
Market Size, Innovation, and the Economic
Effects of an Epidemic*

Domenico Ferraro
Arizona State University

Pietro F. Peretto
Duke University

April 10, 2023

Abstract

We develop a framework for the analysis of the economic effects of an epidemic that
incorporates firm-specific innovation and endogenous entry. Transition dynamics is
characterized by two differential equations describing the evolution of the mass of
susceptible in the population and the ratio of the population to the mass of firms.
An epidemic propagates through the economy via changes in market size that dis-
turb incentives to enter the market and to undertake innovative activity. We evaluate
state-dependent interventions involving policy rules based on tracking susceptible or
infected. Simple policy rules are announced at the time of the outbreak and anchors
private sector’s expectations about the time path of the intervention, including the
end date. Welfare gains or losses relative to the do-nothing scenario are computed
accounting for transition dynamics.

JEL Classification: E23; E24; E62; O30; O40.
Keywords: Epidemic; Growth; Productivity; Market structure; Entry; Innovation.

*Ferraro: Department of Economics, W.P. Carey School of Business, Arizona State University, PO
Box 879801, Tempe, AZ 85287-9801, United States (e-mail: domenico.ferraro@asu.edu); Peretto: De-
partment of Economics, Duke University, Box 90097, Durham, NC 27708-0097, United States (e-mail:
peretto@econ.duke.edu). First draft: September 17, 2020.

mailto:domenico.ferraro@asu.edu
mailto:peretto@econ.duke.edu


1 Introduction

The spread of infectious diseases (“epidemics”) has ravaged humanity throughout its

history, often leaving indelible scars. The Spanish Flu of 1918-20 and the most recent

COVID-19 are only two examples of a long list of severe epidemics involving substantial

disruptions in economy activity. Evaluating the economic consequences of an epidemic,

including the trade-offs involved in public interventions, requires a structural model of

the economy that allows for counterfactual analysis under alternative policy scenarios.

A large literature tackles these questions in the context of general equilibrium mod-

els in which an epidemic, and the policy response to it, affects economy activity through

changes in market hours worked, consumption, and physical capital investment. Bloom,

Kuhn and Prettner (2022) provide a timely and thorough review of this literature and

show that under the stress of COVID-19 it has recently undergone a revival and grown

massively. The typical paper augments an economic model with a canonical epidemio-

logical model of an infectious disease and shows that the immediate effect of an epidemic

is a reduction in the amount of labor services supplied to the market, akin to a negative

“labor supply shock,” which can be amplified by, e.g., a lockdown policy. How and to

what extent this initial epidemic shock propagates through the economy depends on the

specific features of the economic environment and mechanisms at play (see Section 2 for

a literature review).

The objective of this paper is to build a tractable, dynamic general equilibrium model

to address important, yet overlooked, questions relating the spread of an epidemic to

market structure, innovation, and long-run productivity growth. To achieve this goal, we

integrate a standard Susceptible-Infected-Recovered-Deceased (SIRD) model of infectious

diseases into a growth model featuring variety expansion and firm-specific cost-reducing

innovation (Peretto and Connolly, 2007). Endogenous market structure propagates the

epidemic shock, leading to a very persistent response of the growth rate, featuring a sharp

initial drop followed by a prolonged hump-shaped mean-reversion to the initial value

that features overshooting. (The long-run growth rate remains unchanged because we

work with a growth model without the strong scale effect.)

Methodologically, we propose the concept of “infection function” to reduce the system

describing the equilibrium dynamics of the economy, in and out of the steady state, to two

differential equations. Solving for the equilibrium of our growth model is easy despite

the highly nonlinear structure of the dynamical system. Epidemiological models feature

a precise relationship between the fraction of infected in the population and the fraction
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of susceptible. In most cases, such relationship can be characterized as a trajectory in 2D

space. If one can solve for such trajectory, one obtains a function representing the infection

rate as determined by the fraction of susceptible. To our knowledge, epidemiologists do

not refer to this object as the “infection function” but, on reflection, we noted that the

concept is very useful in integrating epidemic dynamics in dynamic economic models

because it allows one to characterize the law of motion of the epidemic as a shock with a

precise and transparent dynamic structure.

In our model, the key to the propagation of the epidemic shock is the market size

effect. The epidemic manifests itself as a shock to employment and thereby to the size of

the market in which firms operate. The hump-shaped dynamics in the fraction of infected

in the population due to the spread of the disease translates into U-shaped dynamics in

the amount of labor services available for production. This leads to a drop in per capita

consumption expenditure, which initiates transition dynamics fueled by changes in the

incentives of entrepreneurs to enter the market with new goods and the incentives of

incumbents firms to invest in innovation. More specifically, the model features highly

non-linear transition dynamics: depending on the magnitude of the fall in expenditure,

the economy may experience a prolonged period of net firm exit with shutdown of firm-

specific innovation. In this extreme scenario, growth in total factor productivity (TFP)

does not only slow down, but is negative for a while, implying a temporary fall in the

level of TFP. In fact, if one allows for the possibility of death as in the standard SIRD case,

and so a permanent reduction in population, the loss of product variety is permanent

because the new steady-state associated with a smaller population size exhibits fewer

firms and so less product variety.1

As a proof of concept for our framework, we use the model to study policy interven-

tions that operate through a reduction in the transmission rate of the epidemic, as well as

a direct reduction in the labor input, mimicking the effect of a mandated lockdown. Such

interventions are state-dependent and involve policy rules based on tracking the fraction

of susceptible or infected in the population, akin to the Taylor’s rule for monetary policy.

Policy rules are announced at the time of the outbreak and anchor private sector’s expec-

tations about the time path and the end date of the intervention. We restrict our attention

to simple rules to retain analytical tractability, and compute welfare gains/losses relative

1Because of the sterilization of the strong scale effect, the steady-state growth rate of the economy is
invariant to population size. By contrast, the steady-state levels of per capita output, TFP, and the mass
of firms do depend on population size. Notably, a smaller population size relative to the no-epidemic
counterfactual, would permanently reduce the mass of firms and thereby product variety, with a permanent
negative effect on per capita output and aggregate productivity.
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to a do-nothing scenario, accounting for transition dynamics.

Numerical simulations illustrate a sharp policy trade-off. Slowing down contagion

amounts to engineering a deeper fall in economic activity relative to the do-nothing sce-

nario. The interventions that we study generally induce a persistent slowdown in aggre-

gate productivity growth. Depending on the severity and duration of the intervention,

transition dynamics may feature prolonged periods of net exit with negative TFP growth.

The paper is structured as follows. Section 2 discusses the related literature. In Section

3, we present the basic growth model, into which we embed the SIRD epidemiological

model. In Sections 4 and 5, we analyze the equilibrium dynamics of the model pre- and

post-infection. Section 6 discusses the effects of policy intervention. Section 7 presents

numerical results. Section 8 concludes. Appendices A, B, and C contain details on model’s

derivations, parametrization, and additional results.

2 Related Literature

This paper adds to the large literature studying the economic effects of infectious disease.

This literature, recently reviewed by Bloom, Kuhn and Prettner (2022), predates COVID-

19 and identifies several pathways through which diseases and the associated health pol-

icy interventions affect the economy. The unexpected break out of COVID-19 has spurred

a massive revival of research along such lines and expanded our understanding of the

mechanisms at play.

Goenka, Liu and Nguyen (2014) is an example of an early (pre-COVID-19) contri-

bution that integrates epidemiological dynamics into a neoclassical growth model with

investment in health which affects the recovery rate from the disease. It establishes that a

disease-free steady state can coexists with a disease-endemic steady state in which health

expenditure is either positive or zero depending on parameter values. Goenka and Liu

(2020) extend this framework by allowing for investment in human capital. A disease-free

balanced growth path with sustained economic growth coexists with multiple disease-

endemic balanced growth paths in which the economy either grows at a slower rate or

remains stuck in a poverty trap without human capital accumulation. Greenwood et al.

(2019) quantitatively evaluate the economic impact of the HIV/AIDS epidemic in Malawi

using a general equilibrium search model of sexual behavior. Bloom, Kuhn and Prettner

(2022) discuss several more examples of pre-COVID-19 contributions. A recent empirical

paper that in spirit is related to ours is Madsen, Robertson and Ye (2022). It studies the ex-
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tent to which the behavioral response of private agents to outbreaks of the bubonic plague

over three centuries caused disruptions of trade and breakdowns of market integration.

It thus focuses on a Smithian concept of “extent of the market” as the main transmission

channel for the propagation of the effects of the disease throughout the economy.

Focusing on COVID-19, the number of contributions studying different aspects of that

epidemic is growing at a surprisingly fast rate.2 Early contributions by Eichenbaum, Re-

belo and Trabandt (2020a), Eichenbaum, Rebelo and Trabandt (2020b), and Eichenbaum,

Rebelo and Trabandt (2020c) study the economic consequences of COVID-19, testing and

quarantining policies in the context of a neoclassical growth model (with/without mo-

nopolistic competition) and of a New Keynesian model with sticky prices. The main idea

in these papers is that individual consumption and work decisions affect the transmission

rate of the epidemic, creating an infection externality. The competitive equilibrium is thus

not Pareto optimal. Testing and quarantining can improve upon the laissez-faire outcome.

Relative to the existing literature, we ask a different question and study a new mech-

anism in which market structure and transition dynamics take center stage. Notably,

transition dynamics of economic variables is considerably slower than epidemiological

dynamics. Through changes in the fraction of infected in the population, an epidemic

leads to a fall in expenditure which shrinks the size of the market served by producers.

This market-size effect reduces incentives to entry and incumbents’ cost-reducing activ-

ity, leading to the prolonged hump-shaped response of the growth rate described above.

The source of this shape is the internal propagation mechanism at play in the economic

block of the model, which yields that epidemiological and economic variables move at

rather different speed. Further, we propose state-dependent intervention rules based on

tracking the susceptible or the infected in the population. Such rules are an essential

part of the definition of equilibrium and naturally allow for calculation of their effects on

welfare. An aspect of our contribution worth stressing is that judging by the thorough re-

view by Bloom, Kuhn and Prettner (2022) the literature has not explored the mechanism

that we study (see especially Section 5, which lists several "key economic pathways" but

never mentions market size and innovation and the associated long-run growth dynam-

ics). Our contribution is thus to extend the study of the economic effects of infectious

diseases along lines hitherto neglected.

