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a  b  s  t  r  a  c  t  

Demographic  forces  are  crucial  drivers  of  macroeconomic  performance.  Yet,  existing  the-  
ories  do  not  allow  demography  to  respond  to  fundamentals  and  policies  while  determin-  
ing  key  macroeconomic  variables.  We  build  a  model  of  endogenous  interactions  between  
fertility  and  innovation-led  productivity  growth  that  delivers  empirically  consistent  co-  
movements  of  population,  income  and  wealth.  Wealth  dilution  and  wage  dynamics  sta-  
bilize  population  through  non-Malthusian  forces;  demography  determines  the  ratios  of  la-  
bor  income  and  consumption  to  financial  wealth.  Shocks  that  reduce  population  size,  like  
immigration  barriers,  reduce  permanently  the  labor  share  and  the  mass  of  firms,  creating  
prolonged  stagnation  and  substantial  intergenerational  redistribution  of  income  and  wel-  
fare.  

© 2020  Elsevier  B.V.  All  rights  reserved.  

1.  Introduction  

Demographic  forces  (fertility  decline,  migration,  ageing)  challenge  advanced  economies  with  fundamental  questions  con-  

cerning  aggregate  phenomena  such  as  the  productivity  slowdown,  international  imbalances,  post-crisis  stagnation  and  low  

real  interest  rates.  1  Further  questions  arise  from  the  policy-making  arena,  where  proposed  interventions  such  as  barriers  

to  migration  and  reform  of  the  welfare  state  call  for  assessing  the  effects  of  demographic  and  policy  shocks  on  economic  

performance.  Studying  such  questions  requires  empirically  consistent  models  where  demographic  forces  drive  the  determi-  

nation  of  key  macroeconomic  variables,  including  long-run  growth.  

Existing  theories  are  not  yet  satisfactory.  A  first  reason  is  that  they  typically  predict  that  population  grows  at  a  constant  

exponential  rate  in  the  long  run.  2  That  is,  they  are  not  theories  of  the  population  level  .  This  is  not  a  mere  technical  point:  

!  We  thank  Sjak  Smulders  and  Ragnar  Torvik  for  insightful  discussions,  and  participants  to  the  Royal  Economic  Society  Conference  2018  and  SURED  
Monte  Veritá 2018  for  comments  and  suggestions.  The  usual  disclaimer  applies.  
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1  See  e.g.  Backus  et  al.  (2014)  ,  Carvalho  et  al.  (2016)  ,  Cooley  and  Henriksen  (2018)  ,  Gordon  (2018)  .  
2  This  class  of  models  is  quite  large  (see  Ehrlich  and  Lui  (1997)  )  and  encompasses  all  the  well-established  specifications  of  the  supply  side,  from  neoclas-  

sical  technologies  (e.g.,  Barro  and  Becker  (1989)  )  to  endogenous  growth  frameworks  (e.g.,  Chu  et  al.  (2013)  ).  The  distinctive  prediction  of  semi-endogenous  
growth  models  Jones  (1995)  that  sustained  output  growth  requires  strictly  positive  population  growth  excludes  by  construction  equilibria  with  constant  
population.  
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Given  the  fertility  decline  in  the  industrialized  world,  applied  research  needs  models  that  explain  not  only  how  fertility  falls  

as  the  economy  develops,  but  also  how  it  converges  to  equality  with  the  mortality  rate.  Standard  balanced-growth  models  

that  predict  constant  population  growth  are  at  odds  with  the  demographers’  view  of  the  long  run  and  the  zero  population  

growth  so  evident  in  the  data.  A  second  reason  for  dissatisfaction  is  that  the  traditional  workhorse-models  of  macroeco-  

nomics,  the  Solow–Ramsey  model  and  its  overlapping-generations  variants,  do  not  account  for  the  interaction  of  population  

and  productivity.  Modeling  productivity  growth  as  an  exogenous  process,  that  is  therefore  orthogonal  to  population  growth,  

itself  exogenous,  drastically  limits  the  role  of  demography  despite  the  massive  evidence  that  it  matters  (  Jones  and  Tertilt,  

2006;  Madsen,  2010  ).  Allowing  for  endogenous  demography-technology  interactions  is  challenging  but  necessary  to  properly  

inform  empirics  and  policy  analysis.  

In  this  paper  we  build  a  tractable  general  equilibrium  model  where  fertility  interacts  with  innovation-led  productivity  

growth.  The  model  produces  a  steady  state  with  positive  growth  of  income  per  capita  associated  to  constant  population.  

It  also  produces  transitional  dynamics  consistent  with  the  empirical  evidence.  Two  results  are  especially  novel.  First,  the  

population  stabilizes  because  as  it  grows  it  dilutes  financial  wealth  per  capita  and  yields  a  decline  in  fertility.  This  neg-  

ative  feedback  has  not  been  investigated  before  and  abstracts  from  Malthusian  forces  (more  on  this  below).  Second,  the  

model  predicts  that  in  the  long  run  the  ratios  to  GDP  of  key  macroeconomic  variables  – consumption,  labor  income,  finan-  

cial  wealth  – are  exclusively  determined  by  demographic  and  preference  parameters.  Shocks  like  barriers  to  migration  or  

exogenous  changes  in  child-rearing  costs  have  first-order  effects  on  the  functional  distribution  of  income,  consumption  and  

welfare  that  we  can  characterize  analytically  and  assess  numerically.  

The  two  building  blocks  of  our  model  are  the  Yaari–Blanchard  overlapping-generations  demographic  structure  (  Blanchard,  

1985;  Yaari,  1965  )  and  the  Schumpeterian  theory  of  endogenous  growth  with  endogenous  market  structure  (  Peretto,  1998;  

Peretto  and  Connolly,  2007  ).  We  extend  the  former  to  include  endogenous  fertility:  individuals  maximize  lifetime  utility  

facing  a  positive  probability  of  death  and  choosing,  in  addition  to  consumption,  the  mass  of  children  subject  to  a  time  

cost  of  reproduction.  Differently  from  altruistic  models  where  the  head  of  the  dynasty  maximizes  collective  utility  over  an  

infinite  horizon,  each  cohort  enters  the  economy  with  zero  financial  assets  and  pursues  independent  consumption  and  re-  

production  plans.  In  this  framework,  population  growth  tends  to  reduce  consumption  via  wealth  dilution  :  the  arrival  of  new  

disconnected  generations  reduces  financial  wealth  per  capita,  which  in  turn  reduces  consumption  per  capita.  3  Moreover,  be-  

cause  it  reduces  consumption  per  capita,  the  dilution  of  financial  wealth  reduces  the  mass  of  children  that  each  households  

decides  to  have.  This  is  the  first  component  of  the  general-equilibrium  mechanism  driving  our  model  dynamics:  Holding  

aggregate  wealth  constant,  population  growth  lowers  the  fertility  rate.  

The  second  component  is  wealth  creation  ,  i.e.,  the  process  driving  the  value  of  aggregate  wealth.  Financial  assets  represent  

ownership  of  firms.  The  key  hypothesis  is  that  the  mass  of  firms  and  the  profitability  of  each  firm  evolve  as  the  result  

of  different  R&D  activities  (  Peretto,  1998;  Peretto  and  Connolly,  2007  ):  The  total  value  of  firms  grows  as  a  result  of  both  

vertical  innovations  (i.e.,  each  individual  firm  invests  in  R&D  that  raises  internal  productivity)  and  horizontal  innovations  

(i.e.,  new  firms  enter  the  market).  Both  activities  compete  for  homogeneous  labor  and,  in  free-entry  equilibrium,  generate  

aggregate  wealth  that  is  less  than  proportional  to  population.  Therefore,  the  ratio  between  wage  and  wealth  per  capita  is  

increasing  in  the  mass  of  workers,  which  means  that  as  population  grows,  the  individual  wage-to-wealth  ratio  rises  and  

households  reduce  fertility  because  the  opportunity  cost  of  reproduction  is  higher.  The  net  general-equilibrium  feedback  

effect  of  wealth  dilution  and  wealth  creation  is  thus  negative  and  stabilizes  the  population  in  the  long  run.  We  show  that  

the  model  produces  transitional  co-movements  of  fertility,  population  and  consumption  per  capita  relative  to  financial  assets  

consistent  with  panel  data  for  OECD  economies.  Moreover,  the  model  features  co-movements  of  these  demographic  variables  

with  the  mass  of  firms,  firm  size,  firm-specific  innovation  rate  and  entry  rate  that  make  our  contribution  relevant  to  the  

literature  on  “business  dynamism” that  recently  has  considered  demographic  forces  as  a  potential  explanation  for  the  trends  

displayed  by  many  advanced  economies  (see,  e.g.,  Decker  et  al.  2016  and,  especially,  Karahan  et  al.  2019  ).  

Our  results  are  in  stark  contrast  with  those  of  the  existing  frameworks.  In  particular,  we  obtain  a  novel  theory  of  the  

population  level  that  is  (i)  non-Malthusian  and  in  which  (ii)  demography,  rather  than  technology,  is  the  fundamental  de-  

terminant  of  key  macroeconomic  variables  in  the  long  run.  As  noted  above,  most  existing  models  predict  steady-state  ex-  

ponential  population  growth.  The  only  theories  capable  of  producing  a  stable  population  are  Malthusian,  that  is,  they  are  

built  on  the  idea  that  the  size  of  the  population  is  bounded  by  essential  factors  in  fixed  supply.  4  The  recent  vintage  of  such  

theories  (see,  e.g.,  Galor  (2011)  )  seeks  to  explain  the  escape  of  modern  economies  from  the  pre-industrial  Malthusian  trap  

of  the  past.  In  contrast,  our  model  fully  abstracts  from  Malthusian  forces:  wealth  consists  of  accumulable  factors  – labor  and  

knowledge  – and  there  are  no  fixed  factors.  What  stabilizes  population  in  the  long  run  is  not  natural  resource  scarcity  but  

the  dilution  of  financial  wealth.  

3  See  Barro  and  Sala-i  Martin  (2004  :  p.183).  Buiter  (1988)  and  Weil  (1989)  provide  an  early  recognition  of  the  wealth  dilution  effect  in  the  Blanchard–

Yaari  framework  with  exogenous  population  growth.  
4  Malthusian  forces  may  take  various  forms:  decreasing  returns  to  scale  in  Eckstein  et  al.  (1988)  land  scarcity  combined  with  subsistence  requirements  

in  Galor  and  Weil  (20  0  0)  open-access  resources  in  Brander  and  Taylor  (1998)  .  Two  borderline  cases  are  Strulik  and  Weisdorf  (2008)  and  Peretto  and  
Valente  (2015)  ,  where  the  fixed  factor  is  a  marketed  input  and  its  relative  scarcity  creates  price  effects  that  tend  to  reduce  fertility  through  higher  cost  
of  living  and/or  lower  real  income.  In  Strulik  and  Weisdorf  (2008)  scarcity  raises  the  relative  price  of  food  and  thereby  the  private  cost  of  reproduction,  
resulting  in  fertility  decline.  
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Our  second  key  result  is  in  contrast  with  traditional  balanced-growth  models,  where  the  ratios  of  aggregate  consump-  

tion  and  aggregate  labor  income  to  aggregate  financial  wealth  are  determined  by  the  production  technology.  In  our  model,  

instead,  the  same  grand  ratios  are  determined  by  demography  and  preference  parameters.  A  major  consequence  is  that  neg-  

ative  demographic  shocks  caused  by  immigration  barriers  or  higher  reproduction  costs  yield  a  permanent  reduction  in  the  

labor  income  share,  while  they  have  the  opposite  effect  on  the  growth  rate:  productivity  may  grow  faster  in  the  long  run,  

but  the  transition  exhibits  prolonged  stagnation  and  lower  wage.  This  phenomenon  is  due  to  the  positive  co-movement  of  

population  and  the  mass  of  firms,  which  drives  down  aggregate  output  as  population  shrinks.  The  consequences  for  in-  

tergenerational  welfare  can  be  substantial:  our  numerical  simulations  show  that  a  long  sequence  of  cohorts  entering  the  

economy  after  the  shock  experience  welfare  losses  due  to  the  combined  effects  of  permanently  lower  labor  income  and  

slow  transitional  growth.  

