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1. Introduction

This paper takes a new look at the long-run effects of resource
endowments through the lens of modern Schumpeterian growth
theory. Using a model of the latest vintage that yields a closed-form
solution for the transition path, it derives conditions underwhich, as the
economy's endowment of a natural resource rises, growth accelerates
and welfare rises, conditions under which growth decelerates but
welfare rises nevertheless, and conditions under which growth
decelerates and welfare falls.

Which of these scenarios prevails depends on how the pattern of
factor substitutiondetermines the response of thenatural resourceprice
to an increase in the resource endowment. The price response
determines the change in income earned by the owners of the resource
(the households) and thereby the change in their expenditure on
manufacturing goods. Sincemanufacturing is the economy's innovative
sector, this income-to-expenditure effect links resource abundance to
the size of themarket formanufacturing goods and drives how resource
abundance affects incentives to undertake innovative activity.
The model has two factors of production in exogenous supply,
labor and a natural resource, and two sectors, primary production (or
resource processing) and manufacturing. I define resource abundance
as the endowment of the natural resource relative to labor. The
primary sector uses labor to process the raw natural resource; the
manufacturing sector uses labor and the processed natural resource to
produce differentiated consumption goods. Because both sectors use
labor, its reallocation from manufacturing to primary production
drives the economy's adjustment to an increase in resource abun-
dance. The manufacturing sector is technologically dynamic: firms
and entrepreneurs undertake R&D to learn how to use factors of
production more efficiently and to design new products. Importantly,
the process of product proliferation fragments the aggregate market
into sub-markets whose size does not increase with the size of the
endowments and thereby sterilizes the scale effect. This means that
the effect of resource abundance on growth is only temporary. The
resulting structure is extremely tractable and yields a closed-form
solution for the transition path.

Substitution between labor and resource inputs matters because it
determines the price elasticity of demand for the natural resource.
Inelastic demand means that the price has to fall drastically to induce
the market to absorb the additional quantity; elastic demand means
that the adjustment requires a mild drop in the price. Importantly, the
two cases are part of a continuumbecause I use technologieswith factor
substitution that changes with prices. Now, if the economy exhibits
substitution, demand is elastic, the price effect is mild, the quantity
effect dominates, and resource income rises, spurringmore spending on
manufacturing goods and a temporary growth acceleration. If, instead,

http://dx.doi.org/10.1016/j.jdeveco.2010.12.001
mailto:peretto@econ.duke.edu
http://dx.doi.org/10.1016/j.jdeveco.2010.12.001
http://www.sciencedirect.com/science/journal/03043878


143P.F. Peretto / Journal of Development Economics 97 (2012) 142–155
the economy exhibits complementarity, demand is inelastic, the price
effect is strong, resource income falls, and we have a temporary growth
deceleration. Whether the economy experiences a growth accelera-
tion or deceleration, however, is not sufficient to determine what hap-
pens to welfare, since, given technology, the lower resource price
makes consumption goods cheaper. Assessing the welfare effect of
the change in the endowment ratio, therefore, requires resolving the
trade-off between short- and long-run effects.

Mymain result is that I identify threshold values of the equilibrium
price of the natural resource—and therefore threshold values of the
endowment ratio—that yield the following sequence of scenarios as
we gradually raise the endowment ratio from tiny to very large.

1. Growth accelerates and welfare rises. This happens when the
resource price is high because the endowment ratio is low. In this
situation, demand is elastic, the quantity effect dominates over
the price effect, and, consequently, resource income rises. In other
words, starting from a situation of scarcity, the increase in the
endowment ratio generates a growth acceleration associated to an
initial jump up in consumption that yields higher welfare.

2. Growth decelerates but welfare rises nevertheless. That is, the rise in
the endowment ratio causes a growthdeceleration that is offset by an
initial jump up in consumption. This happens when the endowment
ratio is between the two thresholds and, correspondingly, the
resource price is in its intermediate range. Relative to the previous
case, demand becomes inelastic and the price effect dominates over
the quantity effect, with the result that resource income falls.

3. Growth decelerates and welfare falls. This happens when the
resource price is low because the endowment ratio is high. In this
case, demand is inelastic, the price effect dominates over the quantity
effect, and resource income falls. Differently from the previous case,
the fall in resource income is now sufficiently large to cause the
growth deceleration to dominate over the initial jump up in con-
sumption or to cause the initial jump in consumption to be down.

There is a large and growing body of literature studying the
consequences of natural-resource abundance. Within this literature
my paper is most closely related to theoretical models focusing on the
reallocation of resources away from the manufacturing sector and
towards the resource sector, a reallocation that is sometimes termed
“Dutch disease” in the literature. Dutch-disease models often assume
that the manufacturing sector is characterized by learning by doing or
other externalities, so these models, like mine, have the potential to
induce a fall in the growth rate as well as a fall in welfare.1

Relative to this literature my model differs in three fundamental
dimensions. First, I work with a closed economy rather than an open
economy. Second, I model the productivity growth process in the
manufacturing sector through investments in R&D. Third, I introduce
vertical integration between the manufacturing sector and the
resource sector by making (processed) natural resources an input in
the production of the manufacturing good. Note that from the closed
economy assumption it follows that there is a distinction between
resource endowments (the physical quantities of natural resources)
and resource wealth (its market value, or price times quantity). In
open-economy models the price is usually taken as given so a change
in the endowment is entirely isomorphic to a change in wealth.

From these differences follow major differences in implications. In
my model an increase in resource wealth is never associated with a
decline in the growth rate, nor it can reduce welfare. This is because,
due to closed economy assumption, an increase in resource wealth
increases demand for domestic manufacturing goods and thus the
incentives to engage in R&D. What can reduce growth and welfare is
1 See, e.g., Corden and Neary (1982), Corden (1984), Krugman (1987), van
Wijnbergen (1984), Younger (1992), and Torvik (2001).
an increase in the resource endowment, if it precipitates a sufficiently
large fall in the price and hence in resource wealth (again, this
mechanism is absent in other models where the economy takes the
price as given). However, not all declines in resource wealth following
increases in endowments are associated with declines in welfare.
Even if resource wealth and the subsequent growth rate decline,
welfare can increase because of the vertical-integration feature of the
model: the more abundant endowment reduces production costs for
manufacturing consumption goods.

The closed economy assumption also implies thatmymodel speaks
to a different set of facts relative to the Dutch disease literature and
most of the empirical literature on the so-called resource curse. Indeed
the latter tends to use natural-resource exports as a share of GDP (or
sometimes per capita) as its proxy for resource abundance (clearly my
theory has no predictions for the effects of resource exports) and
variation in prices is seen as as important and as exogenous a source of
variation as variation in physical endowments.2 Instead, my theory is
applicable to investigating the effects of new resource discoveries in
closed economies or, possibly, of huge new discoveries in the world as
a whole.

Success stories broadly consistent with my scenario 1 abound.
Wright and Czelusta (2007), for example, argue that the United States
overtook the United Kingdom and become the world leader in terms of
GDP perworker-hour precisely at the time—roughly 1890–1913—when
it become the world's dominant producer of virtually every major
industrial mineral of the era. They conclude that “the condition of
abundant resourceswas a significant factor in shaping, if not propelling,
theU.S. path toworld leadership inmanufacturing” (p. 185). Amodern-
day case that provides amore specific example of a growth acceleration
is Chile. Wright and Czelusta (p. 196) report that in the 1990s it grew at
about 8.5% per year and argue that the mining industry was central to
this performance, accounting for about 8.5% of GDP and about half of its
total exports over the period. Notably, Chile accounts for 35% of world
copper production and is a major producer of several other minerals.

It is harder to find examples of failure stories consistent with my
scenarios 2–3. The reason is that the literature rarely disentangles
prices and quantities to the level of detail needed to isolate the income
effect driving my theory. Consequently, it is often impossible to infer
from a particular narrative whether the driving factor underlying the
growth deceleration is the relative price effect that my theory
emphasizes or the other mechanisms discussed in, e.g., the literature
on the natural resource curse.

The paper's organization is as follows. Section 2 sets up the model.
Section 3 constructs the general equilibrium of the market economy.
Section 4 discusses the key properties of the equilibrium that drive the
paper's main results. Section 5 derives the main results. It first studies
the conditions under which an increase in the resource endowment
results into a growth deceleration or acceleration and then studies the
conditions under which it yields lower or higher welfare. It also
discusses interesting implications for our reading of the empirical
literature. Section 6 concludes.

