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Motivation - IMotivation I

Application of copula theory to economic problemsApplication of copula theory to economic problems 
is a fast-growing field: Rosenberg (1999) and 
(2000), Bouye, et al. (2000), Li (2000), Scaillet 
(2000), Embrechts, et al. (2001), Patton (2001a,b), 
Rockinger and Jondeau (2001).

Time series dependence means that the estimation 
methods available in the statistics literature cannot 
be usedbe used

There is a need for results on estimation of copula 
models for time seriesmodels for time series



Motivation - IIMotivation II

The case that one variable has more data availableThe case that one variable has more data available 
than the other arises in many interesting cases:

1 St di i l i d l d d i k t1. Studies involving developed and emerging markets

2. Return on market and return on newly floated 
companycompany

3. Return on market and return on company that went 
bankruptbankrupt

4. Studies involving euro and non-euro denominated 
assetsassets



Contributions of this paperContributions of this paper

This paper makes three main contributions:This paper makes three main contributions:

1. We show how two-stage maximum likelihood 
th b li d t l d l f titheory may be applied to copula models for time 
series, extending existing statistics literature on 
estimation of copula modelsp

2. We consider the possibility that the variables of 
interest have differing amounts of data available,interest have differing amounts of data available, 
and use copulas to extend existing literature

3 We investigate the small sample properties of the3. We investigate the small sample properties of the 
estimator in a simulation study.



OverviewOverview

1. Refresher on copulas

2. The estimator
i. Consistency and asymptotic normality
ii. Covariance matrix estimation
iii Efficiency of the estimatoriii. Efficiency of the estimator
iv. A fully efficient two-stage estimator

3 S ll l ti f th ti t3. Small sample properties of the estimator

4. Application to a model of euro and yen exchange rates

5. Summary and directions of future work



Refresher on copulasRefresher on copulas

Sklar (1959) showed that we may decomposeSklar (1959) showed that we may decompose 
the distribution of (X,Y) into three parts:

H( x , y ) ⇔ C( F(x) , G(y) )  ∀ x,y ∈ ℜ

Joint dist’n 
of X and Yof X and Y

Marginal 
Copula of 
X and Y

Marginal 
dist’n of Y

g
dist’n of X

X and Y



Refresher on copulasRefresher on copulas

Three ways to write Sklar’s theorem:Three ways to write Sklar s theorem:

CDF:
1. H( x , y ) = C( F(x) , G(y) )

PDF:
2. h( x , y ) = f(x) ⋅ g(y) ⋅ c( F(x) , G(y) )

Log-likelihood:Log likelihood:
3. log h( x , y ) =log f(x) + log g(y) + log c( F(x) , G(y) )

so LLH = LLF + LLG + LLCso LLH  LLF + LLG + LLC



Log-likelihood expressionLog likelihood expression

h( x y ) f(x) g(y) c( F(x) G(y) )h( x , y ) = f(x) ⋅ g(y) ⋅ c( F(x) , G(y) )
LLH = LLF + LLG + LLC

Now thinking about parametric models – consider the 
situation where:

h( x, y; θ) = f(x; ϕ) ⋅ g(y; γ) ⋅ c( F(x; ϕ), G(y; γ); κ)

LL ( ) LL ( ) LL ( ) LL ( )LLH(θ) = LLF(ϕ) + LLG(γ) + LLC(ϕ , γ , κ)

where θ = [ϕ’ , γ’ , κ’ ]’.where θ  [ϕ  , γ  , κ  ] .



Two-stage Maximum LikelihoodTwo stage Maximum Likelihood

LL (θ) = LL (ϕ) + LL (γ) + LL (ϕ γ κ)LLH(θ) = LLF(ϕ) + LLG(γ) + LLC(ϕ , γ , κ)

We may exploit the fact that the parameter ϕ is ϕ
identified in LLF and that γ is identified in LLG to estimate 
these first, and then estimate κ in LLC conditioning on
the estimates for ϕ and γ…ϕ γ

⇒ Two-stage maximum likelihood estimation of copula 
d lmodels.



Relation to Anderson(1957) and Stambaugh(1997)Relation to Anderson(1957) and Stambaugh(1997)

Anderson (1957) and Stambaugh (1997) use theAnderson (1957) and Stambaugh (1997) use the 
marginal/conditional decomposition:

h( ) f( ) h ( | ) soh( x , y ) = f(x) ⋅ hy|x(y|x) , so

LLH (θ) = LLF(ϕ) + LLY|X(ϕ , γ , κ)

They propose estimating ϕ first, and then estimating 
[γ , κ] conditioning on the estimate of ϕ .

Via the use of copulas, we are thus able to simplify 
estimation one further step, by breaking LLY|X into the 
marginal likelihood of Y and the copula likelihood.



Why two-stage estimation?Why two stage estimation?