2.  The  demographic  model  

This  section  describes  the  demographic  structure  and  the  intertemporal  choices  of  households  abstracting  from  the  pro-  

duction  side  of  the  economy.  This  allows  us  to  formalize  the  concept  of  financial  wealth  dilution  and  highlight  its  general  

implications  in  isolation  from  the  functioning  of  labor  and  product  markets.  5  

2.1.  Households  

The  economy  is  populated  by  overlapping  generations  (cohorts)  of  single-individual  families  facing  a  constant  probability  

of  death  (  Blanchard,  1985;  Yaari,  1965  ).  We  extend  the  structure  by  assuming  that  individuals  derive  utility  from  the  mass  

of  children  they  rear  subject  to  a  pure  time  cost  of  reproduction.  Individual  variables  take  the  form  x  j  (  t  ),  where  j  ∈  (  −∞  ,  t  )  

is  the  cohort  index  representing  the  birth  date,  and  t  ∈  (  −∞  ,  ∞  )  is  continuous  calendar  time.  6  In  particular,  c  j  (  t  )  denotes  

consumption  at  time  t  of  an  individual  born  at  time  j  <  t  ,  and  b  j  (  t  )  denotes  the  mass  of  children  reared  at  time  t  by  an  agent  

who  belongs  to  cohort  j  .  The  expected  lifetime  utility  of  an  individual  born  at  time  j  is  

U  E  
j  =  

∫  ∞  

j  

[
ln  c  j  (  t  )  +  ψ  ln  b  j  (  t  )  

]
e  −(  ρ+  δ)  (  t− j  )  dt,  (1)  

where  ψ  >  0  is  the  weight  attached  to  the  utility  from  rearing  b  j  (  t  )  children,  ρ >  0  is  the  rate  of  time  preference  and  δ >  0  

is  the  constant  instantaneous  probability  of  death.  7  Differently  from  dynastic  models  (e.g.,  Barro  and  Becker,  1989  ),  individ-  

uals  do  not  internalize  the  lifetime  utility  of  their  descendants:  children  leave  the  family  after  birth,  enter  the  economy  as  

workers  owning  zero  assets  and  make  saving  plans  independently  from  their  predecessors.  Individuals  accumulate  assets  

and  allocate  one  unit  of  time  between  working  and  child  rearing.  The  individual  budget  constraint  is  

˙  a  j  (  t  )  =  (  r  (  t  )  +  δ)  a  j  (  t  )  +  
(
1  − γ b  j  (  t  )  

)
w  (  t  )  − p  (  t  )  c  j  (  t  )  ,  (2)  

where  a  j  is  individual  asset  holdings,  r  is  the  rate  of  return  on  assets,  w  is  the  wage  rate,  p  is  the  price  of  the  consumption  

good  and  γ >  0  is  the  time  cost  of  child  rearing  per  child.  The  term  
(
1  − γ b  j  

)
thus  is  individual  labor  supply  and  the  term  

γ b  j  w  is  the  cost  of  fertility  in  terms  of  foregone  labor  income.  This  structure  of  fertility  costs  is  not  crucial  for  our  main  

results.  8  What  really  drives  the  wealth  dilution  mechanism  is,  instead,  the  hypothesis  of  finite  individual  horizons  which  

makes  the  accumulation  plans  of  different  cohorts  disconnected.  9  

An  individual  born  at  time  j  maximizes  (1)  subject  to  (2)  ,  taking  the  paths  of  all  prices  as  given.  Necessary  conditions  

for  utility  maximization  are  the  individual  Euler  equation  for  consumption  

˙  c  j  (  t  )  

c  j  (  t  )  
+  

˙  p  (  t  )  

p  (  t  )  
=  r  (  t  )  − ρ,  (3)  

and  the  condition  equating  the  marginal  rate  of  substitution  between  consumption  and  child-rearing  to  the  ratio  of  the  

respective  marginal  costs,  

1  /c  j  (  t  )  

ψ/b  j  (  t  )  
=  

p  (  t  )  

γ w  (  t  )  
,  or  b  j  (  t  )  =  

ψ  

γ
·

p  (  t  )  c  j  (  t  )  

w  (  t  )  
,  (4)  

5  To  preserve  expositional  clarity,  we  collect  all  the  derivations  and  proofs  of  the  propositions  in  a  separate  online  Appendix.  
6  Using  standard  notation,  the  time-derivative  of  variable  x  j  (  t  )  is  ˙  x  j  (  t  )  ≡ d  x  j  (  t  )/d  t  .  
7  Assuming  log-separability  of  the  instantaneous  utility  function  is  necessary  to  aggregate  wealth  constraints  across  cohorts  in  the  Yaari–Blanchard  

framework  (see  Blanchard,  1985  ).  With  non-separable  functions  – e.g.,  imposing  strict  complementarity/substitutability  between  consumption  and  fertility  
– expenditure  shares  become  dependent  on  shadow  prices  and  make  analytical  aggregation  unfeasible.  

8  There  are  many  competing  theories  of  fertility  in  the  literature.  Our  specification  emphasizes  the  trade-off between  reproduction  and  labor  partici-  
pation,  which  is  indeed  an  empirically  relevant  phenomenon  (  Attanasio  et  al.,  2008  ).  Alternative  specifications  (e.g.,  Peretto  and  Valente,  2015  )  in  which  
child-rearing  costs  take  the  form  of  additional  consumption  expenditures  – i.e.,  a  form  of  inter  vivos  transfers  during  childhood  – would  not  change  our  
conclusions.  

9  Conceptually,  the  source  of  ‘disconnected  accumulation  plans’  is  not  the  absence  of  bequests  as  such,  but  rather  the  absence  of  a  mechanism  that  
would  maximize  all  descendants’  utilities  over  an  infinite  time  horizon.  In  fact,  expression  (1)  can  be  reinterpreted  as  the  objective  function  of  a  myopic  
dynasty  where  altruism  exists  but  only  operates  over  a  limited  time  horizon.  This  is  indeed  a  popular,  alternative  interpretation  of  the  Yaari–Blanchard  
model.  
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where  γ w  is  the  marginal  cost  of  reproduction  in  terms  of  foregone  labor  income.  The  second  expression  in  (4)  emphasizes  

that  individual  fertility  is  proportional  to  the  ratio  between  consumption  expenditure  and  the  wage.  

2.2.  Aggregation  and  population  dynamics  

Denoting  by  k  j  (  t  )  the  size  of  cohort  j  at  time  t  ,  adult  population  L  and  total  births  B  at  time  t  equal  L  (  t  )  ≡
∫  t  
−∞  k  j  (  t  )  dj

and  B  (  t  )  ≡
∫  t  
−∞  k  j  (  t  )  b  j  (  t  )  dj,  respectively.  Similarly,  total  assets  A  and  aggregate  consumption  C  equal  A  (  t  )  ≡

∫  t  
−∞  k  j  (  t  )  a  j  (  t  )  dj

and  C  (  t  )  ≡
∫  t  
−∞  k  j  (  t  )  c  j  (  t  )  dj.  We  define  per  capita  variables  by  referring  to  L  as  the  economy’s  population:  births,  assets,  and  

consumption  per  capita  are  respectively  b  ≡ B  /  L  ,  a  ≡ A  /  L  ,  and  c  ≡ C  /  L  .  Since  individuals  are  homogeneous  within  cohorts,  the  

size  of  each  cohort  declines  over  time  at  rate  δ,  which  represents  the  economy’s  mortality  rate.  Population  evolves  according  

to  the  demographic  law  

˙  L  (  t  )  =  B  (  t  )  − δL  (  t  )  .  (5)  

Aggregating  the  individual  fertility  decision  (4)  across  cohorts,  we  obtain  the  following  equilibrium  relationship  between  the  

economy’s  gross  fertility,  consumption  expenditure  and  the  wage:  

B  (  t  )  =  
ψ  

γ
·

p  (  t  )  
∫  t  
−∞  k  j  (  t  )  c  j  (  t  )  dj  

w  (  t  )  
=  

ψ  

γ
· p  (  t  )  C  (  t  )  

w  (  t  )  
.  (6)  

Aggregating  the  individual  budget  (2)  across  cohorts  yields  the  following  expression  for  the  growth  rate  of  aggregate  wealth:  

˙  A  (  t  )  

A  (  t  )  
=  r  (  t  )  +  

w  (  t  )  (  L  (  t  )  − γ B  (  t  )  )  

A  (  t  )  
− p  (  t  )  C  (  t  )  

A  (  t  )  
,  (7)  

where  the  term  L  − γ B  is  aggregate  labor  supply.  

2.3.  Consumption  and  wealth  dilution  

We  define  human  wealth  as  

h  (  t  )  ≡
∫  ∞  

t  
w  (  s  )  · e  −

∫  s  
t  (  r  (  v  )  +  δ)  dv  ds.  (8)  

Combining  the  fertility  Eq.  (4)  with  the  budget  constraint  (2)  ,  we  obtain  the  expenditure  of  an  individual  born  at  time  j  as  

p  (  t  )  c  j  (  t  )  =  
ρ +  δ
1  +  ψ  

·
[
a  j  (  t  )  +  h  (  t  )  

]
.  (9)  

This  expression  shows  that  individual  expenditure  is  proportional  to  individual  wealth,  the  sum  of  financial  and  human  

wealth.  The  preference  for  children,  ψ ,  reduces  the  individual  propensity  to  consume.  Integrating  individual  expenditures  

across  cohorts  and  dividing  by  the  population  level,  we  write  consumption  expenditure  per  capita  as  

p  (  t  )  c  (  t  )  =  
ρ +  δ
1  +  ψ  

· [  a  (  t  )  +  h  (  t  )  ]  .  (10)  

Despite  their  apparent  similarity,  expressions  (9)  and  (10)  represent  different  objects.  In  the  individual  expenditure  func-  

tion,  both  c  j  (  t  )  and  a  j  (  t  )  are  chosen  by  individuals  given  a  j  (  j  )  =  0  .  The  per  capita  variables  c  (  t  )  and  a  (  t  ),  instead,  are  aver-  

ages  determined  by  the  age  structure  of  the  population.  This  distinction  is  important  when  computing  growth  rates.  Time-  

differentiation  of  (10)  yields  

˙  c  (  t  )  

c  (  t  )  
+  

˙  p  (  t  )  

p  (  t  )  
=  r  (  t  )  − ρ − ψ  (  ρ +  δ)  

γ (  1  +  ψ  )  
· a  (  t  )  

w  (  t  )  ︸  ︷︷  ︸  
Financial  wealth  dilution  

.  (11)  

Comparing  this  expression  to  the  individual  Euler  Eq.  (3)  ,  we  see  that  the  growth  rates  of  individual  and  per  capita  con-  

sumption  expenditure  differ  by  the  last  term  in  (11)  .  This  term  is  the  rate  of  financial  wealth  dilution  due  to  fertility,  i.e.,  

the  decline  in  wealth  per  capita  caused  by  the  arrival  of  a  new  cohort  with  B  members  born  with  zero  assets.  Combining  

Eqs.  (10)  and  (6)  ,  we  have  

ψ  (  ρ +  δ)  

γ (  1  +  ψ  )  
· a  (  t  )  

w  (  t  )  ︸  ︷︷  ︸  
Financial  wealth  dilution  

=  
A  (  t  )  /L  (  t  )  

h  (  t  )  +  A  (  t  )  /L  (  t  )  
· B  (  t  )  

L  (  t  )  
.  (12)  

Financial  wealth  dilution  affects  per  capita  consumption  growth  because  generations  are  disconnected:  new  cohorts  enter  

the  economy  with  zero  assets  and  start  pursuing  their  own  accumulation  and  fertility  plans  independently  from  their  pre-  

decessors.  This  process  makes  the  consumption  possibilities  of  each  generation  subject  to  the  accumulation  and  fertility  

decisions  of  subsequent  generations,  creating  a  form  of  wealth  dilution  that  does  not  arise  in  models  with  perfect  dynastic  
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altruism,  where  the  head  of  the  dynasty  maximizes  dynastic  utility  over  an  infinite  horizon.  While  these  general  character-  

istics  of  the  wealth  dilution  mechanism  have  long  been  recognized  in  the  literature  (  Buiter,  1988;  Weil,  1989  ),  our  analysis  

adds  an  important  insight:  in  our  model  wealth  dilution  interacts  with  fertility  choice  and  is  thus  both  a  consequence  and  

a  determinant  of  population  dynamics.  More  precisely,  financial  wealth  dilution  reduces  the  economy’s  fertility  rate  by  re-  

ducing  individual  consumption,  as  we  show  next.  