2A partial list includes: Acemoglu et al. (2020), Alvarez, Argente and Lippi (2020), Atkeson (2020),
Barro, Ursua and Weng (2020), Bethune and Korinek (2020), Bognanni et al. (2020), Brotherhood et al.
(2020), Farboodi, Jarosch and Shimer (2020), Glover et al. (2020), Jones, Philippon and Venkateswaran
(2020), Krueger, Uhlig and Xie (2020). See https://www.nber.org/wp_covid19.html and https://voxeu.
org/pages/covid-19-page for an extensive list of NBER/CEPR working papers on COVID-related research.
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3 Environment

To streamline exposition, we keep the description of the environment for the benchmark

model without infection to a minimum. We refer the reader to Appendix A for further

details.

Preferences and Budget Set. The economy is populated by a representative household

with L(t) infinitely-lived members, each endowed with one unit of time per period. Labor

supply is inelastic, so that household’s labor supply equal L(t) at all times. Preferences

are described by

U(t) =
∫ ∞

t
e−ρ(s−t)L (s) log [C(s)] ds, ρ > 0, (1)

where C =
[∫ N

0 (Xi/L)
ϵ−1

ϵ di
] ϵ

ϵ−1
is a CES aggregator of differentiated consumer goods

Xi, with elasticity of substitution ϵ > 1, and N is the mass of consumer goods available

for purchase. The budget constraint is Ȧ = rA + wL − Y, where A is assets yielding a

rate of return r, w is the wage, Y =
∫ N

0 piXidi = pCC is consumption expenditures, and

pC =
(∫ N

0 p1−ϵ
i di

) 1
1−ϵ is a Dixit-Stiglitz price index.

The household’s maximization problem yields a standard Euler equation,

r = rA ≡ ρ +
Ẏ
Y
− L̇

L
, (2)

which gives the household’s reservation rate of return on savings, rA, and a downward-

sloping demand for differentiated goods,

Xi = Y
p−ϵ

i∫ N
0 p1−ϵ

j dj
. (3)

Production and Innovation. Firm i produces Xi units of the differentiated good using

LXi units of labor and the technology Xi = Zθ
i
(

LXi − ϕ
)
, with 0 < θ < 1, and ϕ > 0, where

Zi is the firm-specific stock of knowledge. Firm-specific knowledge evolves according to

Żi = αKLσ
Zi

L1−σ
Z , with α > 0, and 0 < σ ≤ 1, where LZi is R&D labor, K = (1/N)

∫ N
0 Zjdj,

and LZ = (1/N)
∫ N

0 LZj dj. An incumbent firm i chooses the paths of the unit price pi and
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R&D labor LZi to maximize the value of the firm,

Vi (t) =
∫ ∞

t
e−
∫ s

t [r(v)+δ]vΠi(s)ds, (4)

where Πi ≡ (pi − wZ−θ
i )Xi − wϕ − wLZi is profits and δ > 0 is a “death shock.”

An entrant pays a sunk cost βY/N = wLNi and creates value Vi. Hence, free-entry

implies Vi = βY/N. One can think of the entry process in terms of an underlying entry

technology (as typically done in literature):

Ṅ =

(
w
βY

N
)

LN − δN. (5)

4 Pre-Infection Equilibrium Dynamics

We now turn to the general equilibrium of the benchmark model without infection. As

the equilibrium of the economy is symmetric, henceforth, we drop the subscript i such

that, for example, X = Xi indicates both firm-level and average production of consumer

goods. Labor is the numéraire, i.e., we set w ≡ 1. The value of the household’s portfolio

equals the value of securities issued by firms, A = NV. (Note that when free entry holds,

NV = βY, otherwise NV < βY.) Assets market equilibrium requires rates of return

equalization, i.e., r = rA = rZ = rN, where rZ and rN are the rates of return to cost

reduction and to entry,

r = rZ ≡ α

[
Yσθ(ϵ − 1)

ϵN
− w

LZ

N

]
+

ẇ
w
− δ, (6)

r = rN ≡ 1
β

[
1
ϵ
− N

Y

(
ϕ + w

LZ

N

)]
+

Ẏ
Y
− Ṅ

N
− δ. (7)

Let y ≡ Y/L denote per capita expenditure, and x ≡ L/N the ratio of population to

the mass of firms. When free entry holds, expenditures per capita y and rate of return r

are constant and equal to

y = y∗ ≡ 1
1 − βρ

and r = ρ.
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When free entry does not hold, instead,

y =
ϵ

ϵ − 1

(
1 − ϕ

x

)
and r = ρ +

ẏ
y

.

Pre-Infection Transition Dynamics. Transition dynamics of the pre-infection economy

is characterized by one differential equation for the population-to-firms ratio, x:

ẋ =


δx if ϕ ≤ x ≤ xN
1−βρ

β ϕ −
(

1
βϵ − ρ − δ

)
x if xN < x ≤ xZ

1−βρ
β

(
ϕ − ρ+δ

α

)
−
[

1−σθ(ϵ−1)
βϵ − ρ − δ

]
x if x > xZ

, (8)

where the thresholds xN and xZ are defined as

xN ≡ (1 − βρ) ϵϕ

1 − ρβϵ
and xZ ≡ (1 − βρ) (ρ + δ)

σαθ ϵ−1
ϵ

. (9)

As illustrated by Figure 1, the transition dynamics features three regions: (i) net firms’

exit with zero R&D labor (ϕ ≤ x ≤ xN); (ii) gross firms’ entry with zero R&D labor

(xN < x ≤ xZ); (iii) gross firms’ entry with positive R&D labor (x > xZ). On the left of

the threshold xN, firm size x ≤ xN is “too small,” implying net firms’ exit. As a result, the

population-to-firms ratio grows at the rate δ of firms’ exit, which contributes to increase

profitability. As firm size x enters the region xN < x ≤ xZ, new firms enter, which slows

down the growth rate of firm size. In this region, there is no accumulation of knowledge.

Finally, on the right of the threshold xZ, when average firm size becomes “large enough,”

firm entry and knowledge accumulation coexist.

Using the equation for the rate of return to cost reduction (6), we obtain the growth

rate of the stock of knowledge:

z ≡ Ż
Z

= α
LZ

N
=

 0 if x ≤ xZ

x · yασθ
(

ϵ−1
ϵ

)
− r − δ if x > xZ

. (10)

Finally, using the Euler equation (2), and the rate of return to entry (7), we obtain the

growth rate of the mass of firms,

n ≡ Ṅ
N

=
1
β

[
1
ϵ
− 1

xy

(
ϕ +

LZ

N

)]
− ρ +

L̇
L
− δ. (11)
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Pre-Infection Balanced Growth Path. Under the following conditions on parameters,

αϕ > ρ + δ, (12)

(ρ + δ) β +
σθ (ϵ − 1)

ϵ
<

1
ϵ
< (ρ + δ) β +

(
αϕ

ρ + δ

)
σθ (ϵ − 1)

ϵ
, (13)

the model exhibits a balance growth path (BGP) with endogenous growth, along which

firm size, x, firm knowledge growth, z ≡ Ż/Z, and the mass of firms, N, take the follow-

ing steady-state values:

x∗ =
(1 − βρ) ϵ

(
ϕ − ρ+δ

α

)
1 − σθ (ϵ − 1)− (ρ + δ) βϵ

, (14)

z∗ =
ϕα − (ρ + δ)

1 − σθ (ϵ − 1)− (ρ + δ) βϵ
θ (ϵ − 1)− (ρ + δ) , (15)

N∗ =

1 − σθ (ϵ − 1)− (ρ + δ) βϵ

ϵ
(

ϕ − ρ+δ
α

)
(1 − βρ)

 L. (16)

Note that along a BGP, x∗ and z∗ are independent of the population level L. This is an

important feature of the model that comes from the property that the mass of firms N∗ is

proportional to L. Because of this property, the model does not suffer from the so-called

“scale effect,” at work in the first-generation models of endogenous growth à la Romer

(1990). We stress that the proportionality between mass of firms and the population level

is a BGP phenomenon, which breaks when the economy is in transition dynamics.

Given the formula for the price index pC =
[∫ N

0 p1−ϵ
i di

] 1
1−ϵ , along a BGP, real per

capita consumption expenditure is

y∗

pC
=

y∗

c∗
· Zθ N

1
ϵ−1 , (17)

where c∗ = ϵ
ϵ−1 · w captures “static” drivers of the price index, i.e., those unrelated to

endogenous technological change. (Recall the normalization w = 1.)

5 Post-Infection Equilibrium Dynamics

In this section, we provide a cursory description of the Susceptible-Infected-Recovered-

Deceased (SIRD) epidemiological model and integrate it into the basic growth model we
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Figure 1: Pre-Infection Equilibrium Dynamics

ẋ

xx*x x
N Z

Notes: The figure depicts the equilibrium dynamics of the population-to-firms ratio as implied by
the piece-wise differential equation (8), where the thresholds xN and xZ are as defined in (9), and
the steady-state value x∗ is as in (14).

presented above.
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5.1 SIRD Model with Vital Dynamics

In its general formulation, the SIRD model with births and non-disease deaths amounts

to a high-dimensional dynamical system:

Ṡ = ξBL − ξMS − ξS IS
L

, (18)

İ =
ξS IS

L
− ξR I − ξM I − ξD I, (19)

Ṙ = ξR I − ξMR, (20)

Ḋ = ξD I, (21)

L̇ = ξBL − ξM (S + I + R)− ξD I, (22)

where ξB is the birth rate (all newborn are S), ξM is the non-disease death rate, ξS is the

transmission rate, ξR is the recovery rate, ξD is the fatality rate, and S, I, R and D are the

mass of susceptible, infected, recovered, and deceased, respectively.

One can conveniently rewrite the dynamical system above in terms of the rates s ≡
S/L and ı ≡ I/L, where L = S + I + R, as

ṡ
s
= ξB

(
1
s
− 1
)
− (ξS − ξD) ı, (23)

ı̇
ı
= ξSs − ξR − ξB − ξD (1 − ı) , (24)

L̇
L
= ξB − ξM − ξDı, (25)

where equations (23)-(24) describe disease dynamics, and equation (25) describes the im-

plied population dynamics.

