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Abstract We study the interactions between technological change, resource scarcity and
population dynamics in a Schumpeterian model with endogenous fertility. We find a steady
state in which population is constant and determined by resource scarcity while income
grows exponentially. If labor and resources are substitutes in production, income and fertility
dynamics are stable and the steady state is the global attractor of the system. If labor and
resources are complements, income and fertility dynamics are unstable and drive the economy
towards either demographic explosion or collapse. We calibrate the model numerically to
match past US data on fertility and land scarcity, obtaining future scenarios for the current
century and quantifying the response of fertility and productivity to exogenous shocks.
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1 Introduction

More than two centuries after the publication of Thomas Malthus’ (1798) Essay on the
Principle of Population, understanding the interactions between economic growth, resource
scarcity and population remains a central aim of scholars in different fields of social sciences.
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The debate revolves around two fundamental questions: (1) whether a larger population is
good or bad for human development and welfare (Birdsall and Sinding 2001; Kelley 2001)
and (2) how population growth changes with economic conditions (Kremer 1993; Wang
et al. 1994). There is an emerging consensus that both subjects should be tackled at the same
time: assessing the consequences of a growing population requires considering the feedback
effects of resource scarcity on fertility (Bloom and Canning 2001). A prominent example is
the literature on unified growth theory (UGT), which seeks to explain the historical phases
of development, from the Malthusian Stagnation to the Industrial Revolution and then the
current regime of sustained growth of per capita incomes (Galor and Weil 2000; Galor 2005,
2011). In the benchmark UGT model, the central mechanism behind economy-environment
interactions is that population growth affects natural resource scarcity and labor productivity,
while income dynamics affects fertility and thus future population growth.

In this paper, we investigate the mechanism linking resource scarcity, incomes and pop-
ulation in a Schumpeterian model of endogenous growth. Our theory delivers an interaction
between income dynamics and fertility but, differently from UGT, the feedback effect of
resource scarcity operates through resource prices and incomes, and may have opposite
directions depending on the degree of substitutability between labor and resources in the
production of intermediate goods. In fact, our main results hinge on a ‘resource price effect’
that is specific to our model, as we discuss below. Our general aim is to build a theory of
economy-environment interactions capable of addressing one of the main future challenges
for modern industrialized economies: how to sustain innovation-driven income per capita
growth in a habitat—Planet Earth—that has finite carrying capacity of people. We tackle
this issue by studying under what circumstances population-resource dynamics generate a
steady state where income per capita grows at a constant (endogenous) rate while population
stabilizes at a constant (endogenous) level.

In our model firms produce intermediate goods using labor and a resource in fixed
aggregate supply—e.g., land—while households make fertility choices according to utility
maximization. We employ a Schumpeterian model of endogenous growth in which horizon-
tal and vertical innovations coexist: firms producing differentiated goods undertake R&D
to increase their total factor productivity while outside entrepreneurs design new products
and set up new firms in order to serve the market (Peretto 1998; Dinopoulos and Thompson
1998). This class of models has received substantial empirical support in recent years (Laincz
and Peretto 2006; Ha and Howitt 2007; Madsen 2008; Madsen et al. 2010; Madsen and Ang
2011) and is particularly useful in addressing our research question because it predicts that the
effect of endowments on growth is only temporary. Specifically, product proliferation, i.e.,
net entry, sterilizes the (strong) scale effect in steady state because it fragments the aggregate
market into submarkets whose size does not increase with the size of the endowments. In
our analysis with endogenous fertility, the elimination of the (strong) scale effect generates
steady states in which population is constant and does not affect productivity growth.

Our first result is that there exists a steady state in which income per capita grows at
a constant rate and population is constant. Importantly, the existence of this steady state
is not due to specific assumptions on fertility preferences but rather to the price effects
generated by the degree of substitutability between labor and resources in the production of
goods: if we impose unit elasticity of input substitution, such steady state disappears and
the long-run growth rate of population is constant. Our second result is that the elasticity
of substitution between labor and resources determines the stability properties of the steady
state. More precisely, if labor and resources are substitutes, the economy converges to the
steady state with constant population for any initial condition. The reason is that population
growth reduces the resource-labor ratio but, due to substitutability, the resource price rises
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only moderately. As a consequence, resource income declines over time relative to labor
income, the fertility rate decreases and population stabilizes in the long run. If labor and
resources are complements, instead, the steady state with constant population is a separating
threshold: if the resource is either initially scarce or abundant, population diverges and we
have demographic explosion or collapse. The reason is that complementarity generates a
self-reinforcing feedback effect: starting from the steady state, a rise in population yields a
resource price increase that raises resource income, boosting fertility and thereby population
growth. If, instead, the deviation from the steady state is toward resource abundance—i.e., a
drop in population—the resource price response induces lower income and further population
decline.