2. The model

2.1. Overview

The basic model that I build on is developed in Peretto and Connolly
(2007). A representative household supplies labor services in a com-
petitive market. It also borrows and lends in a competitive market
for financial assets. The household values variety and buys as many
differentiated consumption goods as possible. Manufacturing firms hire
labor to produce differentiated consumption goods, undertake R&D, or,
2 See Sachs and Warner (1995, 2001), Alexeev and Conrad (2009), Brunneschweiler
and Bulte (2008), van der Ploeg and Poelhekke (2010), van der Ploeg (forthcoming).
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in the case of entrants, set up operations. Production of consumption
goods also requires a processed resource, which is produced by
competitive suppliers using labor and a raw natural resource. The
introduction of this upstream primary sector is the main innovation of
this paper. The economy starts out with a given range of goods, each
supplied by one firm. Entrepreneurs compare the present value of
profits from introducing a new good to the entry cost. Once in the
market, firms establish in-house R&D facilities to produce cost-reducing
innovations. As each firm invests in R&D, it contributes to the pool of
public knowledge and reduces the cost of future R&D. This allows the
economy to grow at a constant rate in steady state.

2.2. Households

The representative household has a constant mass L of identical
members, each one endowed with one unit of labor. It maximizes

U tð Þ = ∫
∞

t
e−ρ s−tð Þ log u sð Þds; ρ N 0 ð1Þ

subject to the flow budget constraint

Ȧ = rA + WL + pΩ + ΠM−Y ; ð2Þ

where ρ is the discount rate, A is assets holding, r is the rate of return
on assets, W is the wage rate, L is labor supply since there is no
preference for leisure, and Y is consumption expenditure. In addition
to asset and labor income, the household receives rents from
ownership of the endowment, Ω, of a natural resource whose market
price is p and dividend income from resource-processing firms, ΠM.3

The household takes these terms as given.
Instantaneous utility in Eq. (1) is

log u = log ∫
N

0

Xi

L

� ��−1
� di

2
64

3
75

�

�−1
; � N 1 ð3Þ

where � is the elasticity of product substitution, Xi is the household's
purchase of each differentiated good, and N is the mass of goods (the
mass of firms) existing at time t.

The solution for the optimal expenditure plan is well known. The
household saves according to

r = rA≡ρ +
Ẏ
Y

ð4Þ

and taking as given this time-path of expenditure maximizes Eq. (3)
subject to Y = ∫N

0
PiXidi. This yields the demand schedule for product i,

Xi = Y
P−�
i

∫N

0
P1−�
i di

: ð5Þ

With a continuum of goods, firms are atomistic and take the
denominator of Eq. (5) as given; therefore, monopolistic competition
prevails and firms face isoelastic demand curves.

2.3. Manufacturing: production and innovation

The typical firm produces with the technology

Xi = Zθ
i ⋅FX LXi

−ϕ;Mi

� �
; 0 b θ b 1; ϕ N 0 ð6Þ
3 As is clear from this assumption, to keep the model as simple as possible, I posit a
non-exhaustible resource like land. For a generalization of the model to the case of a
renewable (or exhaustible) resource, see Prasertsom (2010).
where Xi is output, LXi
is production employment, ϕ is a fixed labor

cost,Mi is processed resource use (henceforth “materials” for short), Zi
is the firm's stock of firm-specific knowledge, and FX(⋅) is a standard
neoclassical production function homogeneous of degree one in its
arguments. Technology (Eq. (6)) gives rise to total cost

Wϕ + CX W; PMð ÞZ−θ
i Xi; ð7Þ

where CX(⋅) is a standard unit-cost function homogeneous of degree
one in the wage W and the price of materials PM.

The firm accumulates knowledge according to the R&D technology

Żi = αKLZi ; α N 0 ð8Þ

where Żi measures the flow of firm-specific knowledge generated by
an R&D project employing LZi units of labor for an interval of time dt
and αK is the productivity of labor in R&D as determined by the
exogenous parameter α and by the stock of public knowledge, K.

Public knowledge accumulates as a result of spillovers. When one
firm generates a new idea to improve the production process, it also
generates general-purpose knowledge which is not excludable and
that other firms can exploit in their own research efforts. Firms
appropriate the economic returns from firm-specific knowledge but
cannot prevent others from using the general-purpose knowledge
that spills over into the public domain. Formally, an R&D project that
produces Żi units of proprietary knowledge also generates Żi units of
public knowledge. The productivity of research is determined by some
combination of all the different sources of knowledge. A simple way of
capturing this notion is to write

K = ∫N

0

1
N
Zidi;

which says that the technological frontier is determined by the
average knowledge of all firms.4

2.4. The primary or resources sector

In the primary sector competitive firms hire labor, LM, to extract
and process natural resources, R, into materials, M, according to the
technology

M = FM LM;Rð Þ; ð9Þ

where the function FM(⋅) is a standard neoclassical production
function homogeneous of degree one in its arguments. The associated
total cost is

CM W;pð ÞM; ð10Þ

where CM(⋅) is a standard unit-cost function homogeneous of degree
one in the wage W and the price of resources p.

This is the simplest way to model the primary sector for the
purposes of this paper. Materials are produced with labor and a
natural resource. The natural resource is in fixed endowment and
earns rents. The primary sector competes for labor with the
manufacturing sector. This captures the fundamental inter-sectoral
allocation problem faced by this economy.

3. Equilibrium of the market economy

This section constructs the symmetric equilibrium of the manufac-
turing sector. It then characterizes the equilibriumof theprimary sector.
4 For a detailed discussion of the microfoundations of a spillovers function of this
class, see Peretto and Smulders (2002).
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Finally, it imposes general equilibrium conditions to determine the
aggregate dynamics of the economy. Thewage rate is the numeraire, i.e.,
W≡1.

3.1. Partial equilibrium of the manufacturing sector

The typical manufacturing firm is subject to a death shock.
Accordingly, itmaximizes the present discounted value of net cashflow,

Vi tð Þ = ∫∞
t

e−∫
s

t
r vð Þ + δ½ �dvΠi sð Þds; δ N 0

where e− δt is the instantaneous probability of death. Using the cost
function (Eq. (7)), instantaneous profits are

ΠXi
= Pi−CX 1; PMð ÞZ−θ

i

h i
Xi−ϕ−LZi ;

where LZi is R&D expenditure. Vi is the value of the firm, the price of
the ownership share of an equity holder. The firm maximizes Vi

subject to the R&D technology (Eq. (8)), the demand schedule (Eq.
(5)), Zi(t)N0 (the initial knowledge stock is given), Zj(t′) for t′≥ t and
j≠ i (the firm takes as given the rivals' innovation paths), and ˙Zj t′ð Þ≥0
for t′≥ t (innovation is irreversible). The solution of this problem
yields the (maximized) value of the firm given the time path of the
number of firms.

To characterize entry, I assume that upon payment of a sunk cost
βPiXi, an entrepreneur can create a new firm that starts out its activity
with productivity equal to the industry average.5 Once in the market,
the new firm implements price and R&D strategies that solve a
problem identical to the one outlined above. Hence, a free entry
equilibrium requires Vi=βPiXi.

Appendix A shows that the equilibrium thus defined is symmetric
and is characterized by the factor demands:

LX = Y
�−1
�

1−SMX
� �

+ ϕN; ð11Þ

M = Y
�−1
�

SMX
PM

; ð12Þ

where

SMX ≡
PMMi

CX W; PMð ÞZ−θ
i Xi

=
∂ logCX W; PMð Þ

∂ log PM
:

Associated to these factor demands are the returns to cost
reduction and entry, respectively:

r = rZ≡α
Yθ �−1ð Þ

�N
− LZ

N

� �
−δ; ð13Þ

r = rN≡
1
β

1
�
−N

Y
ϕ +

LZ
N

� �� �
+ Ŷ−N̂−δ: ð14Þ

Note how both rates of returns depend positively on firm size Y/N.

3.2. General equilibrium

Competitive resource-processing firms produce up to the point
where PM=CM(1,p) and demand factors according to:

R = SRM
MPM
p

= Y
�−1
�

SMX S
R
M

p
; ð15Þ
5 See Etro (2004) and, in particular, Peretto and Connolly (2007) for a more detailed
discussion of the microfoundations of this assumption.
LM = 1−SRM
� �

MPM = Y
�−1
�

SMX 1−SRM
� �

; ð16Þ

where

SRM≡
∂ log CM W;pð Þ

∂ log p

and I have used Eqs. (11) and (12) to obtain the expressions after the
second equality sign. These factor demands yield that the competitive
resource firms make zero profits.

