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Motivation - |

= Application of copula theory to economic problems
Is a fast-growing field: Rosenberg (1999) and
(2000), Bouye, et a/l. (2000), Li (2000), Scalllet
(2000), Embrechts, et a/. (2001), Patton (2001a,b),
Rockinger and Jondeau (2001).

= Time series dependence means that the estimation
methods available in the statistics literature cannot
be used

= There is a need for results on estimation of copula
models for time series



Motivation - 11l

= The case that one variable has more data available
than the other arises in many interesting cases:

1.

2.

Studies involving developed and emerging markets

Return on market and return on newly floated
company

Return on market and return on company that went
bankrupt

Studies involving euro and non-euro denominated
assets



Contributions of this paper

This paper makes three main contributions:

1. We show how two-stage maximum likelihood
theory may be applied to copula models for time
series, extending existing statistics literature on
estimation of copula models

2. We consider the possibility that the variables of
Interest have differing amounts of data available,
and use copulas to extend existing literature

3. We investigate the small sample properties of the
estimator in a simulation study.



Overview

1.
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The estimator

I.  Consistency and asymptotic normality
Ii. Covariance matrix estimation

lii. Efficiency of the estimator

Iv. A fully efficient two-stage estimator

Small sample properties of the estimator
Application to a model of euro and yen exchange rates

Summary and directions of future work



Refresher on copulas

= Sklar (1959) showed that we may decompose

the distribution of (X,Y) into three parts:

H(x,y)< C(F(X),G()) VXyeR

Joint dist'n
of Xand Y

Copula of
XandY

Marginal
dist’'n of X

Marginal
dist'n of Y




Refresher on copulas

= Three ways to write Sklar's theorem:

CDF:
1. H(x,y)=C(F(X),G())

PDF:
2. h(x,y)=1(x)-a(y) - c(F(x) , G(y) )

Log-likelihood:
3. Jogh(x,y) =logf(x)+ logg(y) + logc( F(X) , G(y) )

so LL, = LLp + LLg + LL,



Log-likelihood expression

= h(x,y)=1x)-9(y) - c(F(x), G(y))
= LL, = LL + LLg + LL,

Now thinking about parametric models — consider the
situation where:

= h(x,y;0)=1X o¢)-ay;v) - c(F(X; ¢), G(Y; 7); x)
= LLy(0) = LLe() + LLg(Y) + LLe(o , v, %)

= whereb=[¢p,y,«].



Two-stage Maximum Likelihood

LL,(60) = LLe(9) + LLs(y) + LLe(o , v, K)

= We may exploit the fact that the parameter o Is
Identified in LL; and that vy Is identified in LL; to estimate
these first, and then estimate « in LL. condlitioning on
the estimates for ¢ and v...

— Two-stage maximum likelihood estimation of copula
models.



Relation to Anderson(1957) and Stambaugh(1997)

= Anderson (1957) and Stambaugh (1997) use the
marginal/conditional decomposition:

" h(x,y) =1 - hyylx) ., so
= LL,(0) = LLe(p) + LLyjx(9 , v, )

* They propose estimating ¢ first, and then estimating
[v . ] conditioning on the estimate of ¢ .

= Via the use of copulas, we are thus able to simplify
estimation one further step, by breaking LL, Into the
marginal likelihood of Y and the copula likelinood.



Why two-stage estimation?

=  We know (Le Cam, 1970, /nter alia) that the (one-
stage) MLE is the most efficient asymptotically
normal estimator. So why think about alternatives?

1. Computational burden: for complicated models
estimation becomes extremely difficult. Extension to
models of higher dimension basically requires easier
estimation methods

2. Modelling strategy: can work first on getting
margins right, and then on copula, without iterating
back and forth



Why two-stage estimation?