We know (Le Cam 1970 inter alia) that the (oneWe know (Le Cam, 1970, inter alia) that the (one-
stage) MLE is the most efficient asymptotically 
normal estimator. So why think about alternatives?

1. Computational burden: for complicated models 
estimation becomes extremely difficult. Extension to 

d l f hi h di i b i ll i imodels of higher dimension basically requires easier 
estimation methods

2 Modelling st ateg can o k fi st on getting2. Modelling strategy: can work first on getting 
margins right, and then on copula, without iterating 
back and forth



Why two-stage estimation?Why two stage estimation?

3. Allows for the consideration of problems with unequal 
amounts of data

Copula sample

time
X variable sample

Y variable sample
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Unequal data lengthsUnequal data lengths

Let the amount of data on X, Y and the copula be 
denoted nx , ny and nc . (Note that nc ≤ min[nx , ny ] )x , y c ( c [ x , y ] )

We will let all of these be functions of n, and let nx=n. 
Consider cases where ny/nx →  λy ∈ (0,1] andConsider cases where ny/nx →  λy ∈ (0,1] and     
nc/nx→  λc ∈ (0,1] as n → ∞

If n - n and n -n are constant as n → ∞ then λ =λ = 1If nx ny and nx nc are constant as n → ∞, then λy=λc = 1

If ny/nx and nc/nx are constant  as n → ∞, then λy , λc ≤ 1



Two-stage maximum likelihoodTwo stage maximum likelihood
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Consistency resultConsistency result

The use of data sets of differing lengths causesThe use of data sets of differing lengths causes 
little complication for the consistency results of 
Newey and McFadden (1994) and White (1994) 
and we obtain:
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Asymptotic normality resultAsymptotic normality result

A slight modification of the usual proof of theA slight modification of the usual proof of the 
asymptotic normality of the two-stage MLE is 
required to deal with nx  ≠ ny ≠ nc.y
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using standard methods, appropriately modified.



The two-stage Hessian matrixThe two stage Hessian matrix
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The two-stage outer-product of score matrixThe two stage outer product of score matrix
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Asymptotic efficiency of the estimatorAsymptotic efficiency of the estimator

When n n n we know that the one stageWhen nx = ny = nc, we know that the one-stage 
MLE is asymptotically most efficient

When nx  ≠ ny ≠ nc but ny/nx 1 and nc/nx 1, 
then N∞ = n·I, and one-stage is also more efficient 
than two stage on data of different lengthsthan two-stage on data of different lengths

But when n  ≠ n ≠ n and n /n c < 1 and/orBut when nx  ≠ ny ≠ nc and ny/nx c < 1 and/or  
nc/nx d < 1 , then there exist cases when the 
two-stage estimator is not less efficient than the 

t MLEone-stage MLE…



PropositionProposition

Let M be the asymptotic covariance matrix of the oneLet M be the asymptotic covariance matrix of the one-
stage MLE
Let two-stage cov matrix be V ≡ A-1·N*

∞
-1/2·B·N*

∞
-1/2·A-1’g ∞ ∞

Let C = A-1·B·A-1’ 
Let Mij denote the (i,j)th element of the matrix M

Prop’n: If lim nx/nc ≡ d > C11/M11 , then the two-stage 
estimator obtained using all available data is not lessestimator obtained using all available data is not less 
efficient than the one-stage MLE.



Proposition (cont’d)Proposition (cont d)

Proof: Efficiency is determined by looking at the y y g
definiteness of the asymp. covariance matrices: V-M



Proposition (cont’d)Proposition (cont d)

Proof: Efficiency is determined by looking at the 
definiteness of the asymp. covariance matrices: V-M

Let λ=[λ,0], where λ∈ℜ/{0}, then

1 * 1/2 * 1/2 1λ’(V-C)λ = λ’(A-1·N*
∞

-1/2·B·N*
∞

-1/2·A-1’ -M)λ
= λ(d-1C11 – M11)λ
< λ(M11/C11·C11 – M11)λ = 0< λ(M11/C11 C11 M11)λ = 0



Proposition (cont’d)Proposition (cont d)

Proof: Efficiency is determined by looking at the 
definiteness of the asymp. covariance matrices: V-M

Let λ=[λ,0], where λ∈ℜ/{0}, then

1 * 1/2 * 1/2 1λ’(V-C)λ = λ’(A-1·N*
∞

-1/2·B·N*
∞

-1/2·A-1’ -M)λ
= λ(d-1C11 – M11)λ
< λ(M11/C11·C11 – M11)λ = 0< λ(M11/C11 C11 M11)λ = 0

But, let λ=[0,λ] where λ∈ℜ/{0}, then 
λ’(V-C)λ = λ’(A-1·N* -1/2·B·N* -1/2·A-1’ -M)λλ (V C)λ  λ (A N ∞ B N ∞ A M)λ