Equilibrium of the primary sector requires R=Ω. One can thus
think of Eq. (15) as the equation that determines the price of the
natural resource, and therefore resource income for the household,
given the level of economic activity, measured by expenditure on
consumption goods Y.

The remainder of the model consists of the household's budget
constraint (Eq. (2)), the labor demands (Eqs. (11) and (16)), the
returns to saving, cost reduction and entry in Eqs. (4), (13) and (14).
The household's budget constraint becomes the labor market clearing
condition (see Appendix A for the derivation):

L = LN + LX + LZ + LM;

where LN is aggregate employment in entrepreneurial activity, LX+LZ
is aggregate employment in production and R&D operations of
existing firms and LM is aggregate employment of resources-
processing firms. Assets market equilibrium requires equalization of
all rates of return (no-arbitrage), r=rA=rZ=rN, and that the value of
the household's portfolio equals the value of the securities issued by
firms, A=NV=βY.

3.3. Dynamics

Substituting A=βY into Eq. (2) and using the rate of return to
saving Eq. (4), I obtain

Y−L−pΩ
Y

= βρ:

Then, letting y≡Y
L
denote expenditure per capita and ω≡Ω

L
denote

the endowment ratio, I can use this expression, the demand for the
resource (Eq. (15)) and the condition R=Ω to study the instanta-
neous equilibrium (p⁎,y⁎) as the intersection of the two curves:

y =
1 + pω
1−βρ

; ð17Þ

y =
1

1−βρ− �−1
�

SRM pð ÞSMX pð Þ
: ð18Þ

The first describes how resource income determines expenditure on
consumption goods; the second how expenditure drives demand
for the factors of production and thereby determines resource
income.

The interpretation of this solution is that the interaction of the
resource and manufacturing goods markets with the expenditure
decision of the household determines the endogenous but constant
values of all of the relevant nominal variables (given my choice of
numeraire W≡1). As in first-generation endogenous growth models,
this property yields at any point in time a constant interest rate and
simplifies drastically the overall dynamics, the difference is that here
the constant interest rate does not yield a jump to the steady state but
a smooth transition.

To see this, note that given the pair (p⁎,y⁎), Y ⁎=Ly⁎ is constant and
the Euler equation (Eq. (4)) yields r⁎=ρ. Assuming that the economy
is always in the region where firms invest in vertical R&D (see
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Appendix A for details), this result allows me to solve Eqs. (8) and
(13) for

Ẑ = α
LZ
N

=
Y ⁎

N
αθ �−1ð Þ

�
−ρ−δ: ð19Þ

Substituting this result into Eq. (14) then yields

N̂ =
1
β

1−θ �−1ð Þ
�

− ϕ−ρ + δ
α

� �
N
Y ⁎

� �
− ρ + δð Þ:

The general equilibrium of the model thus reduces to a single
differential equation in the mass of firms. The economy converges to

N⁎ =

1−θ �−1ð Þ
�

− ρ + δð Þβ

ϕ−ρ + δ
α

Y ⁎; ð20Þ

which substituted into Eq. (19) yields

Ẑ⁎ =
ϕα− ρ + δð Þ

1−θ �−1ð Þ
�

− ρ + δð Þβ
θ �−1ð Þ

�
− ρ + δð Þ: ð21Þ

This steady-state growth rate is independent of the endowments L
and Ω because there is no scale effect.

It is insightful to use the value N⁎ in Eq. (20) and rewrite the
differential equation for N as

N̂ = ν 1− N
N⁎

� �
; ν≡1−θ �−1ð Þ

β�
− ρ + δð Þ ð22Þ

which is a logistic (see, e.g., Banks, 1994) with growth coefficient ν
and carrying capacity N⁎. It has the solution

N tð Þ = N⁎

1 + e−νt N⁎

N0
−1

� � ; ð23Þ

where N0 is the initial condition.
The interpretation of this extremely tractable structure is that at

any point in time the equilibrium of factors market and the
consumption/saving decision of the household determine the size of
the market for manufacturing goods Y⁎. This, in turn, determines the
carrying capacity coefficient N⁎ in the logistic equation characterizing
the equilibrium proliferation of products in the economy.

4. Properties of the equilibrium: technology, the path of consumption
and welfare

Recall that the variable y studied in the previous section is not
consumption per capita but expenditure per capita. To get consump-
tion per capita, y needs to be divided by the economy's CPI,

PY = ∫N

0
P1−�
j dj

h i 1
1−�

:

Accordingly, since manufacturing firms set prices at a markup
�

�−1
over marginal cost (see Appendix A), in symmetric equilibrium the
flow of consumption in the utility function (Eq. (3)), is

y
PY

=
�−1
�

y⁎

c⁎
N

1
�−1

Zθ
;

where

c⁎≡CX 1;CM 1; p⁎
� 	� 	

:

Consequently, we have

log u⁎ = log
�−1
�

y⁎

c⁎
ZθN

1
�−1

 !
:

We can reinterpret the utility function (Eq. (3)) as a production
function for a final homogenous good assembled from intermediate
goods, so that u is a measure of output, and define aggregate TFP as

T≡ZθN
1

�−1: ð24Þ

The key property of the model, then, is that the analytical solution for
the path N(t) yields the analytical solution for the path T(t).

To see this, observe first that taking logs and time derivatives Eq.
(24) yields

T̂ tð Þ = θẐ tð Þ + 1
�−1

N̂ tð Þ;

where Ẑ tð Þ is given by Eq. (19) and N̂ tð Þ by Eq. (22). In steady state we
thus have

T̂ ⁎ = θẐ⁎≡g⁎;

which is independent of the endowments L and Ω, and thus of ω.
Moreover, according to Eq. (20) in steady state we have

Y ⁎

N⁎
=

Y0
N0

⇒
Y ⁎

Y0
=

N⁎

N0
:

We can thus define

Δ⁎≡N⁎

N0
−1 =

Y ⁎

Y0
−1;

which is the percentage change in expenditure that the economy
experiences in response to changes in fundamentals and/or policy
parameters. In the interpretation proposed earlier, it fully summarizes
the effects of such changes on the scale of economic activity and, in
particular, on the economy's carrying capacity for firms/products. The
mechanism underlying my results, therefore, is an impulse-response
dynamics where Δ⁎ is the (permanent) impulse and the logistic
equation (Eq. (23)) governs the response. The following proposition
states the result formally.

Proposition 1. Let log u⁎(t) and U⁎ be, respectively, the instantaneous
consumption index (3) and the welfare function (1) evaluated at y⁎.
Then, a path starting at time t=0 with initial condition N0 and
converging to the steady state N⁎ is characterized by:

log T tð Þ = log T0 + g⁎t +
γ
ν

+
1

�−1

� �
Δ⁎ 1−e−νt
� �

; ð25Þ

where

γ≡ θ
αθ �−1ð Þ

�

ϕ−ρ + δ
α

1−θ �−1ð Þ
�

− ρ + δð Þβ
:
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Therefore,

log u⁎ tð Þ = log
y⁎

c⁎
+ g⁎t +

γ
ν

+
1

�−1

� �
Δ⁎ 1−e−νt
� �

; ð26Þ

where without loss of generality
�−1
�

T0 = 1. Upon integration this yields

U⁎ =
1
ρ

log
y⁎

c⁎

� �
+

g⁎

ρ
+ μΔ⁎

� �
; ð27Þ

where

μ ≡
γ +

ν
�−1

ρ + ν
:

Proof. See Appendix A. □
Theway themodel'smechanismworks, then, is straightforward. First,

the lack of scale effects implies that the endowment shock studied in this
paper does not affect steady-state TFP growth g⁎. Second, the endowment
shock perturbs the equilibrium of the resource market and causes the
resource price p⁎ to fall. This in turn has two effects: it yields a change in
the household resource income p⁎Ω, which, through the intertemporal
consumption-saving choice, shows up as an instantaneous change in
expenditure per capita y⁎, and a fall in the CPI due to the fall of the cost of
productionof consumptiongoods c⁎. The change inexpenditure is seenby
firms and entrepreneurs as a change in market size Y⁎ that triggers
changes in the level and composition of R&D activity and thereby a
temporary deviation of the economy's growth rate of TFP g(t) from its
steady-state value g ⁎. The temporary change in the growth rate of TFP
drives the temporary deviation of the rate of decay of the economy's CPI
from its steady-state value and thereby the temporal evolution of
consumption.