It is important to note that epidemiologists have studied the dynamical system (18)-

(22), and its lower-dimensional version (23)-(25), thoroughly and rigorously (see, e.g.,

Hethcote, 2000; Brauer, 2008). Widely used simplifying assumptions yield a dynamical

system that is easy to incorporate in economic models. For instance, recent applications

of the epidemiological framework to economics typically set ξB = ξM = 0. This is the

case known as “no vital dynamics” that is usually rationalized with the relatively fast

dynamics of epidemics, which typically play out over a time-horizon of several weeks.

Infection Function. Figures 2a-2b depict the phase diagrams for the SIRD and SIR model,

respectively. In each case, for the initial state (s0, ı0), with ı0 ≈ 0 and s0 ≈ 1, there exists a
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s

1s∞ s

.

i=0
.

trajectory 
= 

infection function i(s)

herd

(a) SIRD model

s

s

1s∞ sherd

.
i=0
.

trajectory 
= 

infection function i(s)

(b) SIR model

Notes: The figures shows the phase diagram for the SIRD model (top panel) and for the SIR model
(bottom panel).

Figure 2: Epidemiological Models of Infectious Diseases

hump-shaped trajectory ı (s) that we interpret as the “infection function.” Next, we lever-

age this concept of infection function to integrate epidemiology into an economic model.
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We use ı(s) to compress the epidemic model to one equation:

ṡ
s
= ξB

(
1
s
− 1
)
− (ξS − ξD) ı (s) . (26)

In macroeconomics jargon, equation (26) represents the law of motion of the “epidemic

shock.”

Next, to solve for ı(s), we take the ratio of equations (23) and (24), which gives the

partial differential equation (PDE),

dı
ds

=
ξSs − ξR − ξD − ξB + ξDı

ξB

(
1
s − 1

)
− (ξS − ξD) ı

( ı
s

)
. (27)

The existence, meaning and, in some cases, solution of this PDE is well-known in the

epidemiological literature (see, e.g., Brauer, 2008). It turns out to be an extremely useful

device to translate the epidemiology model into a tractable component of an integrated

epidemic-economy model.

Infection function: SIRD. For ξB = ξM = 0, the PDE (27) reduces to the d’Alembert’s

equation

dı
ds

=
1
s

ξR + ξD(1 − ı)
ξS − ξD

− ξS

ξS − ξD
. (28)

Solving the PDE (28) with the boundary conditions ı (0) = ı0 and s (0) = 1 − ı0 ≡ s0

yields the infection function

ı (s) =
ξR

ξD

1 −
(

s
s0

)− ξD
ξS−ξD

+ 1 − s, (29)

which is a hump-shaped function with s∞ ≡ arg solve {ı (s) = 0} > 0. Figure 3a depicts

the infection function (29) for the SIRD model.3

Infection function: SIR. For ξB = ξM = ξD = 0 (i.e., constant population), the PDE (27)

reduces to

dı
ds

=
1

R0S
− 1, R0 ≡ ξS

ξR
. (30)

3In the SIRD case, the epidemic shock that hits the economy is ṡ
s = − (ξS − ξD) ı (s).
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s

i

1s∞0 sherd

(a) SIRD model

s

i

1s∞ 1/R00

(b) SIR model

Notes: The figures depicts the infection function for the SIRD model (top panel) and for the SIR
model (bottom panel).

Figure 3: Infection Function

Solving the PDE (30) with boundary conditions ı (0) = ı0 and s (0) = 1− ı0 ≡ s0 yields

the infection function

ı (s) =
1

R0
log
(

s
s0

)
+ 1 − s, (31)
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which is a hump-shaped function with s∞ ≡ arg solve {ı (s) = 0} > 0. Figure 3b depicts

the infection function (31) for the SIR model.4

5.2 Embedding the SIRD Model into the Growth Model

We now embed the SIRD model without vital dynamics (i.e., ξB = ξM = 0) into the basic

growth model. First, in the SIRD case with ξD > 0, the epidemic permanently removes

people from the economy leading to negative population growth:

L̇
L
= −ξDı (s) . (32)

Second, the disease temporarily removes people from the labor force, akin to a negative

“labor supply shock,”

LX + LZ + LN︸ ︷︷ ︸
labor demand

(allocation)

= [1 − ı (s)] L.︸ ︷︷ ︸
labor supply

(participation)

(33)

Third, through the mortality rate ξD, the epidemic directly affects the discount rate of

utility flows:

L (t) u(t) = e−
∫ t

0 ξDı(v)dv log C. (34)

Akin to the Yaari-Blanchard perpetual youth model, one can interpret discounting through

the term e−
∫ t

0 ξDı(v)dv as an individual life expectancy effect: the disease can kill me, not

just my siblings.

5.2.1 Expenditures and Interest Rates

Expenditures. Overall, per capita consumption expenditure is decreasing in the fraction

of infected in the population, ı. In general equilibrium, an epidemic manifests itself on the

demand side of the economy, too, as a reduction in market size. Through this channel,

it alters firms’ incentives to enter the market and incumbents’ allocation of R&D labor,

initiating transition dynamics.

4In the SIR case, the epidemic shock that hits the economy is ṡ/s = −ξSı (s).
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When free entry does not hold, per capita expenditure is

y (s, x) =
ϵ

ϵ − 1

(
1 − ϕ

x

)
[1 − ı (s)] , (35)

which is U-shaped in s since the infection function ı(s) is humped-shaped in the fraction

of susceptible in population, s. On the other hand, when free entry holds, per capita

expenditure is

y (s) =
1 − ı (s)

1 − [ρ + ξDı (s)] β
. (36)

Assuming 1 > β (ρ + ξD) to guarantee existence for ı ∈ [0, 1], it implies dy/dı < 0. Again,

y is U-shaped in s since ı (s) is hump-shaped in s. Importantly, as ı goes from 0 to ı0 > 0,

an outbreak yields a fall in y at t = 0. As s falls throughout, y initially keeps falling, turns

around at the peak of epidemic and returns to y∗ from below.

Interest Rates. Log-differentiating the expression for y yields

ẏ
y
= − 1 − (ρ + ξD) β

1 − [ρ + ξDı (s)] β
· ı̇(s)

1 − ı(s)
. (37)

Next, using the Euler equation, and the expression for ı̇ gives an expression for the

interest rate:

r (s) = ρ − 1 − (ρ + ξD) β

1 − [ρ + ξDı (s)] β︸ ︷︷ ︸
increasing in ı

· ı (s)
1 − ı (s)︸ ︷︷ ︸

increasing in ı

· [ξSs − ξR − ξD + ξDı (s)]︸ ︷︷ ︸
increasing in ı

. (38)

A few remarks are in order here. (i) The interest rate is below ρ and decreasing in ı

when the term in square brackets on the right-hand side [·] ≡ [ξSs − ξR − ξD + ξDı (s)]

is larger than zero; and (ii) it is above ρ and increasing in ı when [·] < 0. The fraction of

infected ı (s) is decreasing in s for [·] > 0 and increasing in s when [·] < 0. As a result, the

interest rate r (s) is first hump- and then U-shaped in the fraction of susceptible, s. Since

initially [·] > 0, the outbreak yields a fall in r at t = 0. As s falls throughout, the interest

rate continues falling, it turns around at the peak of the epidemic, overshoots and finally

returns to ρ from above.

To visualize some of the qualitative features of the transition dynamics, Figures 4 and

5 show per capita expenditures and interest rate dynamics as a function of the fraction of
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susceptible and time, respectively.

s

expenditure, y

y*

1s
∞

y

sherd

(a) Per capita expenditure as function of susceptible: y(s)

s

interest rate, r

r*

1s∞

r

sherd

(b) Interest rate as function of susceptible: r(s)

Figure 4: Expenditure and Interest Rate as Function of Susceptible: A Visualization

5.2.2 Market Structure, Productivity, and Welfare

Using the expressions for y(s) and r(s) in equations (36) and (38), respectively, the general-

equilibrium dynamics reduces to a tractable system of two differential equations: (i) the

first equation describes the evolution over time of the economic state variable of the
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expenditure, y

y*

y

(a) Per capita expenditure over time: y(t)

time

interest rate, r

r*

r

(b) Interest rate over time: r(t)

Figure 5: Expenditure and Interest Rate as Function of Time: A Visualization

model, i.e. the ratio of the population to the mass of firms, x ≡ L/N; (ii) the second

equation describes the evolution of the epidemiological state variable, i.e. the fraction of

susceptible in the population, s.
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Outbreak. At t = 0, per capita expenditure y falls from its steady-state value y∗ to the

lower value associated with ı(s0) or ı0 for short:

y (s0) =
1 − ı0

1 − (ρ + ξDı0) β
< y∗. (39)

Such a drop in expenditure initiates transition dynamics, during which the economic state

variable follows

ẋ
x
= −ξDı − n, (40)

with initial condition x0 = L0/N0 ≥ 0 and n ≡ Ṅ/N indicating the growth rate of the

mass of firms. The dynamical system features three regions that differ qualitatively in

terms of market structure and R&D labor allocations.

Region 1: Net Exit with R&D Shutdown. In the net exit region, expenditure falls so

much that the economy hits two corners with no firm-level innovation and no firm entry,

i.e., LZ = 0 and LN = 0, which yields n = −δ ≤ 0. The boundary of this region in the

x-dimension is determined by the following condition:

1 − [ρ + ξDı (s)] β

1 − ı (s)
ϵϕ ≤ x ≤ 1 − [ρ + ξDı (s)] β

1
ϵ − [ρ + ξDı (s)] β

· ϕ

1 − ı (s)
.

In this region, the dynamical system is

ṡ
s
= − (ξS + ξD) ı (s) , (41)

ẋ
x
= δ − ξDı (s) . (42)

Region 2: Gross Entry with R&D Shutdown. The boundary of this region in the x-

dimension is determined by the following condition:

1 − [ρ + ξDı (s)] β
1
ϵ − [ρ + ξDı (s)] β

· ϕ

1 − ı (s)
< x ≤ r (s) + δ

σαθ ϵ−1
ϵ

· 1 − [ρ + ξDı (s)] β

1 − ı (s)
. (43)
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In this region, the dynamical system is

ṡ
s
= − (ξS + ξD) ı (s) , (44)

ẋ
x
=

ϕ

βy (s)
· 1

x
− 1

βϵ
+ ρ + δ. (45)

The underlying net entry process follows n = −ẋ/x − ξDı (s).

