{11} / \mathrm{C}_{11} \cdot \mathrm{C}_{11}-\mathrm{M}_{11}\right) \lambda=0
\end{aligned}
$$

But, let $\lambda=[\mathbf{O}, \lambda]$ where $\lambda \in \mathfrak{R} /\{0\}$, then

$$
\begin{aligned}
\lambda^{\prime}(\mathrm{V}-\mathrm{C}) \lambda & =\lambda^{\prime}\left(\mathrm{A}^{-1} \cdot \mathrm{~N}_{\infty}^{*}-1 / 2 \cdot \mathrm{~B} \cdot \mathrm{~N}_{\infty}^{*}{ }_{\infty}^{-1 / 2} \cdot \mathrm{~A}^{-1}-\mathrm{M}\right) \lambda \\
& =\lambda\left(\mathrm{C}_{\mathrm{ss}}-\mathrm{M}_{\mathrm{ss}}\right) \lambda \quad(\text { recall } \mathrm{C} \text { and } \mathrm{M} \text { are } \mathrm{sxs}) \\
& \geq 0, \text { by efficiency of one-stage MLE }
\end{aligned}
$$

Thus (V-M) is indefinite. Neither estimator is more efficient than the other.

One step efficient estimator

- Newey and McFadden (1994) and White (1994) show any asymptotically normal estimator can be made fully (asymptotically) efficient, as follows:

$$
\hat{\theta}_{n}^{*} \equiv \hat{\theta}_{n}-\hat{A}_{n}^{-1} \cdot\left[\begin{array}{l}
n_{x}^{-1} \sum_{t=1}^{n_{x}} \nabla_{\varphi} \log f_{t}\left(\hat{\varphi}_{n_{x}}\right) \\
n_{y}^{-1} \sum_{t=1}^{n_{y}} \nabla_{\gamma} \log g_{t}\left(\hat{\gamma}_{n_{y}}\right) \\
n_{c}^{-1} \sum_{t=1}^{n_{c}} \nabla_{\kappa} \log c_{t}\left(\hat{\theta}_{n}\right)
\end{array}\right]
$$

Small sample study

- Simulation design:

1. $\left(X_{t}, Y_{t}\right) \sim$ Clayton(Normal , Normal)

- $X_{t}=0.01+0.05 \mathrm{X}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}, \quad \varepsilon_{\mathrm{t}} \sim \mathrm{N}\left(0, \mathrm{~h}_{\mathrm{t}}^{\mathrm{X}}\right)$
- $h_{t}{ }^{x}=0.05+0.1 \varepsilon_{t-1}^{2}+0.85 h_{t-1}{ }^{x}$
- Y_{t} has the same specification as X_{t}.

2. Three dependence levels: rank correl $=0.25,0.5,0.75$

- Clayton copula parameters: $\kappa=0.41,1.1,2.5$

3. Two lengths for $n_{x}: n_{x}=1500$ and $n_{x}=3000$
4. Three ratios: $n_{Y} / n_{x}=0.25,0.5$ and 0.75 . $\left(n_{C}=n_{Y}\right)$
5. 3 estimators: two-stage, one-step efficient, one-stage
6. 1000 replications

Ratio of MSEs: two stage to one stage

Ratio of MSEs: one-step efficient to one-stage

Ratio of MSEs: one-step efficient to one-stage

Recall: one step efficient estimator

- Newey and McFadden (1994) and White (1994) show any asymptotically normal estimator can be made fully (asymptotically) efficient, as follows:

$$
\hat{\theta}_{n}^{*} \equiv \hat{\theta}_{n}-\hat{A}_{n}^{-1} \cdot\left[\begin{array}{l}
n_{x}^{-1} \sum_{t=1}^{n_{x}} \nabla_{\varphi} \log f_{t}\left(\hat{\varphi}_{n_{x}}\right) \\
n_{y}^{-1} \sum_{t=1}^{n_{y}} \nabla_{\gamma} \log g_{t}\left(\hat{\gamma}_{n_{y}}\right) \\
n_{c}^{-1} \sum_{t=1}^{n_{c}} \nabla_{\kappa} \log c_{t}\left(\hat{\theta}_{n}\right)
\end{array}\right]
$$

Small sample distribution of parameters

Small sample distribution of AR(1) parameter in first margin, corr=0.75, nx=3000, ny/nx=0.25

Small sample distribution of parameters

Small sample distribution of AR(1) parameter in second margin, corr=0.75, nx=3000, ny/nx=0.25

Small sample distribution of parameters

Small sample distribution of copula parameter, corr=0.75, nx=3000, ny/nx=0.25

Conclusions from simulation

- Two-stage estimator performs quite well relative to the one-stage estimator
- In many cases it has lower MSE
- In remaining cases, the increase in MSE is moderate
- One-step efficient estimator performs quite poorly in some cases. This is attributed to the fact that it relies on an estimate of the covariance matrix, which amplifies small sample variability
- Overall, would recommend using unadjusted twostage estimator rather than one-step efficient estimator

Application

- Present as an application a model of the joint distribution of yen/U.S. dollar and euro/U.S. dollar exchange rates.
- Have 2695 observations on the yen but only 643 on the euro
- Find some (weak) evidence that asymmetric Clayton copula fits better than symmetric normal and Plackett copulas.

Summary of results

- Showed how parametric copula models for time series may be estimated using two-stage maximum likelihood, easing the computational burden of MLE
- Allowed for the case of unequal amounts of data, extending existing literature.
- Presented small sample evidence that the two-stage estimator performs well relative to the one-stage estimator
- Also found that the one-step efficient estimator had poor small sample properties in some situations