Proposition 1 pulls all these effects together as follows: the
transitional component of the TFP operator in Eq. (25) summarizes
the cumulated gain/loss due to above/below steady-state cost
reduction and product variety expansion; the expression for flow
utility (Eq. (26)) shows separately the initial jump due to y⁎/c⁎ and
the smooth evolution due to T; the expression for (27) then shows
how upon integration the path of utility collapses to a single number
whose value changes with Ω through two channels: steady-state
(real) expenditure calculated holding technology constant, i.e., the
initial jump in consumption, and the transitional acceleration/
deceleration of TFP relative to the steady-state path.

5. Resource abundance, growth and welfare

This section begins with a discussion of the conditions under
which a change in the endowment ratio raises or lowers consumption
expenditure so that the market for manufacturing goods expands or
contracts. It then shows how the interaction of the initial change in
consumption and the transition dynamics after the shock produce a
change in welfare whose sign can be assessed analytically.

5.1. Expenditure and prices

The first step in the assessment of the effects of resource abundance
is to use Eqs. (17) and (18) to characterize expenditure and prices. The
following property of the demand functions (12) and (15) is useful.

Lemma 2. Let:

�
M
X ≡−

∂ log M
∂ log PM

= 1−∂ log SMX
∂ log PM

= 1−∂ SMX
∂ PM

PM
SMX

;

�
R
M≡−

∂ log R
∂ log p

= 1−∂ log SRM
∂ log p

= 1−∂ SRM
∂p

p
SRM

:

Then,

∂ SRM pð ÞSMX pð Þ
� �

∂p = Γ pð Þ S
R
M pð ÞSMX pð Þ

p
; ð28Þ

where

Γ pð Þ≡ 1−�
M
X pð Þ

� �
SRM pð Þ + 1−�

R
M pð Þ:

Proof. See Appendix A. □
Γ(p) is the elasticity of SMR (p)SXM(p) with respect to p. According to

Eq. (12), therefore, it is the elasticity of the demand for the resource R
with respect to its price p, holding constant expenditure per capita y. It
thus captures the partial equilibrium effects of price changes in the
resource and materials markets for given market size and regulates
the shape of the income relation. Differentiating Eq. (18), rearranging
terms and using Eq. (15) yields

d log y pð Þ
dp

=

ε−1
ε

d SRM pð ÞSMX pð Þ
� �

dp

1−βρ− ε−1
ε

SRM pð ÞSMX pð Þ
= ωΓ pð Þ;

which says that the effect of changes in the resource price on
expenditure on manufacturing goods depends on the overall pattern
of substitution that is reflected in the price elasticities of materials and
resource demand and in the resource share of materials production
costs. To see the pattern most clearly, pretend for the time being that
Γ(p) does not change sign with p. I comment later on how allowing
Γ(p) to change sign for some p makes the model even more
interesting. The following proposition states the results formally,
Fig. 1 illustrates the mechanism.

Proposition 3. Suppose that Γ(p) is positive, zero or negative for all p.
Then, there are three cases.

1. Complementarity. This occurs when Γ(p)N0 and the income relation
(18) is a monotonically increasing function of p with domain
p∈ [0,∞) and codomain y∈ [y⁎(0),y⁎(∞)), where

y⁎ 0ð Þ = 1

1−βρ− �−1
�

SRM 0ð ÞSMX 0ð Þ
;

y⁎ ∞ð Þ = 1

1−βρ− �−1
�

SRM ∞ð ÞSMX ∞ð Þ
:

Then there exists a unique equilibrium (p⁎(ω),y⁎(ω)) with the
property:

p⁎ ωð Þ : 0;∞ð Þ→ ∞;0ð Þ; dp⁎ ωð Þ
dω

b 0 ∀ω;

y⁎ ωð Þ : 0;∞ð Þ→ y⁎ ∞ð Þ; y⁎ 0ð Þ½ Þ; dy⁎ ωð Þ
dω

b 0 ∀ω:

2. Cobb–Douglas-like economy. This occurswhen SM
R and SX

M are exogenous
constants, Γ(p)=0 and the income relation (18) is the flat line

y =
1

1−βρ− �−1
�

SRMS
M
X

≡ y⁎
CD:



p 

y 

p 

expenditure 

expenditure 

p*

p*

income 

income 

y*(∞)

y*(∞)

y*

y*

y*(0)

y*(0)

Fig. 1. General equilibrium: monotonic income relation.
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Fig. 2. General equilibrium: hump-shaped income relation.
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Then there exists aunique equilibrium (pCD⁎ (ω),yCD⁎ )with theproperty:

p⁎
CD ωð Þ : 0;∞ð Þ→ ∞;0ð Þ; dp⁎ ωð Þ

dω
b 0 ∀ω:

3. Substitution. This occurs when Γ(p)b0 and the income relation (18) is
a monotonically decreasing function of p with domain p∈ [0,∞) and
codomain y∈(y⁎(∞),y⁎(0)], where

y⁎ ∞ð Þ = 1

1−βρ− �−1
�

SRM ∞ð ÞSMX ∞ð Þ
;

y⁎ 0ð Þ = 1

1−βρ− �−1
�

SRM 0ð ÞSMX 0ð Þ
:

Then there exists a unique equilibrium (p⁎(ω),y⁎(ω)) with the
property:

p⁎ ωð Þ : 0;∞ð Þ→ ∞;0ð Þ; dp⁎ ωð Þ
dω

b 0 ∀ω;

y⁎ ωð Þ : 0;∞ð Þ→ y⁎ ∞ð Þ; y⁎ 0ð Þ
 	
;
dy⁎ ωð Þ
dω

N 0 ∀ω:

Proof. See Appendix A. □
I refer to the second case as theCobb–Douglas-like economybecause

this seemingly special configuration, requiring �MR =1+(1−�XM)SMR , is
in fact quite common in the literature as it occurs when both
technologies are Cobb–Douglas and �XM=�MR =1.

Proposition 3 says that the effect of resource abundance on the
resource price is always negative, while the effect on expenditure
changes sign according to the substitution possibilities between labor
and materials in manufacturing and between labor and the natural
resource in materials production. This brings us to the observation
that if Γ(p) changes sign for some p, the model generates endoge-
nously a switch from substitution to complementarity. Fig. 2, where
the income relation (Eq. (18)) is a hump-shaped function of p,
illustrates this case.

The pattern is best captured by looking at the properties of the
function Γ(p). Using the definitions in Lemma 2,

dΓ pð Þ
dp

= − d�MX PMð Þ
dPM

dPM
dp

SRM pð Þ

+ 1−�
M
X PMð Þ

� �
1−εRM pð Þ
� �

− d�RM pð Þ
dp

:

This derivative is negative if the following two conditions hold:

• the elasticities �XM and �MR are increasing in PM and p, respectively;
• the terms 1−�XM and 1−�MR have opposite sign.

The hump-shaped income relation in Fig. 2 then obtains if Γ (0)N0
and Γ(∞)b0. The second condition says that if demand in one sector
is elastic, say 1b�XM, then demand in the other sector is inelastic,
1N�MR . Below I provide an example of how one can use CES
technologies to construct an economy where these conditions hold.
Here I discuss the general property.

Proposition 4. Suppose that there exists a price –p where Γ(p) changes
sign, from positive to negative, so that the income relation (18) is a
hump-shaped function of p with domain p∈ [0,∞) and codomain
y∈ [y⁎(0),y⁎(∞)) or y∈ [y⁎(∞),y⁎(0)), where

y⁎ 0ð Þ = 1

1−βρ− �−1
�

SRM 0ð ÞSMX 0ð Þ
;

y⁎ ∞ð Þ = 1

1−βρ− �−1
�

SRM ∞ð ÞSMX ∞ð Þ
:

Then there exists a unique equilibrium (p⁎(ω),y⁎(ω)) with the
property:

p⁎ ωð Þ : 0;∞ð Þ→ ∞;0ð Þ; dp⁎ ωð Þ
dω

b 0 ∀ω;

y⁎ ωð Þ : 0;∞ð Þ→ y⁎ ∞ð Þ; y⁎ 0ð Þ½ Þ; dy⁎ ωð Þ
dω

N

b
0 ω

b

N
ω
;

Where ω̅ is the value of ω such that p* (ω)̅=p̅.