We stress that feedback effects from resource income per capita to fertility decisions are
neutralized in the special case of unit elasticity, i.e., when labor and resources are neither
complements nor substitutes. This conclusion is relevant in three respects. First, it implies
that departing from the hypothesis of Cobb–Douglas technology can be crucial for long-term
predictions on fertility and growth, whereas most related studies assume a unit elasticity
between labor and fixed factors (e.g., Hansen and Prescott 2002; Lucas 2002; Doepke 2004).
Second, the result is important from an empirical perspective since the recent cross-country
evidence rejects the hypothesis of unit elasticity between labor and land (or labor and natural
resources treated as fixed factors: see Ashraf et al. 2008; Weil and Wilde 2009). Third, our
prediction that constant long-run population growth rates only emerge in the Cobb–Douglas
case captures a simple, yet often neglected idea: the hypothesis of exponential population
growth in the long run is clearly at odds with the fact that Planet Earth has a finite carrying
capacity of people.

We complete our analysis by presenting three applications of the model. First, we study
the fertility response to exogenous income shocks, stressing the consistency between our
qualitative results and recent evidence on the fertility–income relationship (Brückner and
Schwandt 2014). Second, we calibrate the model to match the 1960–2012 data on birth rates
and land scarcity in the US, obtaining transitional dynamics that are consistent with the actual
co-evolution of birth rates and income (Jones and Tertilt 2008). Third, using the in-sample
calibration, we construct a reference equilibrium path for the 1960–2100 period. This allows
us to use the US economy as a laboratory to quantify the potential consequences of a future
demographic shock affecting the US from the year 2025 onwards.1

With respect to the existing literature on population-resource interactions, our analysis
differs in both ends and means. In UGT models, consumption goods are produced by means
of human capital and land, population growth affects labor productivity, and the resulting
income dynamics determine fertility rates. Our analysis provides different insights for three
main reasons. First, UGT assigns a central role to human capital whereas our theory focuses
on the fertility response to resource prices: the twomechanisms are notmutually exclusive and
each of them explains different stylized facts that characterized the 20th century.2 Second,
both the nature and the role of technological change are different. In our model, vertical
innovations are Hicks-neutral with respect to labor and land so that technical change is

1 Given the lack of global data, using a specific country as a laboratory allows us to investigate the empirical
and quantitative properties of the model. We show in Sect. 6 below that our model can be applied to a single
economy with a minimum departure from the hypothesis of a closed system.
2 More specifically, with respect to TFP growth our model predicts that fertility and TFP growth are pos-
itively associated along the transition (both decline). Within our framework this outcome is consistent and
intuitive: lower fertility slows down the growth of market size, which reduces the incentive for R&D. In UGT,
instead, fertility and TFP growth are negatively correlated and productivity growth is driven by human capital
accumulation, from which we abstract. We thank an anonymous referee for pointing this out.
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consistent with constant population in the long run; in UGT, instead, technical change is
land-augmenting and lifts the economy out of the Malthusian trap by allowing population to
grow when the subsistence consumption constraint is binding. Third, our main results hinge
on a ‘resource price effect’ that is specific to our model: the response of fertility to increased
resource scarcity may be positive or negative, depending on the strength of the increase
in the market resource price relative to the wage rate. Notably, the resource price effect is
also neglected in the parallel literature on industrial take-offs (e.g., Lucas 2002) because the
existing models either abstract from the resource market or, when they allow for a resource
market, assume a unit elasticity of substitution between labor and resources.3

Considering alternative approaches, there is an established literature on bio-economic sys-
tems that seeks to explain the rise and fall of civilizations by modeling the relation between
population dynamics and resource availability in closed systems (e.g., islands) where natural
resources’ regeneration interacts with human harvesting. These models generate rich dynam-
ics, including feast–famine oscillating paths and/or environmental crises that can eventually
drive human society to extinction (Taylor 2009), and have been calibrated to replicate the
collapse of Easter Island and similar historical episodes (Brander and Taylor 1998; Basener
and Ross 2005; Good and Reuveny 2009). However, they neglect a fundamental element in
the functioning of modern societies: endogenous, innovation-driven productivity growth.