Region 3: Gross Entry with Active R&D. Finally, the boundary of the region featuring

gross entry with active R&D is determined by the following inequality:

x >
r (s) + δ

σαθ ϵ−1
ϵ

· 1 − [ρ + ξDı (s)] β

1 − ı (s)
. (46)

In this region, the dynamical system is

ṡ
s
= − (ξS + ξD) ı (s) , (47)

ẋ
x
=

1
βy (s)

(
ϕ − r (s) + δ

α

)
1
x
− 1 − σθ (ϵ − 1)

βϵ
+ ρ + δ. (48)

The underlying net entry process follows n = −ẋ/x − ξDı (s) and knowledge growth

is positive and equal to z = xασθ ϵ−1
ϵ y (s)− r (s)− δ > 0.

R&D Labor Allocation and TFP. To provide some insight into the transition dynamics

implied by the model, Figure 6 illustrates two potential trajectories in the (s, x) space for

the case of next exit. The population-to-firms ratio, x, grows initially because of net exit

due to falling profitability caused by falling expenditure. Both y and r jump down and

initially follow U-shaped paths. The net effect can be a fall in firm knowledge growth,

z. Overall, the transition dynamics features an initial deceleration of firm productivity

growth with reversion to the long-run level. Possibly, a phase with zero firm growth.5

Such a temporary deceleration delivers a permanent TFP loss relative to the baseline

no-disease path. Note also that period of net exit means period of falling TFP. This is a

real loss, not just relative to the no-disease baseline (i.e., a “lost opportunity” loss). In

the SIRD case, the transition features overall net exit because the new steady state exhibit

5Formally, the constant population-to-firms ratio ẋ ≥ 0 locus is (i) x ≤ ϵϕ
1−(ρ+δ)βϵ

· 1−[ρ+ξD ı(s)]β
1−ı(s) for

Region 2 and (ii) x ≤
ϵ
(

ϕ− r(s)+δ
α

)
1−σθ(ϵ−1)−(ρ+δ)βϵ

· 1−[ρ+ξD ı(s)]β
1−ı(s) for Region 3.
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Figure 6: Post-infection Dynamics

s

x

1

x*

s∞ s herd

(1,x*)

ẋ=0

Case a

Case b

Notes: The figure depicts the phase diagram for the post-infection economy. On the x-axis, s
denotes the fraction of susceptible in the population; on the y-axis, x denotes the ratio of the
population to the mass of firms.

fewer firms, i.e., N < N∗ due to a smaller population. This causes TFP to fall permanently.

In the SIR case instead, such an effect is only temporary.

Welfare. Real expenditure per capita is equal to

C =
y

pC
=

(
ϵ − 1

ϵ

)
y · Zθ N

1
ϵ−1︸ ︷︷ ︸

TFP

, (49)

which implies a utility flow of log C (t) = log
(

ϵ−1
ϵ

)
+ log y (t)+ θ log Z (t)+ 1

ϵ−1 log N (t).

Further, normalizing log
(

ϵ−1
ϵ Zθ

0 N
1

ϵ−1
0

)
= 0, we rewrite the utility flow as

log C (t) = log y (t) + θ
∫ t

0
z (s) ds +

1
ϵ − 1

∫ t

0
n (s) ds. (50)

Importantly, in calculating the welfare integral in (1), effective discounting accounts
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for fatality due to the spread of the epidemics:

exp
{
−ρt −

∫ t

0
ξDı (s (v)) dv

}
. (51)

6 Policy Intervention

In this section, we study policy interventions that operate through a reduction in the

transmission rate of the epidemic, which entails a reduction in the supply of labor, akin to

a lockdown. Let h ≥ 0 denote the policy variable of interest, that captures in a reduced-

form lockdown intensity. Following the literature, we model the immediate cost and

benefit of intervention as follows:

benefit:
ξS

1 + h
ı(s)S; (52)

cost:
L

1 + h
[1 − ı (s)] . (53)

The lockdown intensity parameter, h, reduces the transmission rate of the disease. That

is, the new transmission rate, ξS/(1 + h), equals the old transmission rate, ξS, in (18)-(19)

divided by 1 + h. In addition, it introduces a wedge between the endowment of labor

services, L, and the effective supply of labor, L/(1 + h).6

In terms of utility u(t) = log C (t), interventions of the type described by (52)-(53) have

a (negative) direct effect through the term − log (1 + h), which captures policies’ adverse

impact on total labor supply, and indirect effects that work through general equilibrium

forces, in a way that we explain further below:

log C (t) = − log (1 + h)︸ ︷︷ ︸
direct effect

+ log y (t) + θ
∫ t

0
z (v) dv +

1
ϵ − 1

∫ t

0
n (v) dv, (54)

where y is per capita expenditure, and z and n are the growth rates of knowledge and of

the mass of firms, respectively.

6In the current formulation, the percentage change in the flow of new infected with respect to the policy
variable h on the benefit side equals the percentage change in available labor services on the cost side. This
assumption can be readily relaxed by introducing an additional parameter χ ≥ 0, such that the labor cost
of policy intervention is L/ (1 + χh). In this alternative formulation, the ratio of elasticities of the labor cost
to the reduction of new infected becomes ς ≡ χ (1 + h) / (1 + χh), akin to a “sacrifice ratio.” A one percent
reduction in new infected comes at the cost of a ς percent loss in labor services. Note that when χ = 1,
ς = 1, which nests our baseline formulation.
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6.1 A Constant Wedge Approach

Intervention Policy #1. To build intuition on the key trade-offs at play, we consider first

the case where h is constant. Note that the infection functions need to be re-computed

to take in account the fact that the new transmission rate, ξS/ (1 + h), is reduced by the

factor 1 + h:

SIRD:
dı
ds

=
1
s

[
ξR + ξD (1 − ı)

ξS/ (1 + h)

]
− ξD − ξS/ (1 + h)

ξS/ (1 + h)− ξD
; (55)

SIR:
dı
ds

=
1 + h
R0s

− 1. (56)

Solving (55)-(56) with boundary conditions ı (0) = ı0 and s (0) = 1− ı0 ≡ s0 yields the

new infection functions:

SIRD: ı (s) =
ξR

ξD

1 −
(

s
s0

)− ξD
ξS/(1+h)−ξD

+ 1 − s; (57)

SIR: ı (s) =
1 + h

R0
log
(

s
s0

)
+ 1 − s. (58)

Again, there are two cases. (i) When free entry does not hold, per capita expenditure

is equal to

y (s, x) =
ϵ

ϵ − 1

(
1 − ϕ

x

) [
1 − ı (s)

1 + h

]
. (59)

(ii) When instead free entry holds, per capita expenditure is equal to

y (s) =
1

1 − [ρ + ξDı (s)] β

[
1 − ı (s)

1 + h

]
. (60)

Note that, in general, one can think of a family of y (s; h) functions parametrized by

the policy variable h. The policy intervention with a constant wedge has two opposing

effects:

dy (s; h)
dh

=
∂y (s; h)

∂h︸ ︷︷ ︸
−

+

+︷ ︸︸ ︷
∂y (s; h)

∂ı (s)︸ ︷︷ ︸
−

· ∂ı (s)
∂h︸ ︷︷ ︸
−

. (61)

The first term on the right-hand side of (61) captures the negative direct effect that the

22



policy exercises on the total labor supply. The second term captures the positive indirect

effect that the policy has through the reduction in the transmission rate. In the SIR case,

the policy intervention has an unambiguous negative net effect:

dy (s; h)
dh

=
1

R0
log
(

s
s0

)
< 0, since s < s0. (62)

Log-differentiating y (s) and using the Euler equation, yields

r (s) = ρ − 1 − (ρ + ξD) β

1 − [ρ + ξDı (s)] β
· ı (s)

1 − ı (s)
· [ξSs − ξR − ξD + ξDı (s)]︸ ︷︷ ︸

ξR(R0s−1) for ξD=0

.

Note that a policy intervention involving a constant wedge h has no direct affect on the

interest rate; it only operates through the dynamic effects of the fraction of infected, ı (s),

on per capita expenditures.

Figure 7 shows the phase diagram of the dynamical system for the SIR case, with (blue

lines) and without (black lines) policy intervention. Under policy intervention, herd im-

munity occurs at a smaller fraction of susceptible; this flatten-the-curve effect is the im-

mediate result of a lower value of R0. Qualitatively, under intervention, the population-

to-firms ratio rises at a faster rate after the outbreak, and it converges at a slower rate to

the steady state.

The result above that the policy does not affect the interest rate points to the impor-

tance of expectations and the role of the details of the policy in anchoring them. The

implicit assumption driving the result is that the policy is permanent. If the policy were

explicitly time-dependent, i.e., it featured an announced expiration date, then it would

have an effect on the interest rate due to the forward-looking behavior of agents. In this

sense, the constant and permanent wedge h is unrealistic and we view it as a useful device

to illustrate how the canonical representation of policies in epidemiological model applies

seamlessly to our integrated epidemic-economy model. Rather than walking the reader

through the specifics of time-dependent policies, however, we think it more insightful to

move directly to the state-dependent policies studied in the next subsection since, to a

large extent, they subsume the core properties of time-dependent policies.
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Figure 7: Post-Infection SIR Dynamics with Policy Intervention
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Notes: The figure depicts the equilibrium dynamics of the population-to-firms ratio for the post-
infection SIR economy with (blue lines) and without (black lines) policy intervention.

6.2 A State-Dependent Wedge Approach

Here we turn to study state-dependent policy interventions. More specifically, we consider

two classes of policies: (i) the first is based on tracking susceptible, such that the policy

variable h is a function of the fraction of susceptible in the population, i.e., h(s); (ii) the

second policy is based on tracking infected, so that the policy variable is a function of the

fraction of infected in the population, i.e., h(ı). Modelling state-dependent policies has

two key advantages over the simple policy in the previous subsection. First, it allows for

an endogenous termination date of intervention based on a pre-specified target for either s

or ı. Second, it allows us to think in terms of a policy rule which anchors private sectors’

expectations: at the time of the announcement, agents are aware of the intervention policy

rule, so they anticipate what will happen and make self-fulfilling plans.