Case 1: Γ < 0 < Ψ 
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Case 2: 0 < Γ < Ψ 

Case 3: 0 < Ψ < Γ

t 

logu*(t)

t = 0

Fig. 3. The path of consumption.

6 Notice that this includes theCobb–Douglas economysince in that case 1=�XM=�MR and
growth does not respond to ω at all while lower prices yield higher utility.
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Proof. See Appendix A. □
The main message of this analysis is that resource abundance raises

expenditure, and thereby results into a larger market for manufacturing
goods, when the economy exhibits overall substitution between labor
and resources (processed and raw) in themanufacturing of consumption
goods and the processing of the natural resource into materials.
Conversely, when the economy exhibits overall complementarity
resource abundance results into a smaller market for manufacturing
goods. More importantly, whether the economy exhibits substitution or
complementarity depends on equilibrium prices and thus on the
endowment ratio itself. In other words, there are solid reasons to expect
that the effect of the endowment ratio on thepathof consumption isnon-
monotonic.

5.2. The path of consumption and welfare

For concreteness, consider an economy in steady state (p⁎,y⁎) and
imagine an increment dω in its endowment ratio. Then, by
construction we have

Δ⁎ =
y⁎ ωð Þ + dy⁎ ωð Þ

dω
y⁎ ωð Þ −1 =

1
y⁎ ωð Þ

dy⁎ ωð Þ
dω

and we can use the results of the previous section in a straightforward
manner. Let us look first at the initial effect on consumption.

Proposition 5. The impact effect of the change in the endowment ratio
is

d log
y⁎ ωð Þ
c⁎ ωð Þ
� �
dω

= Γ p⁎ ωð Þ� 	
−Ψ p⁎ ωð Þ� 	
 �

ω
dp⁎ ωð Þ
dω

; ð29Þ

where

Ψ p⁎ ωð Þð Þ≡ �

�−1ð Þy⁎ ωð Þ = κ−SRM p⁎ ωð Þ� 	
SMX p⁎ ωð Þ� 	

;

κ≡ �

�−1
1−βρð Þ N 1:

Proof. See Appendix A. □

Eq. (26), Proposition 5 and the result in Proposition 3 that
dp⁎ ωð Þ
dω

b 0 in all cases (complementarity, Cobb–Douglas, substitution)

then yield three possible configurations for the path of consumption:

1. Γ(p⁎(ω))b0bΨ(p⁎(ω)). The initial jump is up and then we have a
growth acceleration. Welfare rises.

2. 0bΓ(p⁎(ω))bΨ(p⁎(ω)). The initial jump is up and then we have a
growth deceleration. The welfare change is ambiguous since we
have an intertemporal trade-off.

3. 0bΨ(p⁎(ω))bΓ(p⁎(ω)). The initial jump is down and then we have
a growth deceleration. Welfare falls.

Fig. 3 illustrates these possibilities. Case 2 highlights the need to
look at welfare directly to resolve the ambiguity.

Proposition 6. The welfare effect of a change in the endowment ratio is

dU⁎ ωð Þ
dω

=
1

ρ−λ
1 + μð ÞΓ p⁎ ωð Þ� 	

−Ψ p⁎ ωð Þ� 	
 �
ω
dp⁎ ωð Þ
dω

: ð30Þ
Proof. See Appendix A. □
We can then characterize four scenarios for welfare.

1. The rise of the endowment ratio generates a growth acceleration
associated to an initial jump up in consumption when

1 + μð ÞΓ p⁎ ωð Þ� 	
bΓ p⁎ ωð Þ� 	

≤ 0 bΨ p⁎ ωð Þ� 	
:

In this case welfare rises unambiguously because the whole path
of utility after the shock lies above the pre-shock path.6

2. The rise of the endowment ratio causes a growth deceleration, but
the deceleration is offset by the fact that resource abundance
reduces prices and raises the level of consumption. This happens
when

0 b Γ p⁎ ωð Þ� 	
b 1 + μð ÞΓ p⁎ ωð Þ� 	

bΨ p⁎ ωð Þ� 	
:

In this case as well welfare rises.
3. The rise of the endowment ratio generates a growth deceleration

that dominates over the initial jump up in consumption when

0 b Γ p⁎ ωð Þ� 	
bΨ p⁎ ωð Þ� 	

b 1 + μð ÞΓ p⁎ ωð Þ� 	
:

In contrast to the previous case, welfare now falls.
4. The rise of the endowment ratio generates a growth deceleration

associated to an initial fall of consumption when

0 bΨ p⁎ ωð Þ� 	
b Γ p⁎ ωð Þ� 	

b 1 + μð ÞΓ p⁎ ωð Þ� 	
:

This is the worst-case scenario in which welfare clearly falls
because the whole path of utility after the shock is below the pre-
shock one.

To map these scenarios into values of the endowment ratio itself it
is useful (albeit not necessary) to impose more structure.



ω ω~

Ψ(  )
(1+  ) ω

ω
μ Γ(  )

κ

X

X

σ
σ

−
−
1

(  )ω

ω
Γ

M

M

σ
σ
−

−
1

Fig. 4. The endowment ratio and equilibrium outcomes.
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5.3. The role of ω: a CES economy

Consider the following technologies:

Xi = Zθ
i ψX LXi

−ϕ
� �σX + 1−ψXð ÞMσX

i

h i 1
σX; σX≤1;

M = ψML
σM
M + 1−ψMð ÞRσM


 � 1
σM; σM≤1:

From the associated variable unit-cost functions (see Appendix A) one
derives (recall that W≡1):

SMX =
1

1 +
ψX

1−ψX

� � 1
1−σX P

σX

1−σX
M

; �
M
X = 1 +

σX

1−σX
1−SMX
� �

;

SRM =
1

1 +
ψM

1−ψM

� � 1
1−σM p

σM

1−σM

; �
R
M = 1 +

σM

1−σM
1−SRM
� �

:

As is well known, the CES contains as special cases the linear
production function (σ=1) wherein inputs are perfect substitutes,
the Cobb–Douglas (σ=0) wherein the elasticity of substitution
between inputs is equal to 1, and the Leontief (σ=−∞) wherein
inputs are perfect complements.

Let:

Γ ωð Þ≡Γ p⁎ ωð Þð Þ = 1−�
M
X p⁎ ωð Þð Þ

� �
SRM p⁎ ωð Þð Þ + 1−�

R
M p⁎ ωð Þð Þ;

Ψ ωð Þ≡Ψ p⁎ ωð Þð Þ = κ−SRM p⁎ ωð Þð ÞSMX p⁎ ωð Þð Þ:

Observe that if σXN0 and σMN0, then Γ(p)b0 for all p and growth
always accelerates. If σXb0 and σMb0, instead, Γ(p)N0 for all p and
growth always slows down. Interestingly, if σX and σM have opposite
signs we can capture how the economy moves from one case to the
other as the endowment ratio changes. Specifically, let σXN0 and
σMb0 so that the manufacturing sector exhibits gross substitution
between labor and materials while the resource sector exhibits gross
complementarity between labor and raw resources. Recall that this
means that demand for processed resources, i.e., materials, in the
manufacturing sector is elastic, while demand for raw resources in the
primary sector is inelastic.

It is then straightforward to obtain the following three cases.

1. Welfare rises because growth accelerates and the initial jump in
consumption is up when

Γ ωð Þ≤0⇔0 bω b
–ω:

2. Welfare rises because the initial jump up in consumption
dominates the growth deceleration when

0b 1 + μð ÞΓ ωð ÞbΨ ωð Þ⇔ω bω b ω̃:

3. Welfare falls because the initial jump up in consumption is
dominated by the growth deceleration when

0bΨ ωð Þb 1 + μð ÞΓ ωð Þ⇔ ω̃ bω b∞:

Fig. 4 illustrates this analysis. Appendix A establishes formally the
properties of the curves Γ(ω) and Ψ(ω) used in the figure to find the
threshold values of the endowment ratio. Here I focus on the
economics.
First, and most important: Why does the overall pattern of
substitution/complementarity matter so much for growth and
welfare? Because it regulates the reduction in the price p required
for the economy to absorb the extra endowment of Ω relative to L.
Moreover, the primary and manufacturing sectors are vertically
related so the adjustment involves the interdependent responses of
PM to the increase in supply of processed resources and of p to the
increase in supply of raw resources. Now, inelastic demand means
that the price has to fall drastically to induce the market to absorb the
additional quantity. Hence, if demand is inelastic in both sectors the
overall adjustment requires drastic drops in both PM and p. What
matters is that the drastic fall of p results in a fall of resources income
pω which depresses expenditure y. This is the case ΓN0. In contrast, if
demand is elastic in both sectors the overall adjustment requires mild
drops in prices. The crucial difference is that in this case Γb0 so that
resources income pω rises because the quantity effect dominates the
price effect.