A strand of literature that comes close to our quest for more comprehensive predictions
for future growth in a finite habitat is that on sustainable development, since it embraces a
forward-looking perspective by definition (Pezzey 1992). At the conceptual level, sustain-
ability analysis is motivated by the concern that future intergenerational conflicts will hinge
on three issues: the scarcity of primary inputs, the environmental damage caused by economic
activity, and the further pressure exerted by population growth on both resource scarcity and
environmental quality. Formal theories, however, insist on the first two issues—in particular,
exhaustible resources (Smulders 2005) and pollution externalities (Xepapadeas 2005)—and
typically neglect the interdependence of scarcity and fertility. Despite its obvious relevance
for sustainability, only a few contributions formally analyze the fertility-scarcity interaction
(Schäfer 2014; Bretschger 2013).4

2 The model

There are two main groups of agents. The first is a representative household who purchases a
homogeneous consumption good, supplies labor services and a natural resource (e.g., land)
in competitive markets, accumulates wealth in the form of financial assets, and, crucially,
makes reproduction decisions. The consumption good is produced by final firms assembling
differentiated intermediate inputs, each variety ofwhich is supplied by onemonopolistic firm.
These intermediate firms are the second main group of actors in the model since productivity
growth stems from their decisions concerning two types of innovations. First, the mass of
intermediate firms increases due to the costly development of new product lines (horizontal
innovation). Second, each intermediate firm undertakes in-house R&D to increase it own

3 A recent exception is Strulik and Weisdorf (2008), which investigates how the price of agricultural goods,
determined in a two-sector economy by land scarcity and learning-by-doing activities, affects population
growth and economic growth.
4 Schäfer (2014) builds a model of directed technological change in which skill-biased technological change
induces a decline in population growth and a transitory increase in the depletion rate of natural resources.
Bretschger (2013) considers poor substitution (complementarity) between labor and an exhaustible resource
in a Romer-style model of endogenous growth that exhibits the strong scale effect.
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productivity (vertical innovation). The interplay between horizontal and vertical innovations
allows the economy to grow in steady state at a constant endogenous rate that is independent
of factor endowments (Peretto 1998; Dinopoulos and Thompson 1998; Peretto and Con-
nolly 2007). Connolly and Peretto (2003) studied the role of endogenous fertility in this
framework. Our analysis extends the model to include privately-owned natural resources and
varying degrees of substitutability between labor and resource inputs, exploiting the tractable
framework developed by Peretto (2012).5

2.1 Households

The law of motion of adult population postulates that childhood lasts for one instant and then
the child becomes an adult worker:

L̇ (t) = B (t) − d · L (t) , (1)

where L is the mass of adults, B is the mass of children and d > 0 is the exogenous and
constant death rate. Children consume the same homogeneous good as adults but do not
work. Consumption and reproduction decisions are endogenous and reflect the intertemporal
choices of a single representative household who maximizes

U ≡
∫ ∞

0
log u(t)e−ρt dt, (2)

where u (t) is instantaneous utility at time t , and ρ > 0 is the discount rate. Instantaneous
utility depends on consumption per adult, CL , consumption per child, CB , the mass of adults
and the mass of children, according to

log u (t) = μ log
(
CL (t) L (t)η

) + (1 − μ) log
(
CB (t) B (t)η

)
, (3)

where the parameters μ and η are both positive and below unity. This specification of pref-
erences postulates that the decision maker cares about utility of adults and utility of children
with weights μ and 1− μ, and that each individual derives utility from own individual con-
sumption as well as from the mass of individuals with weight η. The fact that CB is part
of the decision problem introduces a trade-off in reproduction choices between the mass of
children and consumption expenditure per child.6 For future reference, we rewrite (3) as

log u (t) = logCL (t)μ CB (t)1−μ + log L (t)η + log b (t)η(1−μ) , (4)

where b (t) ≡ B (t) /L (t) is the gross fertility rate, and η (1 − μ) is the associated weight
in household utility.