2.4.  Fertility  dynamics:  Expenditure  and  wage  channels  

To  gain  insight  on  the  population-fertility  feedback,  consider  how  the  fertility  rate,  b  ,  responds  to  a  change  in  population,  

L  ,  for  given  aggregate  financial  wealth,  A  ,  and  individual  human  wealth,  h  .  From  (6)  and  (10)  ,  the  fertility  rate  equals  

b  (  t  )  =  
ψ  

γ

Expenditure  channel  ︷  ︸︸  ︷  
p  (  t  )  c  (  t  )  

w  (  t  )  ︸︷︷︸  
Wage  channel  

=  
ψ  

γ
ρ +  δ
1  +  ψ  

[
A  (  t  )  

L  (  t  )  
+  h  (  t  )  

]
1  

w  (  t  )  
(13)  

This  expression  shows  that  changes  in  population  size  affect  the  fertility  rate  through  two  channels:  the  expenditure  channel  

and  the  wage  channel  .  The  former  incorporates  the  mechanism  of  wealth  dilution  discussed  in  the  previous  subsection:  

accounting  for  the  expenditure  decision,  we  see  that  given  A  an  increase  in  L  reduces  assets  per  capita,  a  =  A/L,  and  thereby  

consumption  expenditure  per  capita.  Hence,  a  growing  population  tends  to  reduce  fertility  through  the  dilution  of  financial  

wealth.  The  wage  channel,  instead,  operates  through  the  effect  of  population  on  the  equilibrium  wage,  which  is  the  oppor-  

tunity  cost  of  reproduction.  The  sign  and  strength  of  the  wage  channel  are  determined  in  the  supply  side  of  the  economy,  

which  we  have  not  modeled  yet.  We  can  nevertheless  extract  the  main  insight  of  this  subsection  by  deriving  the  general  

dynamic  equation  that  governs  the  growth  rate  of  the  fertility  rate.  

Time-differentiating  Eq.  (13)  ,  and  substituting  both  the  Euler  Eq.  (11)  for  consumption  growth  and  the  dynamic  wealth  

constraint  (7)  in  per  capita  terms,  we  obtain  

˙  b  (  t  )  

b  (  t  )  
=  b  (  t  )  

(
1  +  γ

1  +  ψ  

ψ  
· w  (  t  )  

a  (  t  )  

)
− ρ − δ − w  (  t  )  

a  (  t  )  
+  

˙  a  (  t  )  

a  (  t  )  
−

˙  w  (  t  )  

w  (  t  )  
− ψ  (  ρ +  δ)  

γ (  1  +  ψ  )  
· a  (  t  )  

w  (  t  )  
,  (14)  

where  the  last  term  is  the  rate  of  financial  wealth  dilution.  Equation  (14)  provides  fundamental  information:  it  consolidates  

the  aggregation  of  all  households’  intertemporal  decisions  concerning  fertility  and  consumption  choices  into  a  single  expres-  

sion  that  contains  only  two  variables,  b  and  a/w,  and  their  respective  growth  rates.  Therefore,  combining  (14)  with  a model  

of  the  supply  side  that  determines  the  a/w  ratio  and  the  dynamics  of  the  wage,  w  ,  allows  us  to  characterize  the  equilibrium  

dynamics  as  a  reduced  system  in  three  core  variables:  population,  L  ,  fertility,  b  ,  and  the  asset-wage  ratio,  a/w  .  

It  should  be  clear  that  different  specifications  of  the  supply  side  deliver  different  predictions.  In  Appendix  we  derive  

the  fertility  dynamics  implied  by  four  alternative  production  structures  – two  models  with  neoclassical  technology  and  two  

models  of  endogenous  growth  – obtaining  two  main  insights.  First,  neoclassical  models  tend  to  generate  exponential  pop-  

ulation  growth  because  they  neutralize  the  role  of  wealth  dilution  as  a  potential  stabilizer  of  the  population  level.  When  

population  expands,  the  declining  capital  per  worker  and  the  falling  wage  perfectly  offset  each  other  and  yield  a  constant  

rate  of  population  growth.  Second,  models  of  endogenous  growth  with  simultaneous  vertical  and  horizontal  innovations  

(  Peretto,  1998;  Peretto  and  Connolly,  2007  )  can  provide  a  radically  different  theory  of  population  and  fertility  dynamics  be-  

cause  their  core  mechanism  of  wealth  creation  – the  accumulation  of  intangible  assets  raising  the  mass  of  firms  and  each  

firm’s  profitability  – may  reinforce,  instead  of  neutralize,  the  wealth  dilution  effect.  We  investigate  this  point  by  incorporat-  

ing  vertical  and  horizontal  innovations  in  the  production  side  of  our  model.  

3.  The  production  side  

The  model  of  the  production  side  draws  on  Peretto  and  Connolly  (2007)  .  The  final  sector  produces  the  consumption  

good  by  means  of  differentiated  intermediates  supplied  by  monopolistic  firms.  Productivity  growth  is  driven  by  both  vertical  

and  horizontal  innovations  in  the  intermediate  sector:  incumbent  firms  pursue  vertical  R&D  to  raise  internal  productivity;  

outside  entrepreneurs  create  new  firms  to  enter  the  market.  This  setup  yields  a  transparent  equilibrium  relationship  that  

links  the  total  value  of  firms  to  population  size  and  the  wage.  As  mentioned,  it  also  makes  our  contribution  relevant  to  the  

recent  literature  on  the  decline  of  “business  dynamism” (see,  e.g.,  Decker  et  al.,  2016  and,  especially,  Karahan  et  al.,  2019  ).  

3.1.  Final  sector  

A  representative  competitive  firm  produces  the  final  consumption  good  by  assembling  differentiated  intermediate  prod-  

ucts  according  to  the  technology  

C  (  t  )  =  N  (  t  )  
χ− ε

ε−1  ·
(∫  N  (  t  )  

0  
x  i  (  t  )  

ε−1  
ε di  

) ε
ε−1  

,  (15)  
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where  N  is  mass  of  intermediates,  x  i  is  the  quantity  of  the  i  -th  intermediate  good,  ε > 1  is  the  elasticity  of  substitution  

between  pairs  of  intermediates  and  χ >  1  is  the  degree  of  increasing  returns  to  specialization.  Profit  maximization  taking  

the  mass  of  goods  and  the  price  p  xi  of  each  good  i  as  given  yields  the  final  producer’s  demand  schedule.  

3.2.  Intermediate  producers:  Incumbents  

The  typical  intermediate  firm  produces  according  to  the  technology  

x  i  (  t  )  =  z  i  (  t  )  
θ · (  (  xi  (  t  )  − ϕ  )  ,  (16)  

where  z  i  is  firm-specific  knowledge,  θ ∈  (0,  1)  is  the  elasticity  of  labor  productivity  with  respect  to  knowledge,  (  xi  is  labor  

employed  in  production  and  ϕ >  0  is  overhead  labor.  The  firm  accumulates  knowledge  according  to  

˙  z  i  (  t  )  =  ωZ  (  t  )  · (  zi  (  t  )  ,  (17)  

where  (  zi  is  labor  employed  in  vertical  R&D.  The  productivity  of  R&D  employment  is  given  by  parameter  ω  >  0  times  the  

economy’s  stock  of  public  knowledge  

Z  (  t  )  =  
1  

N  (  t  )  

∫  N  (  t  )  

0  
z  j  (  t  )  dj.  (18)  

This  expression  posits  that  public  knowledge  is  a  weighted  sum  of  the  firm-specific  stocks  of  knowledge,  z  j  .  The  intuition  is  

that  firms  cross-fertilize  each  other:  when  firm  j  develops  a  more  efficient  process  to  produce  its  own  differentiated  good,  it  

also  generates  non-excludable  knowledge  that  flows  into  the  public  domain.  The  mass  of  firms  affects  the  intensity  of  such  

spillovers  since  the  impact  of  any  given  stock  of  firm-specific  knowledge,  z  j  ,  on  public  knowledge,  Z  ,  becomes  weaker  as  the  

mass  of  firms  increases  (  Peretto  and  Smulders,  2002  ).  

Each  intermediate  firm  faces  a  constant  probability  µ> 0  of  disappearing.  10  Therefore,  the  incumbent  monopolist  at  time  

t  chooses  the  time  paths  {  p  xi  ,  x  i  ,  (  xi  ,  (  zi  }  that  maximize  the  present-value  of  the  expected  profit  stream  

V i  (  t  )  =  

∫  ∞  

t  
[  p  xi  (  t  )  x  i  (  t  )  − w  (  t  )  (  xi  (  t  )  − w  (  t  )  (  zi  (  t  )  ]  e  −

∫  v  
t  (  r  (  s  )  +  µ)  ds  dv  ,  (19)  

subject  to  the  technologies  (16)  and  (17)  and  to  the  demand  schedule  of  the  final  producer.  The  solution  to  this  problem  

yields  the  standard  mark-up  pricing  rule  (see  Appendix)  and  the  dynamic  no-arbitrage  condition  

r  (  t  )  =  

[
θ · ε − 1  

ε
· p  xi  (  t  )  x  i  (  t  )  

z  i  (  t  )  
· ωZ  (  t  )  

w  (  t  )  

]
+  

˙  w  (  t  )  

w  (  t  )  
−

˙  Z  (  t  )  

Z  (  t  )  
− µ.  (20)  

This  expression  equates  the  interest  rate,  r  ,  to  the  firm’s  rate  of  return  from  knowledge  accumulation,  where  the  term  in  

square  brackets  is  the  marginal  profit  from  increasing  firm-specific  knowledge,  z  i  .  