With this intuition in hand, we can now interpret the analytical
results of the model. The function Γ(ω) starts out negative and
increases monotonically, changing sign at ω and converging to its
positive upper bound as ω→∞. To see this, write

Γ′ ωð Þ = dΓ p⁎ð Þ
dp⁎

dp⁎

dω
N 0 ∀ω

and observe that this economy satisfies the conditions for dΓ(p)/
dpb0∀p, namely: �XMN1 and increasing in PM; �MR b1 and increasing in p.

The function Ψ(ω) is hump-shaped with a peak exactly at –ω,
where Γ(ω) changes sign. The reason is that this is the value where the
derivative of SMR (p)SXM(p) with respect to p equals zero. Notice also that
Γ(ω)bΨ(ω) for all ω (see Appendix A for the proof) so that Case 3
from Fig. 3 and Scenario 4 from the analysis of welfare no longer apply
because initial consumption cannot fall.

The resulting pattern is the following: The endowment ratio is initially
very low and prices are very high, that is, ω→0⇒p→∞⇒PM=CM
(1,p)→∞. Under these conditions, Γ(0)b0bΨ(0) so that an increase inω
produces a growth acceleration associated to a jump up in initial
consumption. Intuitively, this says that in a situation of extreme scarcity
and extremely high price a helicopter drop of natural resource is good. As
the relative endowment grows, the overall pattern of substitution
changes. In particular, Γ(ω) changes sign at ω = –ω and we enter the
regionwherewe get a “curse of natural resources” because an increase in
resource abundance yields a decrease in expenditure on manufacturing
goods that triggers a slowdown of TFP growth. This, “curse”, however, is
not really a curse since we are to the left of ω̃ and the slowdown is



151P.F. Peretto / Journal of Development Economics 97 (2012) 142–155
associated to an initial jump up in consumption that dominates in the
intertemporal trade-off. Aswekeepmoving to the right andenter thenext
region, ω̃ bω b∞, the growth deceleration is again associated to an initial
jump up in consumption but now the deceleration dominates in the
intertemporal trade-off and welfare falls. It is here that we have a curse.

In the analysis above I set σMb0 and σXN0 because resource
economists see poor substitution in the resource-intensive sector and
good substitution in manufacturing as the empirically plausible
configuration. The model, however, provides a complete character-
ization for any configuration of substitution/complementarity across
the two sectors. It is useful to look at one that generates the initial fall
in consumption ruled out under σMb0 and σXN0. Recall that if σMb0
and σXb0 we have Γ(p)N0 for all p and the “curse” always occurs
because dy⁎/dωb0 for all ω. Interestingly, in this case the Γ(ω) and
Ψ(ω) curves are both monotonically increasing in ω with Γ(0)=0,
Ψ(0)=κ−1, Γ(∞)=−σM/(1−σM), and Ψ(∞)=κ. Consequently, if
we assume κb−σM/(1−σM) the curves intersect and there exists
a threshold value of ω such that for ω larger than that value
Ψ(ω)bΓ(ω). This is the condition for Case 3 from Fig. 3 and Scenario 4
from the analysis of welfare where initial consumption falls. The
intuition for this property is that by setting σXb0 we impose
complementarity in manufacturing as well and we exacerbate its
adverse effects throughout the economy's vertical production struc-
ture. When σXN0, in contrast, substitution in manufacturing softens
the adverse effect experienced by the resource processing sector and
precludes the initial fall of consumption.

It is useful to close this section with some remarks on the
generality of the analysis. CES technologies yield a highly tractable
structure. However, they are restrictive in that they yield that within
each sector demand is either always inelastic or always elastic. To
obtain the economy-wide cross over from complementarity to
substitution one then needs to exploit the sectoral composition effect
and posit that σX and σM have opposite sign. Nevertheless, the results
of Section 5.2 do not require this assumption. Inspection of the
function Γ(ω) suggests that to obtain Γ(0)b0 and Γ(∞)N0, and
therefore the threshold –ω, all that are needed are technologies that
deliver price elasticities of demand that start out below one and turn
larger than one as the price of the good rises.

5.4. The labor reallocation

It is insightful to characterize the economy's reallocation of labor
across sectors in detail. Using Eq. (16) we have

LM
L

= y
�−1
�

SMX 1−SRM
� �

:

It is then easy to show that (see Appendix A)

d
dω

LM
L

� �
N 0 ∀ω;

so that, intuitively, resource abundance yields a reallocation of labor
from manufacturing to primary production. This result implies that

LX
L

+
LZ + LN

L
= 1− LM

L

falls to its new steady state value when ω increases.
This is an interesting property as it says that there is a reallocation

of labor from production of manufacturing goods to production of
materials, but that this reallocation is not necessarily associated to a
TFP slowdown. This is a fundamental difference between this model
and models that generate the curse of natural resources by tying
productivity growth to manufacturing employment through learning
by doing mechanisms.
Since the inter-sectoral reallocation is instantaneous, the dynamics
that drive the time path of TFP take place within manufacturing.
Eqs. (4), (14) and the formulation of the entry cost yield

LZ + LN
L

=
LZ
L

+
Ṅ
L ⋅ β

Y
N
:

Recall that Y jumps on impact to its steady-state value Y ⁎=Ly⁎

while N is predetermined and does not jump. Then, using Eq. (23) at
any time t we have

LZ + LN
L

= y⁎
1
�
−β ρ + δð Þ− ϕ

1 + e−νtΔ⁎

N⁎

Y ⁎

� �
;

where we know from the analysis of Section 3 that
N⁎

Y ⁎
is independent

of ω. Thus, when the economy experiences a growth acceleration
because y⁎ rises, the R&D share of employment jumps up and
converges from above to a permanently higher value, while the ratio
LX
L

jumps down and converges from below to a permanently lower

value. The reverse happens when y⁎ falls and the economy
experiences a growth deceleration.

6. Conclusion

The debate on whether natural resource abundance is good or bad
for the long-run fortunes of the economy is almost as old as economics
itself. To contribute to this debate—and expand its scope—in this paper I
developed a closed economy Schumpeterian model of R&D-driven
endogenous growth that incorporates an upstream resource-intensive
sector. The model yields the analytical solution for the transition path
and thus allows one to resolve the intertemporal trade-off and
determine whether the effects of natural resource abundance on initial
income and growth yield an increase or a decrease in welfare. I found
that resource abundance has non-monotonic effects on growth and
welfare. More precisely, following the classic procedure for the
construction of growth regressions (Barro and Sala-i-Martin, 2004), I
showed that average growth over a time interval and the associated
welfare level can be represented as hump-shaped functions of resource
abundance.

The non-monotonic effect of resource abundance on welfare
suggests that there is an optimal value of the endowment ratio. Since
for simplicity the model considers a non-exhaustible resource that
provides a constantflow of productive services—land, for example—and
assigns diffuse ownership of it to atomistic households, it is not
immediate to extract policy implications from this optimality result. It is
plausible toenvision institutional arrangements that regulate the supply
of the resource services in order to prevent the economy from moving
into the downward sloping part of the welfare curve. But this would
require changing drastically the model's assumptions about ownership
and owners' freedom of use of the resource, something surely
interesting but beyond the scope of this paper. Extending the model
to the case of exhaustible or renewable resources—where it is more
natural to think of supply decisions that regulate the ratio of resource
services to labor services available to producers—is another promising
and intuitive way to pursue further this insight (for an example, see
Prasertsom, 2010).

Appendix A

A.1. The decisions of firms and entrepreneurs

Consider the Current Value Hamiltonian

CVHi = Pi−CX 1; PMð ÞZ−θ
i

h i
Xi−ϕ−LZi + ziαKLZi ;
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where the firm's knowledge, Zi, is the state variable, R&D investment,
LZi, and the product's price, Pi, are the control variables, zi is the
shadow value of Zi and the firm takes public knowledge, K, as given.