Each adult supplies inelastically one unit of labor to the production sector of the economy.
The household is also endowed with� units of a non-exhaustible natural resource (e.g., land)
that it supplies inelastically to manufacturing firms. The wealth constraint reads

Ȧ (t) = r (t) A (t) + w (t) L (t) + p (t) � − PC (t) [CL (t) L (t) + CB (t) B (t)] , (5)

5 Peretto (2012) studies the effects on income, growth andwelfare of a shock to the natural resource endowment
in a model with constant population.
6 The original version of this paper (Peretto and Valente 2013) did not consider child consumption as an
argument in the utility function. We thank an anonymous referee for suggesting this extension that produces
the same qualitative results but allows us to incorporate a quantity-quality tradeoff in the spirit of Unified
Growth Theory. Our results are nonetheless robust to alternative preference specifications as discussed in
Sect. 5.4.
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where A is assets holding, r is the rate of return on assets, w is the wage rate, p is the market
price of the resource and PC is the price of consumption. The household maximizes welfare
(2) subject to the dynamic laws (1) and (5), using consumption and fertility levels as control
variables and taking all prices as given.

2.2 Final sector

In the final sector, perfectly competitive firms produce the consumption good by means of
manufactured intermediate inputs using the technology

C (t) =
(∫ N (t)

0
Xi (t)

ε−1
ε di

) ε
ε−1

, (6)

where C is total output of the homogeneous good, N is the mass of varieties of intermediate
inputs, Xi is the quantity of the i-th variety, and ε > 1 is the elasticity of substitution between
pairs of intermediate goods. Final producers maximize profits taking the prices and the mass
of varieties as given. The resulting demand for each intermediate good is

PXi (t) = PC (t) C (t)∫ N (t)
0 Xi (t)

ε−1
ε di

· Xi (t)−
1
ε , (7)

where PXi is the price of the i th variety.

2.3 Intermediate production and vertical innovation

Each variety of intermediate input is supplied by a monopolist. The intermediate firm i
operates the production technology

Xi (t) = Zi (t)θ · F
(
L Xi (t) − φ, Ri (t)

)
, (8)

where Xi is output, L Xi is overall labor employed in production, φ > 0 is a fixed operating
cost in units of labor (henceforth, fixed operating cost), Ri is the resource input, and F (·, ·) is a
standardproduction functionhomogeneousof degreeone in itsmain arguments.7 Importantly,
F (·, ·) may exhibit an elasticity of input substitution below or above unity. Whether labor
and the resource are complements or substitutes matters for our results and we will discuss
all possible scenarios, including the case of unit elasticity where F (·, ·) is Cobb–Douglas.

The productivity of the firm depends on the stock of firm-specific knowledge, Zi , with
elasticity θ ∈ (0, 1). Importantly, this firm-specific productivity term is Hicks-neutral with
respect to labor and the resource. The stock of firm-specific knowledge increases according
to

Żi (t) = αK (t) L Zi (t) , (9)

where L Zi is labor employed in R&D. The productivity of labor in R&D depends on the
exogenous parameter α > 0 and on the stock of public knowledge, K . Public knowledge
accumulates as a result of spillovers across firms within the intermediate sector: when one
firm generates a new idea, it also generates non-excludable knowledge that benefits the R&D

7 The fixed operating cost, φ, ties product proliferation to population growth, as discussed in detail in Peretto
and Connolly (2007). Section 4.2 clarifies how φ influences the interaction between the rates of horizontal
and verical innovations.
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of other firms according to the spillover function8

K (t) =
∫ N (t)

0

1

N (t)
Zi (t) di. (10)

Considering a monopolistic firm that starts to produce in instant t , the present discounted
value of its net cash flow is

Vi (t) =
∫ ∞

t
	i (v)e− ∫ v

t [r(v′)+δ]dv′
dv, (11)

where 	i is the instantaneous profit, r is the instantaneous interest rate and δ > 0 is the
instantaneous death rate of firms.9 In each instant, the firm chooses the cost-minimizing
combination of rival inputs, L Xi and Ri , and the output level Xi that maximize static profits
	i subject to the demand schedule (7) of final producers. Given this choice, the monopolist
then determines the time path of R&D employment L Zi that maximizes present-value profits
(11) subject to the R&D technology (9), taking as given the other firms’ innovation paths.
The solution to this problem is described in the Appendix and yields the maximized value of
the firm given the time path of the mass of firms.

2.4 Horizontal innovation: entry

New firms enter the intermediate sector as time passes. Outside entrepreneurs hire labor to
perform R&D activities that develop new varieties of intermediates, and then set up firms to
serve the market. We assume that for each entrant, denoted i without loss of generality, the
labor requirement translates into a sunk entry cost (henceforth, entry cost) that is proportional
to the value of production of the new good when it enters the market, PXi Xi . Denoting by
L Ni the labor employed in start-up activity, the entry cost is wL Ni = β PXi Xi , where β > 0
is a parameter representing technological opportunity. This assumption captures the notion
that entry requires more effort the larger the anticipated volume of production.10

The value of the firm entering the market at time t equals the maximized present-value
net cash flow Vi (t) because, once in the market, the firm solves an intertemporal problem
identical to that of the generic incumbent. Free entry, therefore, requires

Vi (t) = β PXi (t) Xi (t) = w (t) L Ni (t) (12)

for each entrant.