6.2.1 Tracking Susceptible

Intervention Policy #2. We start with the policy based on tracking susceptible, i.e., h (s).

To simplify the analysis, we set ξD = 0 (SIR model). To proceed, we need to recompute

24



the infection function.7 To keep things tractable, let us consider a simple policy rule of the

following form:

h =

{
µsη − µs̄η s̄ < s ≤ 1

0 0 ≤ s ≤ s̄
, 0 ≤ µ < 1, η > 0. (63)

This policy rule has the property that intervention relaxes as s falls and vanishes at the

target s̄. A few remarks are in order. First, for s̄ = 0, (i) we can rule out µ = 1 because it

implies the total shutdown of the economy at s0 ≈ 1; (ii) we interpret µ as upper bound on

restrictions, e.g., µ = 0.2 implies that initially 1/ (1 + 0.2) = 83% of healthy work; (iii) the

parameter η regulates sensitivity of restrictions. Second, for s̄ > 0, there is endogenous

termination at the policy target s̄. For example, policy targets might be consistent with the

achievement of natural herd immunity, sherd = 1/R0, or with the natural terminal state,

s = s∞.

Recall that the infection function is a trajectory in the (s, ı) space. Solving the PDE

problem with initial condition (s0, ı0), and verifying continuity (value matching) and

smooth-pasting at s = s̄, it yields the new infection function, that takes into account

the systematic policy response to the epidemiological dynamics of susceptible:

ı (s) =


1 − s + 1

R0
log
(

s
s0

)
− µs̄η

R0
log
(

s̄
s0

)
+ µ

ηR0

(
s̄η − sη

0
)

sint
∞ ≤ s ≤ s̄

1 − s + 1
R0

log
(

s
s0

)
− µs̄η

R0
log
(

s
s0

)
+ µ

ηR0

(
sη − sη

0
)

s̄ < s ≤ s0

. (64)

This adds two phase-specific intervention terms to the do-nothing solution. Allowing for

s0 ≈ 1, we have the terminal state under intervention
(
sint

∞ , 0
)

where

sint
∞ = arg solve

{
R0 (1 − s) + log s = µs̄η log s̄ +

µ

η
(1 − s̄η)

}
. (65)

At s = s̄ the economy reverts smoothly to the do-nothing regime, converging toward the

terminal state (s, ı) =
(
sint

∞ , 0
)
. Recall that in the do-nothing regime, the terminal state is

s∞ = arg solve {R0 (1 − s) + log s = 0}, so that sint
∞ ⋚ s∞ for s̄η log s̄ + 1

η (1 − s̄η) ⋚ 0. To

get sint
∞ = s∞, set s̄ such that s̄η log s̄ + 1

η (1 − s̄η) = 0.

7Recall that the fraction of infected and susceptible evolve over time according to ı̇ =
(

R0s
1+h(s) − 1

)
ξRı

and ṡ = − ξS
1+h(s) ıs. Taking ratio of the two equations yields the PDE dı

ds = 1+h(s)
R0s − 1.
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Per Capita Expenditure and the Interest Rate. When free entry does not hold, per capita

expenditure is

y (s, x) =
ϵ

ϵ − 1

(
1 − ϕ

x

) [
1 − ı (s)
1 + h (s)

]
. (66)

When free entry holds, it is

y (s) =
1

1 − ρβ

[
1 − ı (s)
1 + h (s)

]
. (67)

Importantly, in contrast with the constant-wedge policy in the previous subsection,

the state-dependent policy rule h (s) in (63) introduces a direct effect of intervention on

the interest rate. To see this, log-differentiating y (s) and using the Euler equation, yields

r (s) = ρ − 1 − (ρ + ξD) β

[1 − ρ + ξDı (s)] β

ı (s)
1 − ı (s)

ξR (R0s − 1)− h′ (s) ṡ

(1 + h (s))2 . (68)

And setting ξD = 0 and using the expression ṡ/s = −ξSı (s),

r (s) = ρ − ı (s)
1 − ı (s)

ξR (R0s − 1)

+
h′ (s) s

(1 + h (s))2 ξS

[
1 − s +

1 − µs̄η

R0
log
(

s
s0

)
+

µ

ηR0

(
sη − sη

0
)]

. (69)

6.2.2 Tracking Infected

Intervention Policy #3. We now turn to a policy based on tracking infected: h (ı). Again,

to simplify the analysis, we set ξD = 0 (SIR model), and recompute the infection function.

To keep things tractable, we consider h = µı, with µ > 0, and solving the PDE with initial

condition (s0, ı0), we obtain

ı (s) =
R0 (1 + µs)− µ

(µ − R0) µ
−
(

s
s0

) µ
R0 R0 (1 + µs0)− µ

(µ − R0) µ
. (70)

As for the previous infection functions, for µ > R0, the function (70) is hump-shaped

with two zeros, one at (1, 0) and the other at
(
sint

∞ , 0
)
, where for (s0, ı0) ≈ (1, 0), we get
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Figure 8: Post-Infection Dynamics with State-Dependent Policy Intervention

s

i

1s∞ s-

post-intervention regime intervention regime

int

here switch from blue
to black line

Notes: The figure depicts the phase diagram for the post-infection economy with state-dependent
policy intervention.

the terminal state under intervention as

sint
∞ = arg solve

{
µ − R0 (1 + µs)
µ − R0 (1 + µ)

= s
µ

R0

}
. (71)

Note that the infection-tracking case h(ı) is much simpler than the susceptible-tracking

case h (s) in that there is no need to construct the new infection function piece by piece.

The epidemic fed to the economy takes the same form ṡ/s = −ξSı (s). Qualitatively, the

intervention policy the tracks infected delivers a similar phase diagram; the difference is

that there is only one regime since by construction intervention lasts as long as ı > 0.8

7 A Numerical Illustration

To further illustrate how an epidemic affects allocations and prices, and the implications

of policy intervention, we parameterize the model and simulate equilibrium paths of

three counterfactual economies: (i) the no-disease benchmark, in which the economy is

moving along a disease-free BGP; (ii) the do-nothing policy scenario, in which the spread

8Note that the analysis can be extended to intervention stopping at target ı̄ > 0.
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of the disease is left to its own course; and (iii) the state-dependent policy scenario based

on tracking susceptible (Intervention Policy #2). In our simulations, we focus on the SIR

case, and the intervention policy goes inactive at about week 75. We refer the reader to

Appendix B for details on the parameterization of the model, and to Appendix C for ad-

ditional results based on a policy that tracks infected (Intervention Policy #3). We have

run all simulations for the SIRD version of the model as well and noted that the numerical

difference between the two cases is vary small. This is due to the fact that, thankfully, the

mortality rate turned out to be rather small. We thus decided to report only results for the

simpler SIR case.

Model Parameters. The parameter values for the SIR model are from https://www.

mathworks.com/matlabcentral/fileexchange/74658-fitviruscovid19. The values for the

transmission and recovery rate imply an R0 ≡ ξS/ξR = 0.301/0.155 ≈ 1.94. This value

is broadly consistent with the evidence. For example, Riou and Althaus (2020) report a

point estimate of 2.2 with a 90 percent confidence interval of 1.4 to 3.8. See Table 1 for

baseline parameter values.

Takeaways. Two main lessons emerge from the numerical analysis. First, market size

acts as a powerful propagation mechanism of the epidemic. The endogenous reduction

in the mass of firms in response to the epidemic shock amplifies the recessionary effect on

economic activity. The epidemic as well as the associated intervention policies that restrict

the effective labor supply are akin to a negative “labor supply shock,” which leads to a

sharp fall in consumption expenditure relative to the no-disease scenario, and thereby

to a drop in net firm entry, which slowly propagates over time. Indeed, macroeconomic

dynamics is much, much slower than epidemiological dynamics due to the sluggishness

of the mass of firms.

Second, for a plausible parameterization of the model, we find that the susceptible-

tracking intervention policy unambiguously worsens welfare. Welfare under intervention

is lower than the do-nothing scenario over all the transition to the new steady state. We

stress that this negative outcome is not hard-wired into the model. As an example, the

infected-tracking intervention policy continues to do worse than the do-nothing scenario

in the first 400 weeks, but it raises welfare relative to the do-nothing over the longer run.

Overall, whether intervention policies raise or reduce welfare critically depends on the

values of the coefficients of the policy rule in place that determine the stringency, and

the duration of the intervention, and whether the costs of the policies are more or less
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Table 1: Parameterization

Parameter Description Value

A. Preferences & technology

ρ Discount rate 0.04/52
ϵ Prod. fcn 3
θ Prod. fcn 0.9639
β Entry cost 0.926 ×52
α Knowledge prod. fcn 0.0961/52
σ Knowledge prod. fcn 0.0885
ϕ Fixed operating cost 5.1465
δ Firms’ death rate 0.0618/52

B. SIR model

ξS Transmission rate 0.301
ξR Recovery rate 0.155
S0 Susceptible at outbreak 0.999

C. Intervention policy

s̄ Target for s ≡ S/L 0.4
µ Policy rule 0.5
η Policy rule 1

Notes: Calibration at weekly frequency: 52 weeks per year.

front-loaded.

The last observation is very important and deserves emphasis: the core difference

between tracking the susceptible and tracking the infected is that the fraction of suscep-

tible is high and the onset and decreases throughout the epidemic. Interventions tied to

it, therefore, concentrate their effects at the beginning of the epidemic, exacerbating the

fall in economic activity. In contrast, the fraction of infected is initially very small and

rises gradually before starting to decrease and eventually vanish. Interventions tied to it

gradually tighten and then relax as they track the hump-shaped dynamics of the disease.
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7.1 Epidemiological Dynamics

We begin by discussing the numerical results related to the epidemiological evolution

of the disease. Figure 9a shows the infection function resulting from the parametrized

model. A key insight stands out: policy intervention implies an across-the-board down-

ward shift in the infection function, such that there are fewer infected per susceptible in

the population. As evident in Figures 9b-9c, such a shift implies a slowdown in the spread

of the epidemic: the fraction of susceptible falls less steeply under intervention relative

to the do-nothing case, so that the peak in the fraction of infected occurs later in time.