Since the Hamiltonian is linear, one has three cases. The case
1NziαK implies that the value of the marginal unit of knowledge is
lower than its cost. The firm, then, does not invest. The case 1bziαK
implies that the value of the marginal unit of knowledge is higher
than its cost. Since the firm demands an infinite amount of labor to
employ in R&D, this case violates the general equilibrium conditions
and is ruled out. The first order conditions for the interior solution are
given by equality between marginal revenue and marginal cost of
knowledge, 1=ziαK, the constraint on the state variable, Eq. (8), the
terminal condition,

lim
s→∞

e−∫s
t r vð Þ + δ½ �dvzi sð ÞZi sð Þ = 0;

and a differential equation in the costate variable,

r + δ =
żi
zi

+ θCX 1; PMð ÞZ−θ−1
i

Xi

zi
;

that defines the rateof return toR&Das the ratio between revenues from
the knowledge stock and its shadowprice plus (minus) the appreciation
(depreciation) in the value of knowledge. The revenue from the
marginal unit of knowledge is given by the cost reduction it yields
times the scale of production to which it applies. The price strategy is

Pi = CX 1; PMð ÞZ−θ
i

�

�−1
: ð31Þ

Peretto (1998, Proposition 1) shows that under the restriction
1Nθ(�−1) the firm is always at the interior solution, where 1=ziαK
holds, and equilibrium is symmetric.

The cost function (7) gives rise to the conditional factor demands:

LXi
=

∂CX W; PMð Þ
∂W Z−θ

i Xi + ϕ;

Mi =
∂CX W; PMð Þ

∂PM
Z−θ
i Xi:

Then, Eq. (31), symmetry and aggregation across firms yield Eqs. (11)
and (12).

Also, in symmetric equilibrium K=Z=Zi yields K̇ = K = αLZ =N,
where LZ is aggregate R&D. Taking logs and time derivatives of
1=ziαK and using the demand curve (Eq. (5)), the R&D technology
(Eq. (8)) and the price strategy (Eq. (32)), one reduces the first-order
conditions to Eq. (13).

Taking logs and time-derivatives of Vi yields

r + δ =
ΠXi

Vi
+

V̇ i

Vi
;

which is a perfect-foresight, no-arbitrage condition for the equilibrium
of the capitalmarket. It requires that the rate of return tofirmownership
equal the rate of return to a loan of size Vi. The rate of return to firm
ownership is the ratio betweenprofits and the firm's stockmarket value
plus the capital gain (loss) from the stock appreciation (depreciation).

In symmetric equilibrium the demand curve (Eq. (5)) yields that

the cost of entry is β
Y
N
. The corresponding demand for labor in entry is

LN = Ṅ + δN
� �

β
Y
N
:

The case V N β
Y
N

yields an unbounded demand for labor in entry,

LN=+∞, and is ruled out since it violates the general equilibrium
conditions. The case Vb β
Y
N

yields LN=−∞, which means that the

non-negativity constraint on LN binds and Ṅ = −δN, which implies
negative net entry due to the death shock. Free-entry requires

V = β
Y
N
. Using the price strategy (Eq. (31)), the rate of return to

entry becomes Eq. (14).

A.2. The economy's resources constraint

I now show that the household's budget constraint reduces to the
economy's labor market clearing condition. Starting from Eq. (2),
recall that A=NV and r + δð ÞV = ΠX + V̇ . Substituting into Eq. (2)
yields

ṄV = NΠX + L + pΩ + ΠM−Y:

Observing that NΠX=NPX−LX−LZ−PMM, NPX=Y, ΠM=PMM−LM−
pR, R=Ω, and that the free entry condition yields that total employment
in entrepreneurial activity is LN = ˙NV , this becomes

L = LN + LX + LZ + LM:

A.3. Detailed derivation of the logistic equation for N(t)

For simplicity, in the text I focussed on the case in which firms
always invest in vertical R&D. More generally, taking into account
the non-negativity constraint on LZi, the equation getting the rate of
vertical innovation in symmetric equilibrium is

Ẑ = α
LZ
N

=
Y ⁎

N
αθ �−1ð Þ

�
−ρ δ Nb

–
N

0 N≥ –
N
;

8><
>:

where

–
N≡Y ⁎

αθ �−1ð Þ
ρ + δð Þ� :

Substituting this result into Eq. (14) yields

N̂ =

1
β

1−θ �−1ð Þ
�

− ϕ−ρ + δ
α

� �
N
Y ⁎

� �
− ρ + δð Þ Nb

–
N

1
β

1
�
−ϕ

N
Y ⁎

� �
− ρ + δð Þ N≥ –

N
;

8>>><
>>>:

which converges to

N⁎ =

1−θ �−1ð Þ
�

− ρ + δð Þβ

ϕ−ρ + δ
α

Y ⁎

1−θ �−1ð Þ
�

− ρ + δð Þβ
ϕα− ρ + δð Þ b

θ �−1ð Þ
ρ + δð Þ�

1
�
− ρ + δð Þβ

ϕ
Y ⁎

1−θ �−1ð Þ
�

− ρ + δð Þβ
ϕα− ρ + δð Þ ≥ θ �−1ð Þ

ρ + δð Þ�

:

8>>>>>>>><
>>>>>>>>:

These solutions exist only if the feasibility condition
1
�
N ρ + δð Þβ

holds. The interior steady state with both vertical and horizontal R&D
requires the additional conditions αϕNρ+δ and

ρ + δð Þβ +
θ �−1ð Þ

�
b
1
�
b ρ + δð Þβ +

αϕ
ρ + δ

θ �−1ð Þ
�

:

As discussed in detail in Peretto (1998) and Peretto and Connolly
(2007), models of this class have well-defined dynamics also when one
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of the two R&D activities shuts down because it is return-dominated by
the other. The conditions imposed here simply ensure that in steady
state the arbitrage condition that the return to vertical innovation be
equal to the return to horizontal innovation holds for positive values of
both LZ and LN.

A.4. Proof of Proposition 1

Taking logs of Eq. (24) yields

log T tð Þ = θ log Z0 + θ∫t

0
Ẑ sð Þds + 1

�−1
logN tð Þ:

Adding and subtracting Ẑ⁎ from Ẑ tð Þ yield

log T tð Þ = θ log Z0 + gt + θ∫t

0
Ẑ sð Þ− Ẑ⁎

h i
ds +

1
�−1

log N tð Þ:

Using Eq. (19) the integral becomes

θ∫t
0

Ẑ sð Þ− Ẑ⁎

� �
ds = θ

αθ �−1ð Þ
�

∫t

0

Y ⁎

Y sð Þ−
Y ⁎

N⁎

� �
ds

= γ∫t

0

N⁎

N sð Þ−1
� �

ds;

where

γ≡θαθ �−1ð Þ
�

Y ⁎

N⁎
= θ

αθ �−1ð Þ
�

ϕ−ρ + δ
α

1−θ �−1ð Þ
�

−ρβ
:

Finally, Eq. (23) and the definition of Δ⁎ yield

θ∫t

0
Ẑ sð Þ−Ẑ⁎

� �
ds = γ∫t

0 e
−νs N⁎

N0
−1

� �
ds

=
γ
ν
Δ⁎ 1−e−νt
� �

:

Using this result and Eq. (23) again yields

log T tð Þ = log T0 + g⁎t +
γΔ⁎

ν
1−e−νt
� �

+
1

�−1
log

1 + Δ⁎

1 + e−νtΔ⁎
:

Next consider

log u⁎ tð Þ = log
�−1
�

+ log
y⁎

c⁎

� �
+ log T tð Þ

and use the expression just derived to write

log u⁎ tð Þ = log
y⁎

c⁎
+ g⁎t +

γΔ⁎

ν
1−e−νt
� �

+
1

�−1
log

1 + Δ⁎

1 + e−νtΔ⁎
:

Substituting this expression into Eq. (1) yields

U⁎ = ∫∞
0

e−ρt log u⁎ tð Þdt

= ∫∞
0

e−ρt log
y⁎

c⁎

� �
+ g⁎t

� �
dt

+
γ
ν
Δ⁎∫

∞

0
e−ρt 1−e−νt

� �
dt

+
1

�−1
∫

∞

0
e−ρt log

1 + Δ⁎

1 + e−νtΔ⁎
dt:

The first and second integrals have closed form solutions; the third
has a complicated solution involving the hypergeometric function. For
my purposes, it is more useful to work with the following approx-
imation. Since in general log(1+x)≃x, I can rewrite

log
1 + Δ⁎

1 + e−νtΔ⁎
= log 1 + Δ⁎ð Þ−log 1 + e−νtΔ⁎

� �
= Δ⁎ 1−e−νt

� �
;

which yields Eqs. (25), (26) and

U⁎ = ∫∞
0
e− ρ−λð Þt log

y⁎

c⁎

� �
+ g⁎t

� �
dt

+
γ
ν

+
1

�−1

� �
Δ⁎∫∞

0
e− ρ−λð Þt 1−e−νt

� �
dt;

which upon integration yields Eq. (27).