3 Equilibrium conditions

The intertemporal choices of households and the profit-maximizing behavior of firms charac-
terize the equilibrium path of the economy. This section describes consumption and fertility
decisions, the dynamics of innovation rates and the relevant market-clearing conditions.

8 Specification (10) is the simplest form of spillover function that eliminates the strong scale effect in models
of this class, and exhibits sound microfoundations as discussed in Peretto and Smulders (2002).
9 The main role of the instantaneous death rate is to avoid the asymmetric dynamics and associated hysteresis
effects that arise when entry entails a sunk cost. Such unnecessary complications would distract attention from
the main point of the paper.
10 Our assumption on the entry cost can be rationalized in several ways and does not affect the generality of
our results. Peretto and Connolly (2007), in particular, discuss alternative formulations of the entry cost that
yield the same qualitative properties for the equilibrium dynamics of the mass of firms that we exploit here.
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3.1 Consumption and fertility choices

From (4), the Hamiltonian for the household problem takes the general form

H ≡ log u (CL , CB , L , b) + λA · Ȧ + λL · L̇,

where (CL , CB , b) are the control variables and λA and λL are the marginal shadow values of
asset holdings and household size, respectively. The necessary conditions for maximization
are derived in Appendix and yield three key relationships. The first is the standard Euler
equation

ṖC (t)

PC (t)
+ Ċ (t)

C (t)
= r (t) − ρ (13)

which governs the dynamics of total consumption expenditure. The second relationship is
the static condition determining fertility choice at instant t ,

η (1 − μ) + λL (t) B (t) = 1 − μ, (14)

which equates the current utility value of generating children to the current utility cost of
providing consumption to them.11 The third relationship is the dynamic law governing the
gross fertility rate over time: by combining (14) with the relevant co-state equation for the
marginal shadow value λL , we obtain

ḃ (t)

b (t)
= b (t)

(1 − μ) (1 − η)
·
[
η + w (t) L (t) − PC (t) C (t)

PC (t) C (t)

]
︸ ︷︷ ︸

Rate of return from generating future adults

− ρ. (15)

Expression (15) asserts that the fertility rate increases over time when the anticipated rate of
return from generating future adults exceeds the utility discount rate ρ. The term in square
brackets in (15) emphasizes two components of this rate of return. The first is the elasticity
parameter η, reflecting the direct utility benefit of expanding the future mass of adults. The
second component is a ‘private productivity gain’—namely, the anticipated net gain for the
household of generating a future worker –measured by the (rate of) excess of household labor
income, wL , over household consumption expenditures, PC C . The private productivity gain
is the crucial channel whereby firms’ productivity and resource scarcity affect the dynamics
of the fertility rate in our model.

3.2 Production and innovation rates

In the intermediate sector, the solution to the typical firm’s problem yields a symmetric
equilibrium: as shown in the Appendix, each monopolist charges the same price PXi = PX

and produces the same quantity of intermediate good, Xi = X . Combining this result with
the zero-profit condition in the final sector, the total value of intermediates equals total
consumption expenditure, with each monopolist capturing the same share 1/N of the goods’
total market value:

PX (t) X (t) = PC (t) C (t)

N (t)
. (16)

11 In the left hand side of (14), the current utility value to the household of generating children represented
by direct utility benefits (from (4), the term η (1 − μ) is the elasticity of utility to the fertility rate) plus the
shadow value of increasing current population, λL B. The right hand side of Eq. (14) is the current utility cost,
represented by the elasticity of utility to child consumption, 1 − μ.
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Accordingly, the output quantities of the final and the intermediate sectors are linked through
the equilibrium relationship

C (t) = N (t)
ε

ε−1 X (t) . (17)

Considering employment in the intermediate sector, we can write the aggregate quantities
of labor employed in production and vertical R&D as L X = N L Xi and L Z = N L Zi ,
respectively. Similarly, total resource use in manufacturing production equals R = N Ri .
The typical firm’s knowledge stock is Zi = Z for each i ∈ [0, N ] and evolves according to

Ż (t)

Z (t)
= α

L Z (t)

N (t)
. (18)

Since the value of an intermediate firm’s production is PX X = PC C/N , the free-entry
condition (12) implies Vi N = β PC C . Using this result, and denoting total employment in
start-up operations by L N = (Ṅ + δN ) · L Ni , the net increase in the mass of firms equals

Ṅ (t)

N (t)
= w (t)

β PC (t) C (t)
· L N (t) − δ. (19)

The rates of vertical and horizontal innovation in (18) and (19) are interdependent through
the no-arbitrage condition that the associated returns must be equal (see Appendix).