3.3.  Intermediate  producers:  Entrants  

Agents  allocate  labor  to  developing  new  intermediate  goods,  designing  the  associated  production  processes  and  setting  

up  firms  to  serve  the  market.  This  process  of  horizontal  innovation  or,  equivalently,  entrepreneurship,  expands  the  mass  of  

firms,  N  .  At  time  t  ,  an  entrant,  denoted  i  without  loss  of  generality,  correctly  anticipates  the  value  V  i  (  t  )  that  the  new  firm  

creates.  Recalling  that  a  constant  fraction  µ>  0  of  the  existing  firms  disappears  in  each  instant,  the  net  increase  in  the  mass  

of  firms  is  

˙  N  (  t  )  =  η
N  (  t  )  

L  (  t  )  
, (  N  (  t  )  − µN  (  t  )  ,  0  !  , <  1  ,  (21)  

where  (  N  is  labor  employed  in  entry.  11  The  productivity  of  labor  in  entry  depends  on  the  exogenous  parameter  η >  0  and  

on  two  endogenous  variables,  the  mass  of  firms  and  population  size.  The  positive  effect  of  the  mass  of  firms,  N  ,  captures  

the  intertemporal  spillovers  characteristic  of  the  first-generation  models  of  endogenous  growth  (  Romer,  1990  ).  The  negative  

effect  of  population  size,  represented  by  the  term  1/  L  ϰ,  captures  the  notion  that  entering  large  markets  requires  more  effort  

(  Peretto  and  Connolly,  2007  ):  parameter  ϰ regulates  the  intensity  of  this  effect.  Our  results  remain  valid  if  we  set  , =  0  .  

Given  technology  (21)  ,  the  free-entry  condition  reads  12  

V i  (  t  )  =  
w  (  t  )  L  (  t  )  

,

ηN  (  t  )  
.  (22)  

10  Parameter  µ is  the  average  death  rate  of  intermediate  firms.  In  the  main  text,  we  refer  to  µ as  to  the  rate  of  product  obsolescence  in  order  to  avoid  
confusion  with  the  households’  death  rate  δ.  

11  The  hypothesis  that  gross  firm  creation  ˙  N  +  µN is  linear  in  one  type  of  R&D  labor,  (  N  ,  simplifies  the  analysis,  but  is  not  strictly  necessary  to  obtain  our  
main  results:  see  footnote  13  .  

12  Given  the  entry  technology  (21)  ,  the  free  entry  condition  (22)  establishes  that  the  total  value  of  new  firms,  
∫  ˙  N  +  µN  

0  V  i  di,  matches  the  total  cost  of  their  
creation,  w(  N  .  
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This  expression  states  that  the  financial  market  prices  firms  at  their  cost  of  creation.  Wealth  creation  thus  has  two  di-  

mensions:  while  incumbent  firms  accumulate  knowledge  to  raise  their  market  valuation,  free-entry  pins  down  the  market  

valuation  of  firms  from  the  cost  of  creation  side.  Since  both  in-house  R&D  and  entrepreneurship  employ  labor,  the  wage  and  

the  value  of  firms  are  jointly  determined  by  both  activities  in  equilibrium.  

3.4.  Knowledge,  wage  and  assets  

The  model  exhibits  a  symmetric  equilibrium  where  firms  make  identical  decisions.  The  labor  market  clearing  condition  

reads  

(  X  (  t  )  +  (  Z  (  t  )  +  (  N  (  t  )  =  L  (  t  )  − γ B  (  t  )  ,  (23)  

where  (  X  ≡ N  (  xi  and  (  Z  ≡ N  (  zi  are  aggregate  employment  in  intermediate  production  and  in  vertical  R&D,  respectively,  and  

the  right-hand  side  is  total  labor  supply.  Combining  (23)  with  the  profit-maximizing  conditions  of  intermediate  producers,  

we  obtain  the  equilibrium  real  wage  

w  (  t  )  

p  (  t  )  
=  

ε − 1  

ε
Z  (  t  )  

θ N  (  t  )  
χ−1  .  (24)  

This  expression  shows  that  the  real  wage  is  a  function  of  both  dimensions  of  technology,  namely,  average  firm-specific  

knowledge,  Z  ,  and  the  aggregate  stock  of  knowledge  accumulated  through  horizontal  innovation,  N  .  

Equilibrium  of  the  financial  market  requires  A  =  NV so  that  the  free-entry  condition  (22)  yields  

A  (  t  )  =  N  (  t  )  V (  t  )  =  
w  (  t  )  L  (  t  )  

,

η
.  (25)  

Combining  (25)  with  (24)  ,  we  can  write  

A  (  t  )  

p  (  t  )  
=  

ε − 1  

εη
· Z  (  t  )  

θ N  (  t  )  
χ−1  

L  (  t  )  
, .  (26)  

This  expression  shows  that  the  economy’s  real  aggregate  wealth  has  three  fundamental  determinants:  average  firm-specific  

knowledge,  Z  ;  mass  of  firms,  N  ;  population,  L  .  

4.  General  equilibrium  

This  section  merges  the  demographic  block  of  the  model  (  Section  2  )  with  the  supply  side  (  Section  3  )  and  characterizes  

the  resulting  equilibrium  dynamics.  We  show  that  the  combination  of  wealth  creation  and  wealth  dilution  generates  a  steady  

state  in  which  a  constant  endogenous  population  level  coexists  with  constant  endogenous  growth  of  income  per  capita.  We  

take  the  final  good  as  our  numeraire  and  set  p  (  t  )  =  1  .  

4.1.  The  dynamic  system  

Our  discussion  of  intertemporal  choices  (  Section  2.4  )  showed  that  the  equilibrium  dynamics  reduce  to  a  system  compris-  

ing  three  elements:  the  demographic  law  (5)  ,  the  fertility  Eq.  (14)  and  the  supply  side  of  the  economy.  The  key  ingredient  

coming  from  the  supply  side  is  the  equilibrium  relationship  (25)  ,  which  links  the  total  value  of  firms  to  labor  productivity  

in  firm  creation.  Dividing  both  sides  of  (25)  by  population  size,  we  obtain  

a  (  t  )  

w  (  t  )  
=  

1  

ηL  (  t  )  
1  −,

.  (27)  

Eq.  (27)  says  that  the  equilibrium  value  of  the  asset-wage  ratio  is  strictly  decreasing  in  population,  L  ,  even  when  we  set  

, =  0  .  The  intuition  is  that  when  population  increases,  the  wage  response  to  the  change  in  labor  supply  does  not  offset  

the  wealth  dilution  effect:  the  lar  ger  population  L  causes  a  drop  in  financial  wealth  per  capita  a  =  A/L  that  outweighs  the  

decline  in  the  wage  rate  w  .  This  result  originates  in  the  free-entry  condition  (22)  whereby  the  value  of  firms  matches  the  

cost  of  firms  creation.  13  

The  negative  relationship  between  a/w  and  L  has  crucial  consequences  for  fertility  dynamics  because  from  (13)  the  fer-  

tility  rate  is  positively  related  to  assets  per  capita  and  negatively  related  to  the  wage.  In  fact,  condition  (27)  turns  out  to  be  

essential  to  obtain  a  negative  feedback  of  population  on  fertility  along  the  equilibrium  path  and,  hence,  to  produce  a  theory  

13  Result  (27)  incorporates  the  entry  technology  (21)  ,  which  postulates  linear  returns  to  R&D  labor  (  N  .  Alternative  entry  technologies  where  (  N  exhibits  
diminishing  marginal  returns  – possibly  including  further  rival  inputs  – are  also  compatible  with  the  negative  relationship  between  a/w  and  L  and  would  
not  affect  its  steady-state  properties,  but  would  substantially  complicate  the  analysis  of  the  dynamics  by  adding  further  labor  re-allocation  effects  during  
the  transition.  
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of  finite  population.  Using  the  demographic  law  (5)  and  using  (27)  to  substitute  a/w  in  the  fertility  Eq.  (14)  ,  we  obtain  the  

autonomous  dynamic  system:  

˙  L  (  t  )  

L  (  t  )  
=  b  (  t  )  − δ; (28)  

˙  b  (  t  )  

b  (  t  )  
=  

γ (  1  +  ψ  )  b  (  t  )  − ψ  

ψ  
ηL  (  t  )  

1  −, − ρ +  ,(  b  (  t  )  − δ)  −
ψ  (  ρ +  δ)  

γ (  1  +  ψ  )  

1  

ηL  (  t  )  
1  −,

.  (29)  

Eq.  (29)  delivers  the  complete  picture  of  the  feedback  effects  of  population  on  fertility  along  the  equilibrium  path:  larger  

population  reduces  assets  per  capita  relative  to  the  wage,  a/w,  and  this  reduces  fertility  via  financial  wealth  dilution  – the  

last  term  in  (29)  – and  via  changes  in  the  rate  of  return  to  assets,  which  modifies  the  agents’  consumption  possibilities  and  

their  willingness  to  rear  children.  System  (28)  -  (29)  determines  the  dynamics  of  population  and  fertility  rates.  The  stationary  

loci  are:  

˙  L  =  0  ⇒  b  =  δ; (30)  

˙  b  =  0  ⇒  b̄  (  L  )  =  
,δ +  ηL  1  −,

, +  γ 1+  ψ  
ψ  ηL  1  −,

+  
ρηL  1  −, +  

ψ  
γ

ρ+  δ
1+  ψ  

,ηL  1  −, +  γ 1+  ψ  
ψ  

(
ηL  1  −,

)2  .  (31)  

The  ˙  L  =  0  locus  establishes  that  population  is  constant  when  the  fertility  rate,  b  ,  equals  the  mortality  rate.  The  ˙  b  =  0  locus  

is  a  negative  relationship  between  fertility  and  population,  b̄  (  L  )  ,  displaying  the  properties  (see  Appendix):  

∂  ̄b  (  L  )  /∂L  <  0  ; lim  
L  →  0  

b̄  (  L  )  =  +  ∞; lim  
L  →∞  

b̄  (  L  )  =  
ψ  

γ (  1  +  ψ  )  
.  (32)  

These  properties  ensure  the  existence  of  a  steady  state  (  L  ss  ,  b  ss  )  where  fertility  is  at  replacement  and  population  is  constant.  

The  phase  diagram  in  Fig.  1  ,  graph  (a),  shows  that  such  steady  state  exists  when  the  ˙  L  =  0  locus  lies  strictly  above  the  

horizontal  asymptote  of  the  ˙  b  =  0  locus,  given  by  the  second  limit  appearing  in  (32)  .  Consequently,  the  steady  state  (  L  ss  ,  b  ss  )  

exists  and  is  unique  if  parameters  satisfy  

γ δ(  1  +  ψ  )  >  ψ .  (33)  

The  intuition  behind  this  condition  is  that  the  negative  feedback  of  population  on  fertility  brings  population  growth  to  a  

halt  when  the  marginal  cost  of  child-bearing  γ is  high  relative  to  the  preference  for  children  ψ ,  given  the  probability  of  

death,  δ.  In  the  remainder  of  the  analysis,  we  assume  that  (33)  holds  (see  Appendix  for  further  details  on  existence).  

4.2.  The  steady  state  with  constant  population  

When  the  steady  state  (  L  ss  ,  b  ss  )  exists,  the  model  delivers  a  non-Malthusian  theory  of  the  population  level  .  The  phase  

diagram  in  Fig.  1  ,  graph  (a),  shows  that  given  the  initial  population  L  (0),  the  economy  jumps  onto  the  saddle  path  by  

selecting  initial  fertility  b  (0)  and  then  converges  to  the  steady  state.  14  The  trajectory  that  starts  from  L  (0)  <  L  ss  represents  

the  case  which  is  empirically  relevant  for  most  developed  countries:  population  grows  during  the  transition,  but  the  fertility  

rate  declines  and  eventually  becomes  equal  to  the  mortality  rate,  δ.  The  following  proposition  formalizes  the  result.  