The time path of infected remains hump-shaped under the policy intervention, its peak

is smaller in magnitude, but delayed.

7.2 Macroeconomic Dynamics

In the model, transition dynamics of economic variables lasts considerably longer than

epidemiological dynamics. For our baseline parameterization, while the epidemic runs

its natural course by approximately week 120, the dynamics of the economic state variable

(i.e., population-to-firm ratio, x ≡ L/N) and that of firm-specific knowledge growth is

substantially slower. By week 600, the dynamical system remains far from the steady

state. Due to the internal propagation mechanism at play in the model, epidemiological

and economic variables move at rather different speed.

Figures 10a-10c show simulation results for the population-to-firms ratio, per capita

expenditure, and the interest rate, respectively. After the outbreak, the population-to-

firms ratio features hump-shaped dynamics: under the susceptible-tracking policy (pol-

icy 2), the rise in x is considerably larger relative to the do-nothing scenario. The peak

in the population-to-firms ratio occurs when the epidemic runs out; the post-epidemic

dynamics is due to endogenous market structure (Schumpeterian) dynamics. Under the

susceptible-tracking policy intervention, the economy experiences an abrupt drop in per

capita expenditure, which slowly reverts back to the steady state (see Figure 10b).

In Figure 10c, the interest rate dynamics reveals a striking qualitative difference be-

tween the policy intervention and the do-nothing scenario. In the do-nothing scenario,

the interest rate falls first, then it rises, overshooting its long-run steady state level. In

the policy intervention scenario instead, the interest rate remains above its long-run level

along all the transition dynamics. The interest rate jumps down at the time the interven-

tion ends because of the associated kink in the time profile of expenditure, due to the
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forward-looking behavior with perfect foresight.

Figures 11a-11b show transition dynamics for “firm size,” f ≡ [1 − ı(s)] L/N, and net

firm entry, n ≡ Ṅ/N, respectively. (Firm size f and the population-to-firms ratio, x, differ

during the course of the epidemic insofar as ı(s) > 0.) After the outbreak, the economy

experiences a period of net exit in which the mass of firms shrinks at the firms’ exit rate

δ, i.e., n = −δ < 0. Under the policy intervention, the fall in net entry is of a larger

magnitude due to the bigger drop in expenditures relative to the do-nothing scenario (see

Figure 10b).

Finally, note that in the model TFP growth is equal to g = θz + n
ϵ−1 , where z ≡ Ż/Z

denotes firm knowledge growth, and n is again growth in the mass of firms. Figures 12a

shows that under policy intervention the economy hits a second corner, that is that of

zero R&D labor, which implies a halt in firm’s knowledge accumulation.9 As a result, the

economy experiences a period of negative TFP growth (see Figure 12b). Net entry with

a rebound in TFP growth re-starts when the epidemic runs out (about week 140 in our

simulations).

7.3 Welfare Analysis of Policy Intervention

An important feature of the simple policy rules of the kind we propose here, is that they

are amenable to welfare evaluation, accounting for transition dynamics. Figure 13 shows

discounted utility relative to the baseline of the no-disease economy for the do-nothing

and the susceptible-tracking intervention scenario with policy rule (63). As evident from

the figure, for our baseline parametrization, severity, and duration of the intervention, the

welfare in the counterfactual economy under intervention is lower than the do-nothing

scenario over all the transition dynamics. (Note that as we consider the SIR case, the

epidemic has no effect on the discount rate of utility flows.) Hence, this front-loaded

policy intervention unambiguously worsens welfare. This is not a general result, rather, it

critically depends on the intervention policy rule in place, whose coefficients contribute to

determine the duration of the intervention. As we discussed, the infected-tracking policy

intervention operates very differently: it does worse than the do-nothing scenario in the

short-run (0-400 weeks period) but delivers welfare improvements in the medium- and

long-run (see Figure C.5, in Appendix C).

The rules that we consider are simple but rather crude and this is likely the reason

9If one assumed a positive depreciation rate of firm knowledge, transition dynamics would generate
negative firm knowledge growth.
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why they cause such deep and prolonged responses. Note also that the key difference

between the two rules is that, because it tracks the susceptible rate, the first starts out

at maximum intensity and then decays monotonically. It thus front-loads the economic

damage caused by the loss of employment. The second policy, in contrast, tracks the

infections rate and thus its intensity follows a hump-shaped profile that concentrates the

loss of employment around the peak of the epidemic. Overall, the message that we extract

from these exercises is that crude policies can be very damaging and that minimizing the

damage requires careful examination of the channels through which policies operate.

8 Conclusion

We develop a dynamic general equilibrium model for the analysis of the economic effects

of an epidemic. The model combines the standard epidemiological SIRD model with key

features of second-generation endogenous growth theory, such as endogenous firm entry,

which expands product variety, and cost-reducing innovation. Transition dynamics is

analytically tractable and characterized by two differential equations describing the mass

of susceptible in the population and the ratio of the population to the mass of firms.

Overall, our results point to market size as an important mechanism through which an

epidemic exerts its recessionary effect on economic activity.

In the model, an outbreak propagates through the economy via changes in market size

that alter the incentives of new firms to enter the market and of incumbents firms to invest

in cost-reducing innovation. A typical epidemic is associated with a persistent fall in per

capita expenditures and an aggregate productivity growth slowdown. If the initial fall in

expenditure is big enough, a prolonged period of net firm exit with negative TFP growth

ensues. Further, if the epidemics leads to death, as in the SIRD case, the new steady state

exhibits fewer firms, less product variety, and a permanently lower level of real output per

capita. Through the lens of the model, we evaluate state-dependent intervention policies

based on tracking the fraction of susceptible or infected in the population. Akin to the

well-known Taylor’s rule for monetary policy, our simple rules are an essential part of

the definition of the equilibrium in that they serve to anchor private sector’s expectations

about the time path and end date of the intervention.

There are several promising avenues for future research. First, while studying optimal

intervention policies was beyond the scope of this paper, the systematic welfare analysis

of simple policy rules is of first-order importance. In particular, one of the points that we
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made in this paper is that, in the spirit of the Lucas’ critique, the quantitative assessment

of the economic effects of an epidemic cannot be conducted independently of the specific

policy rule in place because such a rule anchors agents’ expectations about the future. We

plan to explore further this idea in future work.

Second, in our basic setup we abstracted from several features that are important in an

epidemic crisis. For example, the need for caregiving services to the infected calls for a re-

allocation of household expenditure and aggregate employment to the health-care sector.

Similarly, the development of a vaccine and its mass production and provision requires

the reallocation of resources from entry and cost-reducing innovation. Such reallocation is

likely very important for the quantification of the economic effects of an epidemic. These

questions can be addressed in the context of a multi-sector version of the model that we

used here.

Third, and finally, in response to the COVID-19 epidemic, several OECD countries im-

plemented fiscal packages aimed at offsetting the recessionary effects of mandated lock-

downs. These fiscal measures will likely lead to a sizable increase in government debt.

Understanding how the private sector’s expectations of a future fiscal stabilization affect

current behavior, and how this in turn determines the effectiveness of lockdown poli-

cies, is in our view a margin to be taken into account in the quantitative evaluation of

intervention policies.
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Notes: The figure shows the infection function and the dynamics of the fraction of susceptible
and infected in the population after the outbreak for a parametrized version of the model. The
susceptible-tracking intervention (policy 2) becomes inactive at about week 75. See Appendix B
for details on the parameterization of the model.

Figure 9: Epidemiological Dynamics after the Outbreak
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Notes: The figure shows simulations from a parametrized version of the model. The susceptible-
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the parameterization of the model.

Figure 10: Market Size and Interest Rates
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tracking intervention (policy 2) becomes inactive at about week 75. See Appendix B for details on
the parameterization of the model.

Figure 11: Firm Size and Net Entry
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Figure 12: Knowledge and TFP Growth
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Figure 13: Welfare Relative to Disease-Free Economy
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Notes: The figure shows simulations from a parametrized version of the model. The susceptible-
tracking intervention (policy 2) becomes inactive at about week 75. See Appendix B for details on
the parameterization of the model.
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Appendix

A Model Derivations

In this appendix, we provide details on mathematical derivations.

A.1 The Basic Growth Model

Henceforth, to simplify notation, we suppress time from endogenous variables whenever

confusion does not arise.

Production and innovation Each consumption good is supplied by one firm. Thus, N

also denotes the mass of firms. Each firm produces with the technology

Xi = Zθ
i
(

LXi − ϕ
)

, 0 < θ < 1, ϕ > 0, (A.1)

where Xi is output, LXi is labor employment and ϕ is a fixed operating cost. The firm

maximizes the present discounted value of profit,

Vi =
∫ ∞

0
e−
∫ t

0 r(s)dsΠidt, (A.2)

where Πi ≡ PiXi − LXi − wLZi . The firm’s FOC is

r =
∂Πi

∂Zi
· 1

qZi

+
q̇Zi

qZi

. (A.3)

The associated pricing strategy is a constant mark-up rule:

Pi =
ϵ

ϵ − 1
Z−θ

i . (A.4)

The firm’s instantaneous profit can be written as

Πi =
Y
ϵ
·

Zθ(ϵ−1)
i∫ N

0 Zθ(ϵ−1)
j dj

− ϕ − LZi . (A.5)

Differentiating under the assumption that the firm takes the denominator as given, sub-

stituting the resulting expression into the asset-pricing equation derived above, and rear-
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ranging terms yields

r =
Y
ϵ

θ (ϵ − 1)
Zθ(ϵ−1)−1

i∫ N
0 Zθ(ϵ−1)

j dj
· 1

qZi

+
q̇Zi

qZi

. (A.6)

This expression characterizes the return to knowledge accumulation for firm i. The cost

of knowledge accumulation is determined by the technology

Żi = αKLσ
Zi

L1−σ
Z , α > 0, 0 < σ < 1, (A.7)

where Żi is the flow of new knowledge generated by employing LZi units of labor for an

interval of time dt. The FOCs are:

CVHi = PiXi − LXi − wLZi + qZi αKLσ
Zi

L1−σ
Z , (A.8)

w = qZi ασKLσ−1
Zi

L1−σ
Z ⇒ 1 = qZασK, (A.9)

r + δ =
∂Πi

∂Zi
· 1

qZi

+
q̇Zi

qZi

⇒ α
LZ

N
=

Y
ϵN

σαθ (ϵ − 1)− r − δ. (A.10)