3.3 Market clearing conditions

Reseource market clearing requires that total resource use in intermediates production, R =
N Ri , be equal to the available endowment: R = �. Accordingly, the household’s resource
income equals p�.

Labor market clearing requires L = L X + L Z + L N . Asset market equilibrium requires
that the value of the household’s portfolio equal the value of the securities issued by firms:
A = N Vi = β PC C . Substituting this condition into the wealth constraint (5), and using the
saving rule (13), we obtain

PC (t) C (t) = 1

1 − βρ
[w (t) L (t) + p (t)�] . (20)

This expression says that the ratio of household consumption expenditure to the household’s
income from labor and land, wL + p�, is constant over time.

4 General equilibrium dynamics

For clarity, we split the analysis of dynamics in two parts. First, we study the interaction
of population and resource scarcity (Sect. 4.1). Next, we describe the interaction between
horizontal and vertical innovations in determining productivity growth (Sect. 4.2). A crucial
characteristic of the resulting dynamics is the existence of a steady state displaying constant
population associated to constant growth of (real) consumption per capita. Henceforth, we
take labor as the numeraire and set w (t) ≡ 1 in each instant t . This normalization implies,
inter alia, that an increase in p represents an increase in the resource price relative to the
wage rate.
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4.1 Fertility and resource scarcity

In this subsectionwe characterize the interactions betweenpopulation and resource scarcity as
a dynamic system involving two variables: the resource endowment per capita and the fertility
rate. The resource endowment per capita, ω (t) ≡ �/L (t), is a state variable that is given
at time zero but is subsequently driven by fertility choices via the dynamics of population.
We derive the dynamical system in two steps. In Sect. 4.1.1, we treat the value of ω (t)
as given at time t and derive the equilibrium values of the resource price and consumption
expenditure per capita. Building on this result, in Sect. 4.1.2 we derive the two-by-two system
that describes the joint dynamics of ω (t) and b (t).

4.1.1 Fertility, expenditure and resource price

Denoting consumption expenditure per capita by y ≡ PC C/L , the equilibrium condition
(20) becomes

y (t) = 1 + p (t) ω (t)

1 − βρ
, (21)

which says that consumption expenditure per capita is proportional to the sumof labor income
per capita, 1, and resource income per capita, p (t) ω (t). Resource income per capita, in
turn, is determined by the equilibrium between the demand for the resource by firms and
the household’s supply. From the firms’ conditional demand for the resource, we obtain (see
Appendix)

p (t) ω (t) = ε − 1

ε
· S (p (t)) · y (t) , (22)

where S (p) ∈ (0, 1) is the cost share of resource use—i.e., the ratio between total
resource rents paid by firms to resource owners and the total variable costs of manufac-
turing production—and is a function of the resource price. This expression specifies how
expenditure decisions determine resource income through the endogenous resource price.
Specifically, the cost share of resource use S (p) is increasing or decreasing in the resource
price depending on the elasticity of input substitution (see Appendix):

∂S (p)

∂p

⎧⎨
⎩

> 0 if
(
L Xi , Ri

)
are complements;

< 0 if
(
L Xi , Ri

)
are substitutes;

= 0 if F (·, ·) is Cobb–Douglas.
(23)

The intuition for result (23) is that, under complementarity (substitutability), the resource
demand per unit of labor is relatively rigid (elastic) and an increase in the resource price
raises (reduces) the share of firm’s costs for resource use relative to wage payments. This
cost-share effect plays a crucial role in our results.

For a given level of the resource endowment per capita, ω (t), Eqs. (21) and (22) form
a static system in two unknowns that determines the equilibrium levels of p (t) and y (t).
Figure 1 describes graphically the equilibrium determination, showing that that equilibrium
expenditure per capita always falls within the interval y (ω) ∈ (ymin, ymax), where ymin =

1
1−ρβ

and ymax = 1
(1/ε)−ρβ

(see Appendix). Importantly, consumption expenditure per capita
responds differently to variations in the resource endowment per capita ω (t) depending on
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Fig. 1 Equilibrium determination in Proposition 1. The loci y2 and y3 (21) and (22), respectively, and the
equilibrium determines ȳ (ω) and p̄(ω). See the proof of Proposition 1 in Appendix for details

whether labor and resources are complements or substitutes.12 The following Proposition
summarizes the relevant comparative-statics effects.