= λ(Css – Mss)λ (recall C and M are sxs)
≥ 0, by efficiency of one-stage MLE



Proposition (cont’d)Proposition (cont d)

Proof: Efficiency is determined by looking at the 
definiteness of the asymp. covariance matrices: V-M

Let λ=[λ,0], where λ∈ℜ/{0}, then

1 * 1/2 * 1/2 1λ’(V-C)λ = λ’(A-1·N*
∞

-1/2·B·N*
∞

-1/2·A-1’ -M)λ
= λ(d-1C11 – M11)λ
< λ(M11/C11·C11 – M11)λ = 0< λ(M11/C11 C11 M11)λ = 0

But, let λ=[0,λ] where λ∈ℜ/{0}, then 
λ’(V-C)λ = λ’(A-1·N* -1/2·B·N* -1/2·A-1’ -M)λλ (V C)λ  λ (A N ∞ B N ∞ A M)λ

= λ(Css – Mss)λ (recall C and M are sxs)
≥ 0, by efficiency of one-stage MLE

Thus (V-M) is indefinite. Neither estimator is more 
efficient than the other.



One-step efficient estimatorOne step efficient estimator

Newey and McFadden (1994) and White (1994) 
show any asymptotically normal estimator can be y y p y
made fully (asymptotically) efficient, as follows:
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Small sample studySmall sample study

Simulation design: 

1. ( Xt , Yt ) ~ Clayton( Normal , Normal )
Xt = 0.01 + 0.05Xt-1 + εt,   εt ~ N(0,ht

x)
ht

x = 0.05 + 0.1εt-1
2 + 0.85ht-1

x

Yt has the same specification as Xt .

2 Three dependence levels: rank correl 0 25 0 5 0 752. Three dependence levels: rank correl = 0.25, 0.5, 0.75
Clayton copula parameters: κ = 0.41, 1.1, 2.5

3 Two lengths for n : n =1500 and n =30003. Two lengths for nx: nx=1500 and nx=3000

4. Three ratios: nY/nx=0.25, 0.5 and 0.75. ( nc=nY )

ff5. 3 estimators: two-stage, one-step efficient, one-stage

6. 1000 replications



Ratio of MSEs: two-stage to one-stageRatio of MSEs: two stage to one stage
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Ratio of MSEs: one-step efficient to one-stageRatio of MSEs: one-step efficient to one-stage
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Ratio of MSEs: one-step efficient to one-stageRatio of MSEs: one-step efficient to one-stage
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Recall: one-step efficient estimatorRecall: one step efficient estimator

Newey and McFadden (1994) and White (1994) 
show any asymptotically normal estimator can be y y p y
made fully (asymptotically) efficient, as follows:
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Small sample distribution of parametersSmall sample distribution of parameters
Small sample distribution of AR(1) parameter in first margin, 

corr=0.75, nx=3000, ny/nx=0.25, , y

one-step efficient
one-stage         

two-stage         

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25



Small sample distribution of parametersSmall sample distribution of parameters
Small sample distribution of AR(1) parameter in second margin, 

corr=0.75, nx=3000, ny/nx=0.25

one-step efficient
one-stage         

two-stage         

, , y

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6



Small sample distribution of parametersSmall sample distribution of parameters
Small sample distribution of copula parameter, 

corr=0.75, nx=3000, ny/nx=0.25, , y

one-step efficient
one-stage         

two-stage         

0 0.5 1 1.5 2 2.5 3 3.5 4



Conclusions from simulationConclusions from simulation

Two stage estimator performs quite well relative toTwo-stage estimator performs quite well relative to 
the one-stage estimator

In many cases it has lower MSE
In remaining cases, the increase in MSE is moderate

One-step efficient estimator performs quite poorly inOne step efficient estimator performs quite poorly in 
some cases. This is attributed to the fact that it 
relies on an estimate of the covariance matrix, 
which amplifies small sample variabilitywhich amplifies small sample variability

Overall, would recommend using unadjusted two-
t ti t th th t ffi i tstage estimator rather than one-step efficient 

estimator



ApplicationApplication

Present as an application a model of the joint 
distribution of yen/U.S. dollar and euro/U.S. dollar 
exchange ratesexchange rates.

Have 2695 observations on the yen but only 643 onHave 2695 observations on the yen but only 643 on 
the euro

Find some (weak) evidence that asymmetric Clayton 
copula fits better than symmetric normal and 
Plackett copulasPlackett copulas.



Summary of resultsSummary of results

Showed how parametric copula models for timeShowed how parametric copula models for time 
series may be estimated using two-stage maximum 
likelihood, easing the computational burden of MLE

Allowed for the case of unequal amounts of data, 
extending existing literatureextending existing literature.

Presented small sample evidence that the two-stagePresented small sample evidence that the two stage 
estimator performs well relative to the one-stage 
estimator

Also found that the one-step efficient estimator had 
poor small sample properties in some situations