Then we have under symmetry,

r + δ =
Y
N

ασθ
ϵ − 1

ϵ
− α

LZ

N
. (A.11)

The return to horizontal innovation (entry) is

r =
[

Y
ϵN

− ϕ − LZ

]
ϵN

Yβ (ϵ − 1)
− Ṅ

N
+

Ẏ
Y

. (A.12)

Check that we have well-behaved no entry region with z > 0 since calibration yields

xZ << xN. From the household’s budget constraint:

ṄV + NV̇ =

(
Y

ϵN − ϕ − LZ
N

V
+

V̇
V

− δ

)
NV + wL − Y, (A.13)

−δNV =

(
Y

ϵN
− ϕ − LZ

N

)
N − δNV + wL − Y, (A.14)

0 =

(
Y

ϵN
− ϕ − LZ

N

)
N + L − Y, since w = 1. (A.15)
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Also,

LZ

N
=

Y
ϵN

θ (ϵ − 1)− r + δ

α
. (A.16)

Hence,

αϕ − xα

(
1 − y

[
1 − 1 − θ (ϵ − 1)

ϵ

])
= r + δ. (A.17)

Then we have the dynamical system:

ẏ
y
= αϕ − xα + αxy

[
1 − 1 − θ (ϵ − 1)

ϵ

]
− ρ − δ, (A.18)

ẋ
x
= δ. (A.19)

Check that we have well-behaved no entry region with z = 0. From the household’s

budget constraint:

ṄV + NV̇ =

(
Y

ϵN − ϕ

V
+

V̇
V

− δ

)
NV + wL − Y, (A.20)

−δNV =

(
Y

ϵN
− ϕ

)
N − δNV + wL − Y, (A.21)

0 =

(
Y

ϵN
− ϕ

)
N + L − Y, since w = 1. (A.22)

Hence,

y =
ϵ

ϵ − 1

(
1 − ϕ

x

)
. (A.23)

A.2 Three Examples of Epidemiological Trajectories

Epidemiological SIRD equations:

ṡ
s
= ξB

(
1
s
− 1
)
− (ξS − ξD) ı, (A.24)

ı̇
ı
= ξSs − ξR − ξB − ξD (1 − ı) . (A.25)
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Example 1: SIRD w/ no vital dynamics (i.e., ξB = ξM = 0):

ṡ
s
= − (ξS − ξD) ı < 0, (A.26)

ı̇ ≥ 0 : ı ≥ 1 +
ξR

ξD
− ξS

ξD
s. (A.27)

Example 2: SIR w/ no vital dynamics (i.e., ξB = ξM = ξD = 0):

ṡ
s
= −ξSı < 0, (A.28)

ı̇ ≥ 0 : s ≥ ξS

ξR
= R0. (A.29)

Example 3: SIR w/ vital dynamics (i.e., ξD = 0):

ṡ ≥ 0 : ı ≤ ξB

ξS

(
1
s
− 1
)

, (A.30)

ı̇ ≥ 0 : s ≥ ξR + ξB

ξS
. (A.31)

A.3 Three Types of Interventions

A.3.1 Example 1: Constant Wedge Policy

The economy reverts to the same long-run growth rate because the permanent change in

expenditure is offset by a permanent rise in firm size. Of course, permanent intervention

is not sensible since when the epidemic runs its course and the economy is at (s∞, 0), one

would think that intervention should be lifted. However, note that if one allows for the

possibility of newborn, we have a continuous inflow of susceptible and thus the system

does not converge to a disease-free state with ı = 0, but to an endemic state with ı = ı̄ > 0.

One might then think that there exists an equilibrium with permanent intervention absent

a vaccine and/or a cure.

A.3.2 Example 2: Susceptible-tracking Policy

Define the policy

h (s) =

{
µsη − µs̄η s̄ < s ≤ 1

0 0 ≤ s ≤ s̄
. (A.32)
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This policy rule has the property that intervention relaxes as s falls and vanishes at the

target s̄. The PDE problem is

dı
ds

=
1 + µsη − µs̄η

R0s
− 1, (A.33)

and has solution

ı (s) = c − s +
1 − µs̄η

R0
log s +

µ

ηR0
sη. (A.34)

Using the initial condition (s0, ı0) yields

ı0 = c − 1 + ı0 +
1 − µs̄η

R0
log s0 +

µ

ηR0
sη

0 . (A.35)

We thus get

ı (s) = 1 − s +
1

R0
log
(

s
s0

)
+

µ

ηR0

(
sη − sη

0
)
− µs̄η

R0
log
(

s
s0

)
︸ ︷︷ ︸

intervention term

. (A.36)

Let us check that the infection function switches continuously from this one to the one

that holds with no intervention, which has solution

ı (s) = c − s +
1

R0
log s. (A.37)

We choose c so that continuity holds at s = s̄. The two values are:

ı
(
s̄+
)
= 1 − s̄ +

1 − µs̄η

R0
log
(

s̄
s0

)
+

µ

ηR0

(
s̄η − sη

0
)

, (A.38)

ı
(
s̄−
)
= c − s̄ +

1
R0

log s̄. (A.39)

Continuity holds when

c − s̄ +
1

R0
log s̄ = 1 − s̄ +

1 − µs̄η

R0
log
(

s̄
s0

)
+

µ

ηR0

(
s̄η − sη

0
)

, (A.40)

c = 1 +
1 − µs̄η

R0
log
(

s̄
s0

)
+

µ

ηR0

(
s̄η − sη

0
)
− 1

R0
log s̄. (A.41)
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Thus, for s ≤ s̄ we have

ı (s) = 1 − s +
1

R0
log
(

s̄
s0

)
+

1
R0

log
( s

s̄

)
− µs̄η

R0
log
(

s̄
s0

)
+

µ

ηR0

(
s̄η − sη

0
)

, (A.42)

= 1 − s +
1

R0
log
(

s
s0

)
+

µ

ηR0

(
s̄η − sη

0
)
− µs̄η

R0
log
(

s̄
s0

)
. (A.43)

Let us check continuity. At s = s̄ the two pieces connect as follows:

−µs̄η

R0
log
(

s̄
s0

)
+

µ

ηR0

(
s̄η − sη

0
)
= −µs̄η

R0
log
(

s̄
s0

)
+

µ

ηR0

(
s̄η − sη

0
)

, (A.44)

0 = 0. (A.45)

Continuity holds. Next, let us check derivatives at s = s̄:

−1 +
1

R0
· 1

s̄
= −1 +

1
R0

· 1
s̄
+

µs̄η−1

R0
− µs̄η−1

R0
, (A.46)

0 = 0. (A.47)

Smooth pasting also holds. Hence, to sum:

ı (s) =


1 − s + 1

R0
log
(

s
s0

)
− µs̄η

R0
log
(

s̄
s0

)
+ µ

ηR0

(
s̄η − sη

0
)

sint
∞ ≤ s ≤ s̄,

1 − s + 1
R0

log
(

s
s0

)
− µs̄η

R0
log
(

s
s0

)
+ µ

ηR0

(
sη − sη

0
)

s̄ < s ≤ s0

. (A.48)

A.3.3 Example 3: Infected-tracking Policy

Define the policy

h (ı) = µı. (A.49)

This policy rule has the property that intervention intensifies as ı rises and relaxes as ı

falls, vanishing exactly when ı = 0. The PDE problem is

dı
ds

=
1 + µı

R0s
− 1, (A.50)
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and has solution

ı (s) =
µ − R0 (1 + µs)

(R0 − µ) µ
+ s

µ
R0 c. (A.51)

Using initial condition (s0, ı0) yields

c =
[

ı0 −
µ − R0 (1 + µs0)

(R0 − µ) µ

]
s
− µ

R0
0 . (A.52)

Therefore, we have

ı (s) =
R0 (1 + µs)− µ

(µ − R0) µ
−
(

s
s0

) µ
R0 R0 (1 + µs0)− µ

(µ − R0) µ
. (A.53)

For µ > R0 this is hump-shaped with two zeros, one at (1, 0) and the other at
(
sint

∞ , 0
)
,

where for (s0, ı0) ≈ (1, 0),

sint
∞ = arg solve

{
µ − R0 (1 + µs)
µ − R0 (1 + µ)

= s
µ

R0

}
. (A.54)

B Parametrization

In this appendix, we discuss the parametrization of the model. Our strategy consists of

two steps. First, in Subsection B.1, we set data targets and back out parameter values at

the annual frequency. Second, in Subsection B.2, we calculate the weekly counterparts

of the annual parameter values, so that the weekly model remains consistent with the

annual data targets.

B.1 Annual Calibration

Standard targets At the annual frequency,

• Interest rate: r = ρ = 0.04.

• Per capita GDP growth rate: g = 0.02.

• Consumption expenditure to GDP ratio: Y/G = 0.675.

• Labor share of GDP: wL/G = 0.65.
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• Population to firms ratio: using data from the Business Dynamics Statistics (BDS),

we calculate an average population-to-firms ratio of x ≡ L/N = 21.6.

• Firms’ death rate: using data from the BDS, we calculate an average exit rate of

δ = 0.0618.

Elasticity of substitution b/w intermediate goods (ϵ) To calibrate ϵ we use data on

the Net Operating Surplus (NOS) to GDP ratio from the BEA. In U.S. data, the average

NOS/GDP ratio is 23%. In the model, NOS = Y/ϵN. Using the relationship Y/G =

ϵNOS/G, we obtain ϵ = (Y/G) /NOS/G = 0.675/0.23 = 2.9348 ≃ 3.

Sunk entry cost (β) Using the household budget, it gives

y =
1

1 − βρ
⇒ β =

(
1 − wL

G
G
Y

)
1
ρ
=

(
1 − 0.65

0.675

)
1

0.04
= 0.926. (B.1)

This procedure is immediate and only uses the labor share, wL/G, and the consumption

ratio, Y/G.