3. Allows for the consideration of problems with unequal
amounts of data

F Copula sample H
| Yvariablesample |

< » lime




15
Empirical .4
application
120
110 '¢4F
.9" '
150 . . — o - -
— Yen: Jan 91 - Jun 2001 ad
140 __ Euro: Jan 99 - Jun 2001 , , , ,
Jan9s Jul99 Jan00 Juloo Jan01 Julo1
130 -
120 -

110 “ | M W
100 } et F
90+ W _

80 ]

70 1 1 (] 1 L 1 1 [ 1
Jan91 Jan92 Jan93 Jan9%4 Jan95 Jan96 Jan97 Jan98 Jan99 Jan00 Jan01




Unequal data lengths

= Let the amount of data on X, Y and the copula be
denoted 7, , 7, and 77, . (Note that /7, < min[n, , 17, ] )

= We will let all of these be functions of .7, and let n=n.
Consider cases where /1, — A, € (0,1] and
n/in— i, € (0,1] as n— «

= If n,- n,and -, are constant as 77— o, then A, =\, =1

= If n/n,and n/n,are constant as 77— oo, then i, , A <1



Two-stage maximum likelihood
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Under standard conditions we obtain consistency and
asymptotic normality:



Consistency result

= The use of data sets of differing lengths causes
little complication for the consistency results of

Newey and McFadden (1994) and White (1994)
and we obtain:
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Asymptotic normality result

= A slight modification of the usual proof of the
asymptotic normality of the two-stage MLE is
required to deal with 7, = 1, = 1.

By 2 N2 AL+ (6, - 6,)—"—>N(0,1,)

N
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o

= The asymptotic covariance matrix can be estimated
using standard methods, appropriately modified.



The two-stage Hessian matrix

nxltz_ll E[V,, log f,']
0

nc‘lzc: E[V,, logc,]
t=1

0 0
"> E[V, logg,] 0
t=1

nglg E[V . logc,] nglg E[V,. logc,]




The two-stage outer-product of score matrix
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Asymptotic efficiency of the estimator

= When n, = n, = n,, we know that the one-stage
MLE is asymptotically most efficient

= When n, #n,=n but n/n > 1and n/n > 1,
then N_ = n-1, and one-stage is also more efficient
than two-stage on data of different lengths

= Butwhen n, # 1, # n,and n/n, > ¢ <1 and/or
nJ/n,~> d <1, then there exist cases when the
two-stage estimator is not /ess efficient than the
one-stage MLE...



Proposition

= Let M be the asymptotic covariance matrix of the one-
stage MLE

= et two-stage cov matrix be V = A-1-N*_-1/2.B-N*_-1/2.A-l
= LetC=ALBA"
= Let M; denote the (i,j)" element of the matrix M

Prop’n: If lim n/n,=d > C;;/M,, , then the two-stage
estimator obtained using all available data is not /ess
efficient than the one-stage MLE.



Proposition (cont’d)

Proof: Efficiency is determined by looking at the
definiteness of the asymp. covariance matrices: V-M



Proposition (cont’d)

Proof: Efficiency is determined by looking at the
definiteness of the asymp. covariance matrices: V-M

Let A=[A,0], where AeR/{0}, then

A (V-C)A = AM'(AL1-N*_12.B-N"_-12.A- 1" M)A
= AMd1Cyy — My
< MMy /C;-Ciy =ML =0



Proposition (cont’d)

Proof: Efficiency is determined by looking at the
definiteness of the asymp. covariance matrices: V-M

Let A=[A,0], where AeR/{0}, then

A (V-C)A = AM'(AL1-N*_12.B-N"_-12.A- 1" M)A
= AMd1Cyy — My
< MMy /C;-Ciy =ML =0

But, let A=[0,A] where AeR/{0}, then

A (V-OA = LM(A1-N*_12.B.N*_-V2.A-1" M)A
= MC, — M)A (recall C and M are sxs)
> 0, by efficiency of one-stage MLE



Proposition (cont’d)

Proof: Efficiency is determined by looking at the
definiteness of the asymp. covariance matrices: V-M

Let A=[A,0], where AeR/{0}, then

A (V-C)A = AM'(AL1-N*_12.B-N"_-12.A- 1" M)A
= AMd1Cyy — My
< MMy /C;-Ciy =ML =0

But, let A=[0,A] where AeR/{0}, then

A (V-OA = LM(A1-N*_12.B.N*_-V2.A-1" M)A
= MC, — M)A (recall C and M are sxs)
> 0, by efficiency of one-stage MLE

Thus (V-M) is indefinite. Neither estimator is more
efficient than the other.