Proposition  1.  If  parameters  satisfy  γ δ(  1  +  ψ  )  >  ψ ,  the  steady  state  (  L  ss  ,  b  ss  )  is  saddle-point  stable  and  represents  the  long-run  

equilibrium  of  the  economy:  

lim  
t→∞  

b  (  t  )  =  b  ss  ≡ δ; (34)  

lim  
t→∞  

L  (  t  )  =  L  ss  ≡

  

  
ψ  

η2  
·
ρ +  

√  

ρ2  +  4  (  ρ +  δ)  
(
δ − ψ  

γ (  1+  ψ  )  

)

γ (  1  +  ψ  )  δ − ψ  

  

  

1  
1  −,

; (35)  

lim  
t→∞  

a  (  t  )  

w  (  t  )  
=  

(
a  

w  

)

ss  
≡ 1  

ηL  1  −,
ss  

=  
2  

ψ  
· γ (  1  +  ψ  )  δ − ψ  

ρ +  

√  

ρ2  +  4  (  ρ +  δ)  
(
δ − ψ  

γ (  1+  ψ  )  

) .  (36)  

The  most  striking  result  in  Proposition  1  is  that  in  the  long  run  the  ratio  between  assets  per  capita  and  the  wage  de-  

pends  exclusively  on  demographic  factors  and  preferences:  expression  (36)  shows  that  a/w  converges  to  the  steady-state  

14  The  diverging  trajectories  in  Fig.  1  ,  graph  (a),  can  be  ruled  out  by  standard  arguments  (i.e.,  they  would  imply  explosive  dynamics  in  b  (  t  )  violating  the  
conditions  for  utility  maximization).  
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Fig.  1.  Graph  (a):  Phase  diagram  of  system  (28)-(29).  Graph  (b):  Effects  of  an  increase  in  γ .  Graph  (c):  Effects  of  an  increase  in  ρ .  Graph  (d):  Effects  of  an  
increase  in  δ.  Graph  (e):  Scatter  diagram  in  logarithmic  scale  of  population  versus  fertility  rates  in  OECD  countries.  Graph  (f):  Scatter  diagram  in  logarithmic  
scale  of  population  versus  consumption  per  capita  divided  by  financial  wealth  in  OECD  countries.  

value  (  a/w  )  ss  that  does  not  depend  on  technology  parameters.  Nonetheless,  the  entry  technology  (21)  affects  steady-state  

population:  (35)  shows  that  the  steady-state  value  L  ss  contains  the  parameters  η and  ϰ.  The  reason  for  these  results  is  

that  the  dominant  feedback  of  population  on  fertility  comes  from  financial  wealth  dilution,  which  originates  in  the  econ-  

omy’s  demographic  structure  and  process  of  wealth  creation.  15  As  the  economy  grows,  households  adjust  fertility  until  they  

achieve  the  specific  wealth-to-wage  ratio  (  a/w  )  ss  that  stabilizes  their  marginal  rate  of  substitution  between  consumption  

and  child-rearing,  at  which  point  the  economy  is  in  the  steady  state.  Although  the  specific  level  (  a/w  )  ss  depends  only  on  

15  The  fact  that  the  core  mechanism  stabilizing  population  is  wealth  dilution  is  confirmed  by  condition  (33)  ,  which  establishes  that  the  existence  of  the  
steady  state  (  L  ss  ,  b  ss  )  only  depends  on  demographic  and  preference  parameters,  (  δ,  γ ,  ψ ,  ρ).  



450  C.N.  Brunnschweiler,  P.F.  Peretto  and  S.  Valente  /  Journal  of  Monetary  Economics  117  (2021)  441–459  

Table  1  
Fixed-effects  panel  regression  results  for  OECD  countries,  1995–2016.  

(1)  (2)  (3)  (4)  (5)  
ln(b)  ln(b)  ln(c/A)  ln(c/A)  ln(c/A)  

ln(L)  -0.503  ∗∗∗ -0.421  ∗∗∗ -1.554  ∗∗∗ -0.512  ∗ -0.401  
(0.0963)  (0.0831)  (0.439)  (0.258)  (0.313)  

Trend  -0.00107  -0.0110  ∗∗∗ -0.00891  ∗

(0.00113)  (0.00379)  (0.00484)  
ln(b)  0.448  ∗

(0.253)  
Constant  3.782  ∗∗ 2.444  ∗ 15.40  ∗∗ -1.629  -1.443  

(1.572)  (1.354)  (7.199)  (4.230)  (4.394)  
Observations  665  665  606  606  549  
Number  of  groups  35  35  33  33  33  
R  2  0.118  0.121  0.115  0.177  0.148  

Notes  :  All  estimations  are  panel  fixed  effects.  Driscoll–Kraay  robust  standard  errors  are  
shown  in  parentheses;  these  correct  for  cross-sectional  dependencies  in  our  sample,  as  well  
as  heteroskedasticity  and  within-country  autocorrelation.  ∗∗∗ p  <  0.01,  ∗∗ p  <  0.05,  ∗ p  <  0.1.  

demographic  and  preference  parameters,  population  in  the  long  run  still  depends  on  technology  because  the  steady-state  

population  size,  L  ss  ,  that  is  compatible  with  (  a/w  )  ss  depends  on  the  response  of  the  wage  to  population  size  through  the  

entry  technology.  

Three  remarks  on  the  transitional  dynamics  are  in  order.  First,  the  dynamic  system  (28)  and  (29)  determines  the  equilib-  

rium  path  of  the  consumption-assets  ratio.  Combining  (13)  with  (27)  ,  we  obtain  

C  (  t  )  

A  (  t  )  
=  

γ
ψ  

· b  (  t  )  w  (  t  )  

a  (  t  )  
=  

γ
ψ  

· b  (  t  )  ηL  (  t  )  
1  −, .  (37)  

In  the  long  run,  

lim  
t→∞  

C  (  t  )  

A  (  t  )  
=  

(
C  

A  

)

ss  
=  

γ
ψ  

· b  ss  

(  a/w  )  ss  
(38)  

which,  by  Proposition  1  ,  depends  exclusively  on  demography  and  preference  parameters.  The  property  that  demographic  

forces  determine  both  a/w  and  C  /  A  implies  that  demography  is  a  major  driver  of  the  functional  distribution  of  income,  an  

important  result  that  we  discuss  in  Section  5  .  

The  second  remark  concerns  the  nature  of  the  steady  state.  Eq.  (35)  says  that  steady-state  population  size  depends  on  

preference  parameters,  fertility  costs  and  the  productivity  of  labor  in  creating  new  firms.  It  does  not  depend  on  fixed  factors  

(e.g.,  natural  resources)  as  we  purposefully  omitted  them  from  the  model.  In  other  words,  the  steady  state  (  L  ss  ,  b  ss  )  is  

non-Malthusian  :  Human  population  is  not  limited  by  binding  physical  constraints  set  by  finite  natural  resources.  This  is  

a  distinctive  result  of  our  model  because  the  existing  literature  predicts  that  a  finite  endogenous  population  size  is  the  

outcome  of  Malthusian  mechanisms.  The  idea  that  constant  population  results  from  the  dilution  of  financial  wealth  – where  

assets  represent  ownership  of  firms  created  by  labor  – is  an  original  insight  of  our  analysis  that  deserves  empirical  scrutiny.  

The  third  remark  concerns  the  transitional  co-movements  of  fertility  and  consumption.  The  time  path  of  C  /  A  is  not  nec-  

essarily  monotonic  because  b  and  L  move  in  opposite  directions  over  time.  However,  Eq.  (37)  says  that  the  path  of  the  ratio  

between  consumption  per  capita  and  total  assets  is  monotonic  because  c  /  A  is  increasing  in  the  fertility  rate  and  decreasing  

in  population.  In  particular,  starting  from  L  (0)  <  L  ss  ,  the  transition  features  (i)  declining  fertility  associated  to  (ii)  popula-  

tion  growth  and  (iii)  declining  c  /  A  ratio.  These  equilibrium  co-movements  are  empirically  plausible.  Interpreting  b  as  the  

annual  crude  birth  rate  and  c  as  household  final  consumption  divided  by  total  population  L  ,  we  can  calculate  the  empirical  

counterpart  of  the  c  /  A  ratio  for  all  OECD  countries  by  identifying  A  with  financial  net  of  worth  of  households  as  reported  

in  OECD  (2017)  .  The  overall  panel  dataset  covers  the  1995–2016  period  and  only  excludes  Mexico  and  New  Zealand  due  to  

lack  of  data  on  wealth  for  these  countries.  16  Table  1  reports  results  from  panel  estimations  including  country  fixed-effects  

and  country-specific  time  trends.  Columns  [1]-[2]  report  a  strong  negative  fertility-population  relationship,  while  columns  

[3]-[5]  report  an  inverse  relationship  between  c  /  A  and  population.  The  scatter  plots  reported  in  Fig.  1  ,  Graphs  (e)-(f),  which  

refer  to  a  sub-sample  of  16  countries  for  the  sake  of  clarity,  confirm  that  the  shape  of  the  saddle  path  predicted  by  our  

model  is  consistent  with  panel  data  for  OECD  economies.  

16  See  the  Appendix  for  further  details  on  data  sources  and  list  of  countries.  
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4.3.  Wealth  creation  and  output  growth  

The  economy’s  rate  of  wealth  creation  depends  on  both  horizontal  and  vertical  innovations.  Time-differentiating  (26)  ,  the  

growth  rate  of  wealth  is  

˙  A  (  t  )  

A  (  t  )  
=  θ

˙  Z  (  t  )  

Z  (  t  )  
+  (  χ − 1  )  

˙  N  (  t  )  

N  (  t  )  
− ,

˙  L  (  t  )  

L  (  t  )  
.  (39)  

Provided  that  certain  restrictions  hold,  both  types  of  R&D  are  active  along  the  equilibrium  path  (see  Appendix  for  details).  

The  rates  of  vertical  and  horizontal  innovation  rates  are,  respectively:  17  

˙  Z  (  t  )  

Z  (  t  )  
=  (  1  − γ b  (  t  )  )  

w  (  t  )  

a  (  t  )  
+  

[(
ε − 1  

ε

)
ωθ
η

L  (  t  )  
,

N  (  t  )  
− 1  

]
c  (  t  )  

a  (  t  )  
− ,

˙  L  (  t  )  

L  (  t  )  
− µ; (40)  

˙  N  (  t  )  

N  (  t  )  
=  (  1  − γ b  (  t  )  )  

w  (  t  )  

a  (  t  )  
− ε − 1  

εL  (  t  )  
2  ,

c  (  t  )  

a  (  t  )  
− µ −

[
η

L  (  t  )  
,

(
ϕ  +  

1  

ω  

˙  Z  (  t  )  

Z  (  t  )  

)]
N  (  t  )  .  (41)  

The  time  paths  of  w/a  and  c  /  a  are  determined  by  the  dynamic  system  studied  in  the  previous  subsection.  The  central  

message  of  (40)  and  (41)  is  that  the  growth  rates  of  firm-specific  knowledge  and  of  the  mass  of  firms  exhibit  negative  

co-movement  over  time.  While  the  entry  of  new  firms  reduces  the  profitability  of  each  individual  firm  through  market  

fragmentation,  and  thereby  the  incentive  to  invest  in  R&D  in-house,  investment  in  firm-specific  knowledge  slows  down  

entry  by  diverting  labor  away  from  horizontal  R&D  activity.  18  Importantly,  these  co-movements  guide  the  economy  towards  

a  long-run  equilibrium  in  which  vertical  R&D  generates  sustained  income  per  capita  growth  whereas  the  mass  of  firms  

converges  to  a  constant  level.  