Fixed operating cost (ϕ) We note that the parameter ϕ is identified independently of

the R&D technology since

ϕ = x

[
1
ϵ − (r + δ) β

1 − rβ
− LZ

L

]
. (B.2)

Needed: data on LZ/L. From the InfoBrief, October 2016, NSF 17-302: “Companies active

in research and development (those that paid for or performed R&D) employed 1.5 million R&D

workers in the United States in 2013 (table 1), according to the Business R&D and Innovation

Survey (BRDIS).[2] R&D employees are defined in BRDIS as all employees who work on R&D

or who provide direct support to R&D, such as researchers, R&D managers, technicians, clerical

staff, and others assigned to R&D groups. Although these R&D workers account for just over

1% of total business employment in the United States, they play a vital role in creating the new

ideas and technologies that keep companies competitive, create new markets, and spur economic

growth.[3] This InfoBrief presents data from BRDIS on the characteristics of these R&D workers,

highlighting similarities and differences between different types of R&D-active companies.” (See

https://www.nsf.gov/statistics/2017/nsf17302/).
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So, using LZ/L = 0.01, for δ = 0.0618, it gives

ϕ = 21.6

[
1
3 − (0.1018) 0.926
1 − 0.04 × 0.926

− 0.01

]
= 5.1465. (B.3)

The “innovation” triplet (α, θ, σ) Let us write the TFP growth rate along a BGP as

g = αθ × L
N

× LZ

L
⇒ αθ =

g
L
N × LZ

L

=
0.02

L
N × LZ

L

=
0.02

21.6 × 0.01
= 0.0926. (B.4)

Thus, the data moments (g = 2%, LZ/L = 1%, L/N = 21.6) pin down the value of αθ. To

proceed, consider the Current Value Hamiltonian (CVH) for the firm’s problem:

CVHi = PiXi − LXi − wLZi + qZi · αKLσ
Zi

L1−σ
Z . (B.5)

The FOCs are:

w = qZi ασKLσ−1
Zi

L1−σ
Z ⇒ 1 = qZασK, (B.6)

r + δ =
∂Πi

∂Zi
· 1

qZi

+
q̇Zi

qZi

⇒ LZ

N
=

Y
N

σθ
ϵ − 1

ϵ
− r + δ

α
. (B.7)

After some manipulations, we get

r + δ + z = σαθ

(
ϵ − 1

ϵ

)
xy ⇒

(
r + δ +

g
θ

) 1
y

ϵ

ϵ − 1
= σαθ. (B.8)

The associated entry process is unchanged, i.e.,

Ṅ
N

=
1
β

[
1
ϵ
− N

Y

(
ϕ +

LZ

N

)]
− ρ − δ (B.9)

=
1

βϵ
− 1

βy

(
ϕ +

z
α

) 1
x
− ρ − δ. (B.10)

The expression for the steady-state population-to-firms ratio is

x =
ϕ − ρ+δ

α

1 − σθ (ϵ − 1)− (ρ + δ) βϵ
× ϵ

y
. (B.11)

Note that the parameter σ only enters the return to in-house innovation and it scales the

activation threshold xZ leaving the rest the same. We now have two moment conditions
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and three parameters with the needed degree of freedom to obtain the “right” threshold

ordering, i.e. xN < xZ. Specifically, we have:

r + δ +
g
θ
= σαθ

(
ϵ − 1

ϵ

)
xy. (B.12)

Given the value of αθ, this equation identifies θ and σ as follows. First, let us isolate θ

such that

θ =
0.02

σαθy ϵ−1
ϵ x − r − δ

=
0.02

σ 0.0926
1−0.04×0.926

2
321.6 − 0.1018

. (B.13)

Then, we use the ratio of thresholds,

xZ

xN
=

1
σ

ρ + δ

αθ (ϵ − 1)
1 − ρβϵ

ϕ
=

1
σ

0.1018
0.0926 × 2

1 − 0.04 × 0.926 × 3
5.0177

, (B.14)

where the thresholds are:

xZ = (1 − ρβ)
ϵ (ρ + δ)

σαθ (ϵ − 1)
=

1
σ
(1 − 0.04 × 0.926)

0.1018
0.0926

3
2
=

1
σ

1.5879, (B.15)

xN =
1 − βρ
1
ϵ − ρβ

ϕ =
1 − 0.04 × 0.926
1
3 − 0.04 × 0.926

5.0177 = 16.308. (B.16)

We thus are free to set σ to obtain the desired threshold ratio. For example, let us say

we aim to obtain the following targets:

xZ
xN

= 5
4 : σ = 1.5879

5/4×16.308 = 0.0779,
xZ
xN

= 11
10 : σ = 1.5879

11/10×16.308 = 0.0885,
xZ
xN

= 101
100 : σ = 1.5879

101/100×16.308 = 0.0964.

And in terms of the threshold for cost-reducing innovation:

xZ =
5
4

16.308 = 20.385, (B.17)

xZ =
11
10

16.308 = 17.939, (B.18)

xZ =
101
100

16.308 = 16.471. (B.19)
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The first is very close to steady state, while the last is very close to xN. Then we get:

θ =
0.02

0.0779 × 0.0926
1−0.04×0.926

2
321.6 − 0.1018

= 3.2946, (B.20)

θ =
0.02

0.0885 × 0.0926
1−0.04×0.926

2
321.6 − 0.1018

= 0.9639, (B.21)

θ =
0.02

0.0964 × 0.0926
1−0.04×0.926

2
321.6 − 0.1018

= 0.6312. (B.22)

Notice how quickly the value of θ drops as we make the distance between the thresholds

smaller. Next, we get:

α =
0.0926
3.2946

= 0.0281, (B.23)

α =
0.0926
0.9639

= 0.0961, (B.24)

α =
0.0926
0.6312

= 0.1467. (B.25)

Need to check that in all cases 1 − σθ (ϵ − 1) = 1 − 0.0779 × 3.2946 × 2 = 0.4867 > 0.

B.2 Weekly Calibration

For the labor share to hit the same target at the annual and weekly frequency, the model

implies sharp parameter restrictions:

wL
Y

= 1 − βρ ⇒ βρ = 1 − wL
G

× G
Y

=
0.65

0.675
= 0.96296. (B.26)

The key is then to keep βρ constant, so that scaling ρ by the factor 52, ρ/52, mandates to

inflate the entry cost by the same factor, β × 52. This is consistent with the argument that

the weekly eigenvalue should be equal to the annual eigenvalue divided by 52:

1 − σθ (ϵ − 1)
βϵ

− (ρ + δ) =

[
1 − σθ (ϵ − 1)

βϵ
− ρ + δ

52

]
52, (B.27)

1 − σθ (ϵ − 1)
βaϵ

− (ρ + δ) =
1 − σθ (ϵ − 1)

βwϵ

1
52

− (ρ + δ) , (B.28)

1 − σθ (ϵ − 1)
βaϵ

=
1 − σθ (ϵ − 1)

βwϵ
52. (B.29)

Insofar as σ and θ keep the same value, we have exactly that βw = βa × 52.
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Also, since

ϕ = x

[
1
ϵ − (ρ + δ) β

1 − ρβ
− LZ

L

]
, (B.30)

we note that ϕ retains the same value since both (ρ + δ) β and ρβ remain constant across

calibrations. (For the firms’ exit rate, we simply re-scale the annual death rate by 52

weeks, δ = 0.0618/52.)

Next, note that

0.02/54
θ

= α
LZ

L
× L

N
⇒ αθ =

0.02/52
L
N × LZ

L

, (B.31)

implying that the conversion to the weekly frequency requires dividing the annual value

of the product αθ by 52:

r + δ = α

[
Yσθ (ϵ − 1)

ϵN
− LZ

N

]
⇒ z = σαθ

(
ϵ − 1

ϵ

)
xy − r − δ, (B.32)

0.02/52
θ

= σ
αθ

52

(
ϵ − 1

ϵ

)
xy − (r + δ) /52. (B.33)

Hence, the parameters θ and σ are invariant from the annual to the weekly frequency

since the conversion factor 52 drops out of these expressions. Then, going to the weekly

calibration, implies that α changes according to

αw =
1
θ

0.02
L
N × LZ

L

1
52

=
αa

52
. (B.34)

To sum, going from an annual to a weekly calibration, only the rates (r, g, δ) change

and their changes are absorbed one-for-one by α and β.

C Additional Results

In this appendix, we provide additional results from numerical experiments based on an

intervention policy that tracks the fraction of infected in the population (policy 3).
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(a) Fraction of infected as a function of fraction of susceptible: ı(s)
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(b) Fraction of susceptible in population: s(t)
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(c) Fraction of infected in population: ı(t)

Notes: The figure shows the infection function and the dynamics of the fraction of susceptible
and infected in the population after the outbreak for a parametrized version of the model. The
infected-tracking intervention (policy 3) becomes inactive at about week 140. See Appendix B for
details on the parameterization of the model.

Figure C.1: Epidemiological Dynamics after the Outbreak
53



200 400 600 800 1000 1200 1400
weeks

21.8

22.0

22.2

22.4

22.6

22.8

x
Dynamics of Population FirmsRatio

policy 3

do nothing

no disease

(a) State variable: x ≡ L/N
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(b) Per capita expenditure: y ≡ Y/L
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(c) Interest rate: r

Notes: The figure shows simulations from a parametrized version of the model. The infected-
tracking intervention (policy 3) becomes inactive at about week 140. See Appendix B for details
on the parameterization of the model.

Figure C.2: Market Size and Interest Rates

54



200 400 600 800 1000 1200 1400
weeks

19

20

21

22

f
Dynamics of FirmSize

policy 3

do nothing

no disease

(a) Firm size: [1 − ı(s)] L/N
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(b) Net entry: n ≡ Ṅ/N

Notes: The figure shows simulations from a parametrized version of the model. The infected-
tracking intervention (policy 3) becomes inactive at about week 140. See Appendix B for details
on the parameterization of the model.

Figure C.3: Firm Size and Net Entry
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(a) Firm knowledge growth: z = Ż/Z
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Notes: The figure shows simulations from a parametrized version of the model. The infected-
tracking intervention (policy 3) becomes inactive at about week 140. See Appendix B for details
on the parameterization of the model.

Figure C.4: Knowledge and TFP Growth
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Figure C.5: Welfare Relative to Disease-Free Economy
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Notes: The figure shows simulations from a parametrized version of the model. The infected-
tracking intervention (policy 3) becomes inactive at about week 140. See Appendix B for details
on the parameterization of the model.
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