A.5. Proof of Lemma 2

Differentiating and manipulating terms yield:

∂ SMX S
R
M

� �
∂p =

∂SMX
∂p SRM +

∂SR
M

∂p SM
X

=
∂SM

X

∂PM
PM
SMX

⋅
∂PM
∂p

p
PM

⋅
SM
X SRM
p

+
∂SRM
∂p

p
SRM

⋅
SRMS

M
X

p

=
∂SM

X

∂PM
PM
SMX

⋅
∂PM
∂p

p
PM

+
∂SR

M

∂p
p
SRM

" #
SR
MS

M
X

p

=
∂SM

X

∂PM
PM
SM
X
⋅
∂CM

∂p
p
CM

+
∂SR

M

∂p
p
SRM

" #
SRMS

M
X

p
:

Recalling that

∂SMX
∂PM

PM
SMX

= 1−�
M
X ;

∂SRM
∂p

p
SRM

= 1−�
R
M ;

∂CM

∂p
p
CM

= SRM

and substituting into the expression above yields Eq. (28).

A.6. Proof of Proposition 3

Refer to Fig. 1. In the case of complementarity, depicted in the
upper panel, we have the following pattern. For ω→0 the expendi-
ture line (Eq. (17)) is almost, but not quite, flat and intersects the
income relation (Eq. (18)) for p→∞ and y→y⁎(∞). As ω grows, the
expenditure line rotates counterclockwise and the intersection shifts
left, tracing the income relation. We thus obtain that both p⁎ and y⁎

fall. As ω→∞, the expenditure line becomes vertical and the
intersection occurs at p→0 and y→y⁎(0).

In the case of substitution in the lower panel, we have a similar
pattern with the difference that the income relation has negative
slope so that y⁎ increases as the expenditure line rotates counter-
clockwise. Specifically, for ω→0 the expenditure line is almost, but
not quite, flat and intersects the income relation for p→∞ and
y→y⁎(∞). As ω grows, the expenditure line rotates counterclockwise
and the intersection shifts left yielding that p⁎ falls while y⁎ rises. As
ω→∞, the expenditure line becomes vertical and the intersection
occurs at p→0 and y→y⁎(0).

A.7. Proof of Proposition 4

Refer to Fig. 2. The proof is essentially the same as above. The only
difference is that as the expenditure line rotates it traces the hump-
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shaped income relation yielding that p⁎ always falls while y⁎ rises for
0 bω bω and falls for ω bω b∞.

A.8. Proof of Proposition 5

Observe first that

d log
y
c

� �
dω

=
d log y
dω

− d log c
dω

:

Now,

d log y
dω

=
d log y
dp

dp
dω

= ωΓ pð Þ dp
dω

and

d log c
dω

=
1
CX

dCX

dω
=

1
CX

dCX

dPM

dPM
dp

dp
dω

=
PM
CX

dCX

dPM

dPM
dp

p
PM

1
p
dp
dω

=
SM
X SR

M

p
dp
dω

:

Hence,

d log
y
c

� �
dω

= Γ− SM
X SR

M

pω

 !
ω

dp
dω

:

which using Eq. (12) becomes Eq. (30). κN1 follows from the
feasibility condition 1

� N ρ + δð Þβ.

A.9. Proof of Proposition 6

Observe that by construction

dΔ⁎

dω
=

1
y⁎

dy⁎

dω
:

Differentiation of Eq. (27) then yields

dU�

dω
=

1
ρ

d log
y�

c�

� �
dω

+ μ
1
y�

dy�

dω

2
664

3
775

=
1
ρ

1 + μð Þd log y�

dω
−d log c�

dω

� �
:

Using the expressions calculated above and rearranging terms
yield Eq. (31).

A.10. The Γ(ω) and Ψ(ω) curves used in Fig. 4

The Γ(ω) curve. Dropping stars to simplify notation, I have

Γ ωð Þ = − σX

1−σX
1−SM

X p ωð Þð Þ
� �

+
σM

1−σM

� �
SRM p ωð Þð Þ− σM

1−σM
:

Proposition 4 yields that p(0)=∞ and p(∞)=0. Therefore, for
ω→0:

SR
M 0ð Þ = lim

p→∞
1

1 +
ψM

1−ψM

� � 1
1−σM p

σM

1−σM

= 1:

Also,

PM 0ð Þ = lim
p→∞ ψ

M

1
1−σM + 1−ψMð Þ

1
1−σM p

σM

σM−1

" #σM−1
σM = ∞;

so that

SM
X 0ð Þ = lim

PM→∞
1

1 +
ψX

1−ψX

� � 1
1−σX PM

σX

1−σX

= 0:

Consequently,

Γ 0ð Þ = −σX

1−σX
b 0:

In contrast, for ω→∞:

SRM ∞ð Þ = lim
p→0

1

1 +
ψM

1−ψM

� � 1
1−σM p

σM

1−σM

= 0:

Also,

PM ∞ð Þ = lim
p→0

ψ
M

1
1−σM + 1−ψMð Þ

1
1−σM p

σM

σM−1

" #σM−1
σM

= ψ
−

1
σM

M ;

so that

SMX ∞ð Þ = 1

1 +
ψX

1−ψX

� � 1
1−σX ψM

− 1
σM

σX

1−σX

:

Consequently,

Γ ∞ð Þ = −σM

1−σM
N 0:

The next step is to show that the curve is monotonically increasing:

Γ′ ωð Þ = σX

1−σX|{z}
þ

⋅
dSM

X

dPM|{z}
−

⋅
dPM
dp|{z}
þ

⋅
dp
dω|{z}−

⋅ SR
M

+ − σX

1−σX
1−SMX
� �

+
σM

1−σM

� �
|{z}

−

⋅
dSRM
dp|{z}
þ

⋅
dp
dω|{z}
−

N 0:

Finally, by continuity there exists a value ω where Γ ωð Þ = 0.
The Ψ(ω) curve. Again dropping stars, I have

Ψ ωð Þ = κ−SRM p ωð Þð ÞSMX p ωð Þð Þ:
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The limiting behavior at 0 and ∞ is straightforward. The previous
calculations yield:

Ψ 0ð Þ = κ−SRM 0ð ÞSMX 0ð Þ = κ;

Ψ ∞ð Þ = κ−SRM ∞ð ÞSMX ∞ð Þ = κ:

Next observe that

Ψ′ ωð Þ =
d SRM p ωð Þð ÞSMX p ωð Þð Þ
� �

dp ωð Þ
dp ωð Þ
dω

= Γ ωð Þ S
R
M p ωð Þð ÞSMX p ωð Þð Þ

p ωð Þ
dp ωð Þ
dω

;

so that the curve is hump-shaped with its maximum exactly at the
value ω where Γ(ω) changes sign.

The threshold values. Observe that κ N 1 N
−σM

1−σM
. It is evident from

Fig. 2 then that Γ(ω)bΨ(ω) ∀ω. It follows that there is only one
relevant intersection, of Ψ(ω) with (1+μ)Γ(ω), that yields the
threshold value ω̃ such that ω b ω̃.

A.11. The reallocation

The expression for the share of employment in the primary sector
and the expressions derived in the proofs above yield

d
dω

LM
L

� �
=

�−1
�

dy
dω

SMX 1−SRM
� �

+ y
dSMX
dω

−
d SMX S

R
M

� �
dω

2
4

3
5

=
�−1
�

Γ
Ψ

SMX 1−SRM
� �

+ 1−�
M
X −Γ

� �
ω

dp
dω

:

Recall that
dp
dω

b 0. Then

d
dω

LM
L

� �
N 0 ∀ω

because the term in brackets is

Γ
Ψ

SMX −κ
� �

+ 1−�
M
X b 0
since κN1 and 1−εXM b 0 under the assumption that manufacturing
exhibits substitution between labor and materials.
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