Proposition  2.  In  the  steady  state  (  L  ss  ,  b  ss  ),  the  mass  of  firms  is  constant  and  finite,  lim  t→∞  N  (  t  )  =  N  ss  >  0  .  During  the  transition,  

the  mass  of  firms  follows  a  logistic  process  of  the  form  

˙  N  (  t  )  

N  (  t  )  
=  q  1  (  b  (  t  )  ,  L  (  t  )  )  − q  2  (  b  (  t  )  ,  L  (  t  )  )  · N  (  t  )  ,  (42)  

where  q  1  (  b  ,  L  )  and  q  2  (  b  ,  L  )  converge  to  the  finite  constant  values  q  1  (  b  ss  ,  L  ss  )  >  0  and  q  2  (  b  ss  ,  L  ss  )  >  0  in  the  long  run.  With  active  

vertical  R&D,  the  long-run  mass  of  firms  equals  

lim  
t→∞  

N  (  t  )  =  N  ss  ≡
ηL  1  −,

ss  

[  

1  − γ b  ss  −
(
θ +  1  

L  2  ,
ss  

)
ε−1  
ε

γ
ψ  b  ss  

]  

− µ

ϕ  − 1  
ω  

[
(  1+  ψ  )  γ b  ss  −ψ  

ψ  ηL  1  −,
ss  +  µ

] · L  ,ss  
η

>  0  (43)  

which  exhibits  dN  ss  /  dL  ss  >  0  for  any  ϰ∈  [0,  1)  .  

Proposition  2  establishes  that  the  process  of  firms’  entry  eventually  stops,  a  general  result  that  holds  regardless  of  

whether  vertical  R&D  is  operative.  The  intuition  is  that  entrepreneurs  create  new  firms  as  long  as  their  anticipated  mar-  

ket  share  yields  the  desired  rate  of  return  but,  as  new  firms  join  the  intermediate  sector,  each  firm’s  market  share  declines  

and  the  profitability  of  entry  eventually  vanishes  due  to  the  competing  use  of  labor  in  the  production  of  intermediates  –
which  is  subject  to  the  fixed  operating  cost  ϕ >  0  – and  in  vertical  R&D  activities  if  operative.  19  When  the  mass  of  firms  

approaches  the  steady-state  N  ss  ,  further  product  creation  is  not  profitable  given  labor  supply  and  aggregate  consumption  

expenditure.  In  other  words,  the  profitability  of  entry  adjusts  to  the  endogenous  values  (  b  ss  ,  L  ss  ).  This  process  explains  why  

the  long-run  mass  of  firms  N  ss  is  increasing  in  population  size  L  ss  :  a  larger  population  increases  the  number  of  firms  that  

the  market  for  intermediate  goods  accommodates  with  profitability  commensurate  with  the  rate  of  return  demanded  by  

savers.  

In  steady  state  population  and  the  mass  of  firms  are  constant  and  the  source  of  productivity  growth  is  vertical  R&D.  

Eq.  (40)  yields  

lim  
t→∞  

˙  Z  (  t  )  

Z  (  t  )  
=  g  ss  

Z  ≡
ε − 1  

ε
· ωθ

η
L  ,ss  
N  ss  

(
c  

a  

)

ss  
+  (  1  − γ b  ss  )  

(
w  

a  

)

ss  
−

(
c  

a  

)

ss  
− µ

︸  ︷︷  ︸  
˙  A  (  t  )  

A  (  t  )  −r  (  t  )  −µ

,  (44)  

17  Eq.  (40)  follows  from  aggregating  the  return  to  firm-specific  knowledge  (20)  across  firms.  Eq.  (41)  follows  from  the  entry  technology  (21)  and  the  labor  
market  clearing  condition  (23)  .  

18  The  market-fragmentation  effect  is  captured  by  the  term  in  square  brackets  in  (40)  :  an  increase  in  N  reduces  ˙  Z  /Z by  squeezing  the  marginal  profit  that  
each  firm  gains  from  investing  in  own  knowledge.  The  labor-reallocation  mechanism  that  negatively  affects  horizontal  R&D  is  captured  by  the  last  term  in  
(41)  .  

19  In  the  logistic  process  (42)  ,  the  term  q  1  (  b  ,  L  )  represents  the  incentive  to  create  a  new  firm,  given  by  the  market  share  anticipated  by  individual  
entrepreneurs,  whereas  q  2  (  b  ,  L  )  measures  the  decreased  profitability  of  entry  induced  by  market  crowding.  See  Appendix  for  detailed  derivations.  
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which  is  strictly  positive  as  long  as  the  mass  of  firms  N  ss  is  not  too  large.  In  the  right  hand  side  of  (44)  ,  the  first  term  

captures  an  intratemporal  gain,  namely,  the  increase  in  firms’  profitability  given  by  a  marginal  increase  in  firm-specific  

knowledge,  which  depends  on  the  ratio  between  sales  and  firm  value  and  is  thus  positively  related  to  (  c  /  a  ).  The  second  and  

third  terms  capture  the  inter-temporal  net  gains  from  R&D  investment  given  by  the  gap  between  wealth  creation,  ˙  A  /A,  and  

the  effective  discount  rate,  r  +  µ.  

The  economy’s  rate  of  wealth  creation  obeys  equation  (39)  .  Since  the  mass  of  firms  is  asymptotically  constant,  ˙  N  /N  →  0  ,  

the  growth  rate  of  assets  in  the  long  run  is  proportional  to  that  of  knowledge,  ˙  A  /A  →  θ · g  ss  
Z  ,  and  the  same  growth  rate  

applies  to  final  output  in  view  of  stationarity  of  the  consumption-wealth  ratio.  The  economy’s  long-run  growth  rate  thus  

equals  20  

lim  
t→∞  

˙  A  (  t  )  

A  (  t  )  
=  lim  

t→∞  

˙  C  (  t  )  

C  (  t  )  
=  θg  ss  

Z  =  θ

[
1  − γ b  ss  +  

(
ωθ

ε − 1  

ηε
L  ,ss  − N  ss  

)
γ
ψ  

b  ss  

N  ss  

]
ηL  1  −,

ss  − θµ.  (45)  

This  expression  shows  that  both  technology  and  demography  affect  the  pace  of  knowledge  accumulation  and,  hence,  eco-  

nomic  growth  in  the  long  run.  In  particular,  demography  affects  economic  growth  by  modifying  the  composition  of  R&D  

investment:  a  higher  steady-state  population  L  ss  tends  to  boost  horizontal  innovations,  yielding  a  larger  steady-state  mass  of  

firms  N  ss  (see  Proposition  2  ).  This  mechanism  plays  a  central  role  in  determining  the  welfare  consequences  of  demographic  

shocks,  a  point  that  we  address  in  the  quantitative  analysis  of  Section  6  .  

5.  Demography,  grand  ratios  and  migration  

As  mentioned,  our  model  delivers  predictions  for  macroeconomic  grand  ratios  that  are  in  stark  contrast  with  most  tradi-  

tional  growth  models.  This  section  discusses  these  and  related  results  by  extending  the  model  to  include  migration.  

5.1.  Exogenous  shocks  

The  following  Proposition  summarizes  the  effects  of  changes  in  the  time  cost  of  reproduction,  the  time  preference  rate  

and  the  probability  of  death.  

Proposition  3.  Increases  in  γ ,  ρ ,  and  δ modify  the  steady-state  as  follows:  

d  b  ss  /  d  γ =  0  and  d  L  ss  /  d  γ <  0  ;
d  b  ss  /  d  ρ =  0  and  d  L  ss  /  d  ρ >  0  ;
d  b  ss  /  d  δ >  0  and  d  L  ss  /  d  δ <  0  .  

Fig.  1  describes  these  results  in  three  phase  diagrams  where  the  economy  is  initially  in  the  steady  state  (  L  o  
ss  ,  b  o  

ss  )  and  then  

moves  to  the  steady  state  (  L  ′  
ss  ,  b  ′  

ss  ).  An  increase  in  γ reduces  steady-state  population  but  does  not  affect  steady-state  fertility:  

while  higher  reproduction  costs  prompt  workers  to  have  fewer  children  during  the  transition,  the  fertility  rate  b  ss  reverts  to  

δ.  An  increase  in  ρ raises  the  propensity  to  consume  out  of  wealth  and  yields  higher  consumption  and  fertility  at  earlier  

dates  over  the  life-cycle.  This  ‘discounting  effect’  yields  higher  fertility  during  the  transition  and,  hence,  larger  steady-state  

population,  L  ss  .  The  result  d  L  ss  /d  δ <  0  arises  from  two  contrasting  effects.  On  the  one  hand,  a  higher  δ affects  intertemporal  

choices  in  the  same  way  as  a  higher  time-preference  rate.  This  discounting  effect  of  δ tends  to  increase  L  ss  via  the  same  

mechanism  as  the  increase  in  ρ .  On  the  other  hand,  a  higher  mortality  rate  lowers  population  growth  and  this  mortality  

effect  tends  to  reduce  L  ss  and  increase  b  ss  .  In  the  proof  of  Proposition  3  ,  we  establish  that  the  mortality  effect  dominates  

the  discounting  effect  so  that  the  higher  probability  of  death  reduces  steady-state  population.  21  An  interesting  consequence  

is  that  an  increase  in  life  expectancy  – the  reciprocal  of  the  probability  of  death,  1/  δ – affects  the  wage-to-wealth  ratio  in  

the  same  way  as  an  increase  in  the  impatience  rate,  ρ .  This  prediction  is  opposite  to  Blanchard  (1985)  neoclassical  model,  

where  changes  in  the  probability  of  death  have  only  discounting  effects.  22  

5.2.  The  grand  ratios:  Labor  income,  consumption  and  wealth  

In  the  steady  state  (  L  ss  ,  b  ss  )  the  determinants  of  many  macroeconomic  variables  are  qualitatively  different  from  those  of  

traditional  growth  models.  A  useful  benchmark  for  comparison  is  Blanchard  (1985)  ,  which  combines  (  Yaari,  1965  )  demo-  

graphic  structure  with  the  neoclassical  supply  side.  In  that  framework  diminishing  returns  yield  that  capital  and  population  

grow  at  the  same  rate  in  steady  state.  This  notion  of  balanced  growth  also  applies  to  neoclassical  models  with  endogenous  

fertility  (e.g.,  Barro  and  Becker  (1989)  ).  We  can  summarize  the  main  differences  between  our  predictions  and  the  traditional  

20  The  last  term  in  (45)  is  obtained  from  (44)  by  substituting  (  w/a  )  ss  and  (  c  /  a  )  ss  with  the  steady-state  values  reported  in  (36)  and  (38)  .  
21  In  Fig.  1  ,  graph  (d),  the  upward  shift  in  the  ˙  b  =  0  locus  represents  the  discounting  effect  whereas  the  upward  shift  in  the  ˙  L  =  0  locus  represents  the  

mortality  effect.  The  initial  and  final  steady  states,  respectively  denoted  by  (  L  o  
ss  ,  b  o  

ss  )  and  (  L  ′  ss  ,  b  ′  ss  ),  can  be  immediately  compared  to  those  generated  by  the  
time-preference  shock  described  in  graph  (c).  

22  We  prove  this  result  in  Appendix,  below  the  proof  of  Proposition  4  .  
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ones  by  considering  three  variables,  namely,  the  ratio  of  labor  income  to  wealth,  the  consumption-wealth  ratio  and  the  ratio  

of  labor  income  to  consumption:  

w  (  t  )  L  (  t  )  (  1  − γ b  (  t  )  )  

A  (  t  )  
; C  (  t  )  

A  (  t  )  
; w  (  t  )  L  (  t  )  (  1  − γ b  (  t  )  )  

C  (  t  )  
.  