One-step efficient estimator

= Newey and McFadden (1994) and White (1994)
show any asymptotically normal estimator can be
made fully (asymptotically) efficient, as follows:

Y v, log f (5, )
n_ An_1 ) ”letzylvy Iog gt(j/\ny)
_ > v, logc,(6,)




Small sample study

2R

Simulation design:

( X, Y;) — Clayton( Normal , Normal )
= X;=0.01+ 0.05X;; +¢, &~ N(O,hX
= hX=0.05+ 0.1¢g._,% + 0.85h_*

= Y, has the same specification as X; .

Three dependence levels: rank correl = 0.25, 0.5, 0.75
= Clayton copula parameters: « = 0.41, 1.1, 2.5

Two lengths for n,: n,=1500 and n,=3000
Three ratios: n,/n,=0.25, 0.5 and 0.75. ( n.=n, )

3 estimators: two-stage, one-step efficient, one-stage

1000 replications



Ratio of MSEs: two-stage to one-stage
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Ratio of MSEs: one-step efficient to one-stage

W ny/nx=0.25,corr=0.25,nx=1500
@ ny/nx=0.25,corr=0.25,nx=3000
O ny/nx=0.25,corr=0.75,nx=1500
@ ny/nx=0.25,corr=0.75,nx=3000
B ny/nx=0.75,corr=0.25,nx=1500
W ny/nx=0.75,corr=0.25,nx=3000
W ny/nx=0.75,corr=0.75,nx=1500

W ny/nx=0.75,corr=0.75,nx=3000

First margin Second margin Copula




Ratio of MSEs: one-step efficient to one-stage
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Recall: one-step efficient estimator

= Newey and McFadden (1994) and White (1994)
show any asymptotically normal estimator can be
made fully (asymptotically) efficient, as follows:

Y v, log f (5, )
n_ An_1 ) ”letzylvy Iog gt(j/\ny)
_ > v, logc,(6,)




Small sample distribution of parameters

Small sample distribution of AR(1) parameter in first margin,
corr=0.75, nx=3000, ny/nx=0.25
| : .

-— two-stage
-—  one-step efficient
- One-stage

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25



Small sample distribution of parameters

Small sample distribution of AR(1) parameter in second margin,
corr=0.75, nx=3000, ny/nx=0.25

|
-— two-stage m
-— one-step efficient
- One-stage

-0.8 -0.6 -0.4 0.6



Small sample distribution of parameters

Small sample distribution of copula parameter,
corr=0.75, nx=3000, ny/nx=0.25

-— two-stage
-— one-step efficient
- One-stage

3.5 4



Conclusions from simulation

= Two-stage estimator performs quite well relative to
the one-stage estimator

= In many cases it has lower MSE
= In remaining cases, the increase in MSE is moderate

= One-step efficient estimator performs quite poorly in
some cases. This is attributed to the fact that it
relies on an estimate of the covariance matrix,
which amplifies small sample variability

= Qverall, would recommend using unadjusted two-
stage estimator rather than one-step efficient
estimator



Application

= Present as an application a model of the joint
distribution of yen/U.S. dollar and euro/U.S. dollar
exchange rates.

= Have 2695 observations on the yen but only 643 on
the euro

= Find some (weak) evidence that asymmetric Clayton
copula fits better than symmetric normal and
Plackett copulas.



Summary of results

= Showed how parametric copula models for time
series may be estimated using two-stage maximum
likelihood, easing the computational burden of MLE

= Allowed for the case of unequal amounts of data,
extending existing literature.

= Presented small sample evidence that the two-stage
estimator performs well relative to the one-stage
estimator

= Also found that the one-step efficient estimator had
poor small sample properties in some situations