Proposition 1 Given ω, there exists a unique pair
{

p∗ (ω) , y∗ (ω)
}

determining the equilibrium levels of consumption expenditure per capita and the resource
price. The marginal effects of an increase in ω are:

(i) Complementarity: ∂p∗ (ω) /∂ω < 0, ∂y∗ (ω) /∂ω < 0;
(ii) Substitutability: ∂p∗ (ω) /∂ω < 0, ∂y∗ (ω) /∂ω > 0;
(iii) Cobb–Douglas: ∂p∗ (ω) /∂ω < 0, ∂y∗ (ω) /∂ω = 0.

Proposition 1 establishes two key results. First, the effect of an increase in the resource
endowment per capita ω on the equilibrium resource price p∗ is always negative. Second,
the effect of ω on equilibrium consumption expenditure per capita y∗ is negative (positive)
if labor and resources are complements (substitutes). The reason is that an increase in ω

raises or reduces resource income per capita, pω, depending on the elasticity of input sub-
stitution. Under complementarity, resource demand is relatively inelastic and an increase in
resource supply generates a drastic—that is, more than one-for-one—reduction of the price.
Consequently, resource income per capita pω falls, driving down consumption expenditure
per capita y. Under substitutability, resource demand is relatively elastic and the increase
in ω generates a mild reduction in the resource price, which implies a positive net effect on
resource income per capita and thereby higher consumption expenditure per capita. In the
special Cobb–Douglas case, the price and quantity effects exactly compensate each other
so that resource income per capita and expenditure per capita are not affected by scarcity:
∂ (pω)∗ /∂ω = 0 and ∂y∗/∂ω = 0.

These results play a key role in determining the equilibrium path of the economy: the
qualitative characteristics of the transitional dynamics change depending on how income
reacts to increased resource scarcity. We address this point by exploiting the instantaneous
equilibrium defined in Proposition 1 to determine the joint dynamics of ω (t) and b (t).

12 In graphical terms, an increase in ω implies that the locus y2—which represents Eq. (21)—rotates counter-
clock-wise whereas the locus y3—which represents Eq. ( 22)—is unaffected. Consequently, an increase in ω

induces a decline in ȳ (ω) under complementarity (diagram (a)), an increase in ȳ (ω) under substitutability
(diagram (b)), and no effect on ȳ (ω) in the Cobb–Douglas case (diagram (c)).
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4.1.2 Dynamic system

Since the total resource endowment is fixed, resources per capita decline as population grows:
from (1), the dynamics of ω (t) obey the differential equation

ω̇ (t) = ω (t) · (d − b (t)) . (24)

The dynamics of the fertility rate are governed by Eq. (15): the marginal return from gener-
ating future workers may be re-expressed in terms of expenditure per capita as

ḃ (t)

b (t)
=

[
1

(1 − η) · y∗ (ω (t))
− 1

]
· b (t)

1 − μ
− ρ, (25)

where the properties of the equilibrium relationship y∗ (ω) are those established in Propo-
sition 1. The system formed by (24) and (25) allows us to analyze the general equilibrium
dynamics of the resource-population ratio and the fertility rate. Before studying in detail the
properties of this system, we complete the description of the general equilibrium dynamics
by considering innovation rates and productivity growth.

4.2 Innovations and productivity growth

In this model real final output is equal to real consumption. Accordingly, the growth rate of
the economy, G (t), is (see Appendix)

G (t) =
{
θ · Ż (t)

Z (t)
+ 1

ε − 1
· Ṅ (t)

N (t)

}
︸ ︷︷ ︸

TFP growth rate

+
[

ẏ (t)

y (t)
− S (p (t)) · ṗ (t)

p (t)

]
︸ ︷︷ ︸
Transitional resource-income effect

, (26)

where the term in curly brackets represents the growth rate of total factor productivity (TFP)
determined by vertical and horizontal innovations. The ‘transitional resource-income effect’
in square brackets, instead, captures possible unbalanced dynamics among expenditures
per capita, resource price and the wage rate. If the economy reaches a balanced growth
equilibrium where both expenditure per capita and the resource price are proportional to
the wage rate (normalized to unity), we have ẏ (t) = ṗ (t) = 0 and the term in square
brackets becomes zero. Out of such steady states, however, the contribution of the transitional
dynamics of resource income to the overall real growth rate can be substantial. Moreover,
we can distinguish between a first component, ẏ/y, which captures the role of expenditure
growth in raising resource demand, and a second component, S (p) · ṗ/p, which represents
the scarcity drag, i.e., the increase in the resource price due to the growing resource demand.
We study the quantitative importance of these components in Sect. 6 below.