Both  the  traditional  framework  and  our  model  predict  that  these  grand  ratios  are  stationary  but  the  underlying  mechanisms  

are  totally  different.  Traditional  balanced  growth  hinges  on  diminishing  returns  to  capital  and  labor  that  stabilize  the  capital-  

labor  ratio:  as  the  growth  rate  of  capital  adjusts  to  that  of  labor,  financial  wealth  grows  at  the  same  rate  as  labor  income  

while  population  grows  at  a  constant  rate.  The  key  hypothesis  is  that  labor  is  only  used  in  final  production  and  is  combined  

with  capital  under  constant  returns  to  scale,  so  that  capital-labor  dynamics  drive  the  convergence  process  and  technology  

determines  the  grand  ratios.  In  our  model,  instead,  demography  drives  convergence  to  the  steady  state  because  (i)  population  

dilutes  wealth  and  (ii)  labor  produces  not  only  goods  and  knowledge,  but  also  new  firms  the  value  of  which  is  tied  to  the  

cost  of  creation.  As  population  grows,  wealth  dilution  and  the  decline  in  the  a/w  ratio  induced  by  the  entry  technology  –
see  (27)  – affect  households’  choices  and  drive  net  fertility  to  zero.  In  the  steady  state,  population  is  constant  but  wage  and  

wealth  grow  at  the  same  rate  because  the  value  of  firms  depends  on  the  labor  cost  of  firm  creation.  Since  the  convergence  

process  hinges  on  the  response  of  fertility  to  population,  demography  and  preferences  are  the  fundamental  determinants  of  

the  grand  ratios:  

Proposition  4.  In  the  steady  state  (  L  ss  ,  b  ss  ),  the  ratios  

lim  
t→∞  

w  (  t  )  L  (  t  )  (  1  − γ b  (  t  )  )  

A  (  t  )  
=  

1  − γ δ

(  a/w  )  ss  
,  lim  

t→∞  

C  (  t  )  

A  (  t  )  
=  

γ
ψ  

· δ

(  a/w  )  ss  
and  

lim  
t→∞  

w  (  t  )  L  (  t  )  (  1  − γ b  (  t  )  )  

C  (  t  )  
=  ψ  · 1  − γ δ

γ δ

are  exclusively  determined  by  demographic  and  preference  parameters,  with  (  a/w  )  ss  given  by  (36)  .  

A  major  consequence  of  this  property  is  that  in  our  theory,  shocks  to  demographic  or  preference  parameters  – and  

by  extension,  public  policies  affecting  reproduction  costs  or  life  expectancy  – have  a  first-order  effect  on  the  functional  

distribution  of  income,  individual  welfare  and  economic  growth.  The  quantitative  analysis  in  Section  6  provides  an  in-depth  

discussion  of  this  point.  

5.3.  Migration  

Introducing  migration  is  a  natural  extension  of  this  model.  First,  as  noted  by  Weil  (1989)  ,  immigrants  are  by  definition  

disconnected  generations  that  reinforce  wealth  dilution.  Second,  inflows  of  people  affect  wealth  creation  because  a  larger  

population  attracts  entry  and  results  in  a  larger  mass  of  firms.  We  assess  these  mechanisms  analytically  and  quantitatively  

by  making  two  assumptions  that  preserve  the  model’s  tractability.  First,  migrants  enter  or  leave  the  economy  exclusively  at  

the  beginning  of  their  working  age.  Second,  immigrants  have  the  same  preferences  and  life  expectancy  as  domestic  resi-  

dents.  23  

In  the  following  analysis,  B  (  t  )  denotes  domestic  births  and  M  (  t  )  denotes  migration.  The  size  of  the  cohort  entering  the  

economy  at  time  j  thus  is  k  (  j,  j  )  =  B  (  j  )  +  M  (  j  )  .  To  amend  the  model,  we  modify  a  few  equations  from  Section  2  and  

Sections  4.1  –4.2  (see  Appendix  for  the  details).  First,  the  demographic  law  (5)  becomes  

˙  L  (  t  )  =  B  (  t  )  +  M  (  t  )  − δL  (  t  )  .  (46)  

Second,  immigration  boosts  wealth  dilution:  the  arrival  of  further  disconnected  generations,  in  addition  to  domestic  births,  

affects  the  growth  rate  of  consumption  per  capita  and  thereby  the  dynamics  of  the  fertility  rate.  Formally,  we  have  the  

augmented  term  

ψ  (  ρ +  δ)  

γ (  1  +  ψ  )  
· B  (  t  )  +  M  (  t  )  

B  (  t  )  
· a  (  t  )  

w  (  t  )  ︸  ︷︷  ︸  
Augmented  financial  wealth  dilution  

=  
A  (  t  )  /L  (  t  )  

h  (  t  )  +  A  (  t  )  /L  (  t  )  
· B  (  t  )  +  M  (  t  )  

L  (  t  )  
.  (47)  

Third,  migration  modifies  the  system  (28)  and  (29)  and  its  properties  depending  on  how  we  specify  the  behavior  of  the  flow  

M  (  t  )  or,  alternatively,  of  the  net  migration  rate  defined  as  m  (  t  )  ≡ M  (  t  )/  L  (  t  ).  If  we  focus  on  immigration,  we  can  consider  two  

alternatives:  a  constant  inflow,  M  (  t  )  =  M̄  ,  or  a  constant  immigration  rate,  m  (  t  )  =  m̄  .  In  the  first  case,  the  immigration  rate  

m  (  t  )  is  time-varying  and  subject  to  the  dynamics  of  population.  In  the  second  case,  the  constant  immigration  rate  m̄  implies  

a  time-varying  mass  of  immigrants.  Which  specification  is  better  depends  on  the  purpose  of  the  analysis.  In  Section  6  we  

perform  numerical  simulations  assuming  M  (  t  )  =  M̄  in  order  to  assess  the  effects  of  immigration  restrictions  where  the  policy  

target  is  the  number  of  immigrants.  Nonetheless,  both  specifications  support  our  main  conclusions  and  expand  our  notion  

23  The  role  of  these  two  hypotheses  is  merely  that  of  avoiding  that  migration  introduce  heterogeneities  in  preferences  or  in  the  age-composition  of  the  
population.  
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of  non-Malthusian  steady  state.  In  Appendix,  we  modify  the  dynamic  system  (28)  -  (29)  to  include  migration  and  we  prove  

the  following  result.  

Proposition  5.  (Steady  state  with  migration)  Assuming  either  M  (  t  )  =  M̄  or  m  (  t  )  =  m̄  ,  the  equilibrium  dynamics  of  (  L  (  t  ),  b  (  t  ),  

m  (  t  ))  exhibit  a  stable  steady  state  (  L  ss  ,  b  ss  ,  m  ss  )  where:  

lim  
t→∞  

b  (  t  )  =  b  ss  ≡ δ − m  ss  ; (48)  

lim  
t→∞  

L  (  t  )  =  L  ss  ≡

  

  
ψ  

η2  
·
ρ +  

√  

ρ2  +  4  δ(  ρ +  δ)  
(
1  − ψ  

γ (  1+  ψ  )  (  δ−m  ss  )  

)

γ (  1  +  ψ  )  (  δ − m  ss  )  − ψ  

  

  

1  
1  −,

.  (49)  

Such  steady  state  exists  provided  that  γ (  δ − m  ss  )  (  1  +  ψ  )  >  ψ .  

The  long-run  immigration  rate,  lim  t→∞  m  (  t  )  =  m  ss  ,  depends  on  how  the  immigration  process  is  specified.  Assuming  

m  (  t  )  =  m̄  ,  the  immigration  rate  is  exogenous  and  our  previous  analysis  of  demographic  shocks  is  virtually  unchanged.  As-  

suming  M  (  t  )  =  M̄  ,  the  migration  rate  is  endogenous  and  demographic  shocks  have  richer  effects  than  those  described  in  

Proposition  3  ,  because  changes  in  steady-state  population  L  ss  also  induce  changes  in  steady-state  fertility  b  ss  via  the  immi-  

gration  rate  m  ss  =  M̄  /L  ss  .  Aside  from  these  second-order  effects,  both  specifications  of  migration  flows  yield  the  same  general  

insights.  The  most  important  is  that  the  fertility  rate  b  ss  adjusts  to  the  turnover  rate  δ − m  ss  and  is  therefore  decreasing  in  

the  (asymptotic)  immigration  rate.  24  Moreover,  the  immigration  rate  becomes  a  determinant  of  the  grand  ratios  previously  

discussed:  as  we  show  in  Appendix,  all  expressions  appearing  in  Proposition  4  hold  with  δ replaced  by  δ − m  ss  .  In  particular,  

the  ratio  of  labor  income  to  consumption  equals  

lim  
t→∞  

w  (  t  )  L  (  t  )  (  1  − γ b  (  t  )  )  

C  (  t  )  
=  ψ  · 1  − γ (  δ − m  ss  )  

γ (  δ − m  ss  )  
,  (50)  

so  that  the  wage  bill  relative  to  consumption  is  strictly  increasing  in  the  immigration  rate.  This  result  drives  the  welfare  

consequences  of  immigration  barriers  in  the  quantitative  analysis  presented  below.  

6.  Quantitative  analysis  

Immigration  barriers  and  public  policies  affecting  reproduction  costs  are  widely  debated  at  the  global  level.  These  inter-  

ventions  may  induce  substantial  demographic  shocks  affecting  intergenerational  welfare  in  non-trivial  ways.  We  investigate  

this  point  by  means  of  numerical  simulations  that  evaluate  the  transitional  and  the  long-run  effects  of  (i)  a  permanent  

rise  in  the  time  cost  of  reproduction  and  of  (ii)  a  permanent  reduction  in  total  immigration  according  to  the  specification  

M  (  t  )  =  M̄  .  

6.1.  Baseline  parameters  

The  parametrization  assumes  an  economy  in  steady  state  the  key  target  variables  match  the  average  values  observed  

across  OECD  countries.  25  Panel  A  in  Table  2  lists  six  endogenous  variables  for  which  we  calculate  target  values  from  available  

data  (  OECD,  2017  )  or  empirical  evidence:  population  size  L  ,  the  propensity  to  consume  out  of  total  wealth  c/  (  a  +  h  )  ,  the  

consumption-assets  ratio  (  C  /  A  ),  the  mass  of  firms  relative  to  population  N  /  L  ,  the  rate  of  wealth  creation  (  ˙  A  /A  )  ,  and  the  share  

of  GDP  invested  in  R&D.  Panel  B  lists  our  preset  parameters  reflecting  available  data  or  empirical  estimates:  Death  probability  

δ,  the  long-run  migration  rate  m  ss  ,  the  elasticity  of  substitution  across  intermediates  ε,  the  rates  of  time  preference  and  

product  obsolescence,  ρ and  µ,  and  the  elasticity  of  productivity  to  the  mass  of  intermediate  goods  χ − 1  .  For  parameter  

ϰ,  we  set  a  baseline  value  of  zero  and  then  check  the  robustness  of  our  results  under  alternative  values.  The  remaining  

six  parameters  are  set  so  as  to  match  the  six  target  values  of  the  endogenous  variables  listed  in  Panel  A.  This  procedure,  

which  distinguishes  between  the  demographic  and  the  production  side  of  the  model  (see  Appendix),  yields  the  values  of  

the  parameters  reported  in  Table  2  ,  Panel  C.  

6.2.  Steady  state  results  

The  first  row  of  panel  D  in  Table  2  reports  steady-state  values  of  the  main  variables  under  the  baseline  parametrization.  

The  gross  fertility  rate  b  ss  =  1  .  37%  and  the  ratio  of  total  labor  incomes  to  assets  (w  ̃  L  /A  )  ss  =  0  .  62  are  empirically  plausible.  

The  same  panel  considers  six  alternative  parametrizations  showing  how  the  steady  state  changes  in  response  to  small  ce-  

teris  paribus  variations.  The  results  for  higher  mortality  and  stronger  impatience  confirm  and  extend  our  analytical  findings  

24  Satisfying  the  existence  condition  γ (  1  +  ψ  )  (  δ − m  ss  )  >  ψ requires  δ − m  ss  >  0  ,  which  is  intuitive:  constant  population  with  constant  gross  fertility  
requires  a  positive  rate  of  population  turnover.  

25  Sources  and  identification  methods  are  discussed  in  detail  in  Appendix.  
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Table  3  
Transitional,  long-run  and  welfare  effects  of  permanent  shocks:  reduced  immigration  versus  increase  in  reproduction  cost.  

A.  Exogenous  shocks:  transitional  and  long  run  effects  

Shock  Migration  shock  (25%  drop)  Child  cost  shock  (6%  increase)  

Parameter  variation  M̄  =  84  ,  009  falls  to  M̄  =  63  ,  006  in  year  2020  γ =  2  .  41  rises  to  γ =  2  .  56  in  year  2020  

Endogenous  variable  L  (mln)  N  (mln)  w  ̃  L  /A  ˙  A  /A  r  L  (mln)  N  (mln)  w  ̃  L  /A  ˙  A  /A  r  

Year  2020  (pre-shock)  36.526  1.194  0.624  1.40%  2.98%  36.526  1.194  0.624  1.40%  2.98%  
Year  2035  36.217  1.188  0.619  1.39%  2.97%  36.111  1.186  0.617  1.39%  2.96%  
Year  2065  35.634  1.166  0.609  1.40%  2.97%  35.343  1.157  0.604  1.39%  2.97%  
Year  2120  34.679  1.128  0.593  1.41%  2.98%  34.123  1.108  0.583  1.41%  2.99%  
Steady  state  28.587  0.884  0.488  1.49%  3.09%  28.199  0.869  0.482  1.50%  3.09%  

B.  Individual  ex-post  welfare  

Cohort-specific  index  EPW  2025  EPW  2035  EPW  2045  EPW  2055  EPW  2065  EPW  2075  EPW  2085  EPW  2095  EPW  2105  EPW  2115  

No  shock  (  χ=  1.05)  27.91  33.59  39.26  44.94  50.62  56.30  61.98  67.66  73.33  79.01  
Migration  shock  (  χ =  1.05)  27.83  33.49  39.15  44.82  50.50  56.19  61.88  67.58  73.28  79.00  
Child  cost  shock  (  χ =  1.05)  27.73  33.38  39.04  44.70  50.38  56.08  61.77  67.48  73.19  78.92  
No  shock  (  χ =  1.025)  13.72  19.40  25.07  30.75  36.43  42.11  47.79  53.47  59.14  64.82  
Migration  shock  (  χ =  1.025)  13.66  19.32  24.99  30.67  36.35  42.04  47.74  53.45  59.16  64.88  
Child  cost  shock  (  χ=  1.025)  13.56  19.22  24.89  30.56  36.25  41.95  47.65  53.37  59.09  64.82  
No  shock  (  χ =  1.10)  56.28  61.96  67.64  73.32  79.00  84.68  90.35  96.03  101.71  107.39  
Migration  shock  (  χ =  1.10)  56.17  61.82  67.47  73.13  78.80  84.47  90.15  95.84  101.53  107.23  
Child  cost  shock  (  χ=  1.10)  56.06  61.69  67.34  72.99  78.65  84.32  90.01  95.70  101.40  107.11  

(  Section  5.1  )  on  the  opposite  effects  of  δ and  ρ .  The  third  and  fourth  scenarios  emphasize,  instead,  the  similar  consequences  

of  reductions  in  M̄  and  increases  in  γ .  Reduced  immigration  and  increased  reproduction  costs  produce  a  qualitatively  dif-  

ferent  response  of  the  fertility  rate.  The  reduction  in  M̄  increases  b  ss  because  a  permanent  fall  in  net  inflows  is  ultimately  

compensated  by  increased  domestic  births  in  the  steady  state.  The  increase  in  γ ,  instead,  reduces  transitional  fertility  rates  

via  higher  private  costs  of  reproduction  leaving  the  long-run  rate  b  ss  unchanged.  Despite  the  asymmetric  effects  on  fertil-  

ity,  the  two  shocks  bear  qualitatively  identical  consequences  on  the  other  endogenous  variables.  Reduced  immigration  and  

increased  reproduction  costs  reduce  the  long-run  population  level  and  drive  down  labor  incomes  relative  to  assets;  the  long-  

run  mass  of  firms  shrinks,  and  the  reallocation  of  workers  to  vertical  R&D  boosts  interest  rates  in  the  long  run.  The  welfare  

consequences  of  such  shocks  are  neither  clear-cut  nor  symmetric  across  generations:  the  next  subsection  tackles  this  point  

by  studying  both  the  transitional  and  the  long-run  effects  of  large  unexpected  permanent  shocks.  

6.3.  Demographic  shocks,  transition  and  welfare  

Consider  two  independent  scenarios  in  which  ‘reduced  immigration’  or  ‘increased  reproduction  cost’  bear  similar  quan-  

titative  effects  on  steady-state  population.  The  first  scenario  assumes  a  migration  shock  whereby  the  net  inflows  M̄  fall  

permanently  by  25%  of  the  baseline  value,  from  84,009  to  63,006,  which  may  be  interpreted  as  an  ‘immigration  barrier’  

set  by  a  policymaker.  The  second  scenario  assumes  a  child-cost  shock  whereby  γ permanently  increases  by  6%  of  its  base-  

line  value.  The  reference  time  zero  is  the  year  2015,  and  the  shocks  hit  the  economy  from  year  2020  onwards.  Panel  A  in  

Table  3  provides  a  summary  comparison  in  terms  of  initial,  short-to-medium-run  and  steady-state  effects  on  selected  vari-  

ables.  Fig.  2  presents  a  detailed  analysis  of  the  transitional  paths  generated  by  the  two  shocks  over  a  century-long  horizon.  

Importantly,  the  impact  of  both  shocks  on  growth-related  variables  in  the  short-to-medium  run  is  reversed  with  respect  to  

the  steady  state  outcomes:  although  wealth  creation  and  interest  rates  are  higher  in  the  very  long  run,  the  transition  fea-  

tures  several  decades  of  slower  growth  and  low  rates  of  return.  The  reason  is  that  the  decline  in  population  creates  net  exit  

of  firms  from  the  market  during  the  whole  transition,  ˙  N  /N  <  0  ,  which  reduces  the  overall  rate  of  wealth  creation,  ˙  A  /A,  in  

the  short-to-medium  run.  During  the  transition,  labor  is  reallocated  from  entry  to  production  activities,  interest  rates  de-  

cline  and  aggregate  consumption  falls  substantially  even  in  the  medium  run.  26  These  ‘reversed  growth  effects’  bear  specific  

consequences  for  intergenerational  welfare:  Cohorts  that  happen  to  be  alive  when  the  shocks  occur  may  experience  net  

welfare  losses.  This  is  particularly  relevant  for  newborn  generations  since  they  heavily  rely  on  labor  incomes  and  experience  

a  productivity  slowdown  that  reduces  real  wages.  We  can  verify  this  conclusion  by  means  of  a  cohort-specific  utility  index,  

EP W j  ≡
∫  j+  (  1  /δ)  

j  

[
ln  c  j  (  t  )  +  ψ  ln  b  j  (  t  )  

]
· e  −ρ(  t− j  )  dt,  (51)  

26  The  smaller  drop  and  the  subsequent  recovery  that  we  observe  in  consumption  per  capita  during  this  phase  is  actually  due  to  the  population  decline  
rather  than  to  faster  output  growth.  The  different  paths  of  aggregate  and  per  capita  consumption  are  shown  in  the  bottom  panel  of  Figure  2.  
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Fig.  2.  Transitional  dynamics  generated  by  exogenous  increases  in  reproduction  costs  and  by  reduced  immigration.  

which  represents  the  ex-post  welfare  level  enjoyed  by  a  typical  member  of  cohort  j  whose  actual  lifetime  exactly  coin-  

cides  with  life  expectancy  1/  δ.  Table  3  ,  panel  B,  reports  the  values  of  EPW  j  for  ten  different  cohorts  born  in  the  years  

j  =  2025  ,  2035  ,  .  .  .  ,  2115  ,  and  compares  their  welfare  levels  in  the  three  cases  of  interest:  the  ‘no  shock’  scenario  in  which  

the  economy  remains  in  the  baseline  steady  state  forever,  the  migration  shock,  and  the  child-cost  shock.  To  check  sensitivity,  

we  repeat  this  exercise  under  alternative  values  of  parameter  χ ,  which  determines  the  relative  contribution  of  the  firms’  
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net  entry  rate  to  the  overall  rate  of  wealth  creation.  27  We  set  χ =  (1  .  025  ,  1  .  05  ,  1  .  10)  ,  where  1.05  is  our  benchmark,  assum-  

ing  the  same  initial  stock  of  knowledge  in  all  scenarios.  All  the  cohorts  born  within  a  century  after  the  child-cost  shock  

suffer  net  welfare  losses  in  the  cases  χ =  (1  .  05  ,  1  .  10)  .  Assuming  χ =  1  .  025  ,  we  observe  net  welfare  gains  for  the  cohorts  

born  after  2100.  The  general,  robust  conclusion  is  that  while  both  these  shocks  may  raise  economic  growth  in  the  very  long  

run,  they  also  permanently  reduce  the  mass  of  firms  and  the  wage  bill  relative  to  assets,  generating  decades  of  stagnating  

growth,  low  interest  rates  and  wages  and,  hence,  net  welfare  losses  for  a  large  set  of  cohorts.  

7.  Conclusion  

Endogenous  interactions  between  fertility  and  productivity  growth  can  explain  why  and  how  demography  matters  for  

macroeconomic  performance  even  in  the  long  run.  In  our  model  with  disconnected  generations,  financial  wealth  dilution  

and  the  wage  response  to  population  size  stabilize  population  despite  positive  output  growth,  and  demographic  shocks  bear  

first-order  effects  on  consumption,  the  functional  income  distribution  and  welfare.  In  particular,  barriers  to  immigration  

or  higher  reproduction  costs  reduce  the  number  of  firms  in  steady  state,  raise  output  growth  in  the  very  long  run  but  

reduce  the  welfare  of  many  generations  by  causing  permanent  reductions  in  labor  income  shares  as  well  as  prolonged  

stagnation  during  the  transition.  Our  results  suggest  a  number  of  critical  questions  for  applied  research.  Measuring  the  

impact  of  identifiable  demographic  shocks  on  productivity  growth  and  on  factor  income  shares  is  challenging  but  is  clearly  

a  central  issue  from  the  perspective  of  both  positive  analysis  and  policymaking.  We  are  unaware  of  any  studies  testing,  

at  the  macro  level,  the  quantitative  relevance  of  wealth  dilution  effects  on  consumption  and  asset  prices:  this  is  a  novel  

insight  of  our  model  that  deserves  empirical  scrutiny.  Also,  our  analysis  suggest  that  the  long-run  effects  of  public  policies  

related  to  demography  – e.g.,  welfare  systems,  child-cost  subsidies,  immigration  policies  – depend  on  endogenous  fertility  

responses  that  are  typically  overlooked  in  policy  evaluation  studies.  Tackling  these  issues  is  our  main  suggestion  for  future  

research.  
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