The costly development of vertical andhorizontal innovations is profitable only if thefirm’s
volume of production is large enough: there thus exist thresholds of market size below which
vertical innovation or horizontal innovation, or both, are inactive because firms cannot obtain
a rate of return equal to the prevailing interest rate in the economy. These thresholds, whichwe
discuss in theAppendix13, play an important role in the characterization of early development
phases—where “no-innovation traps” plausibly arise—but have no crucial bearing on the
present analysis,which focuses on the future behavior of an economy that has already transited
to “modern” production. Consequently, we henceforth assume that the values of the relevant

13 The proof of Lemma 2 in Appendix proves the existence of threshold levels in firm size determining regions
of the phase space where vertical and/or horizontal innovations shut down.
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parameters and the initial conditions (L (0) , N (0)) are such that both vertical and horizontal
innovations are active.

The following Lemma establishes that, in equilibrium, the rates of vertical and horizontal
innovation are jointly determined by two variables: firm size, denoted by x ≡ PX X =
PC C/N , and the interest rate.

Lemma 2 Along the equilibrium path, the rates of vertical and horizontal innovation are,
respectively:

Ż (t)

Z (t)
= x (t) · αθ (ε − 1)

ε
− r (t) − δ, (27)

Ṅ (t)

N (t)
= 1

β

[
1 − θ (ε − 1)

ε
− 1

x (t)
·
(

φ − r (t) + δ

α

)]
− ρ − δ. (28)

The behavior of firm size, x (t), is governed by the differential equation

ẋ (t) = αφ − r (t) − δ

αβ
− 1 − θ (ε − 1) − βε (r (t) + δ)

βε
· x (t) . (29)

According to Eq. (29), the evolution of firm size depends on the equilibrium path of the
interest rate. The interest rate, in turn, follows the dynamics of aggregate market size, that
reflect households’ consumption and fertility choices: from (1) and (13), we have

r (t) = ρ + ẏ (t)

y (t)
+ b (t) − d. (30)

These results highlight the functioning of the modern economy captured by our model struc-
ture: the path of the interest rate carries all the information that firms need in order to choose
paths of vertical and horizontal R&D that are consistent with the evolution of the size of the
market for manufacturing goods. The path of market size, in turn, depends on the evolution
of the economy’s resource base, that is, on the path of population.

Before analyzing population dynamics, we characterize the behavior of productivity
growth when the economy converges to a steady state where expenditure per capita, popula-
tion and the resource price are constant. Eqs. (26) and (30) imply that in such a steady state,
the interest rate equals r (t) = ρ and the economy’s real growth rate equals the TFP growth
rate. Then, the following result holds:

Proposition 3 Suppose that limt→∞ ẏ (t) = limt→∞ ṗ (t) = limt→∞ L̇ (t) = 0. Then, the
net rate of horizontal innovation is zero and income growth is exclusively driven by vertical
innovation:

lim
t→∞

Ṅ (t)

N (t)
= 0 and lim

t→∞ G (t) = θ · lim
t→∞

Ż (t)

Z (t)
. (31)

Provided that parameters satisfy ρ + δ <
αφθ(ε−1)
1−βε(ρ+δ)

, the growth rate is strictly positive:

lim
t→∞ G (t) = θ

θ (ε − 1) [αφ − (ρ + δ)]

1 − θ (ε − 1) − βε (ρ + δ)
− θ (ρ + δ) > 0. (32)

Proposition 3 establishes twomain results concerning equilibria with constant population.
First, as discussed in detail in Peretto (1998) and Peretto and Connolly (2007), steady-state
economic growth is exclusively driven by vertical innovation: the process of entry enlarges
the mass of goods until the gross entry rate matches the firms’ death rate. Consequently,
the mass of firms is constant and each firm invests a constant amount of labor in vertical
R&D. The second result is that steady-state real income growth is independent of factor
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endowments because net entry eliminates the strong scale effect. This property allows the
economy to exhibit equilibria in which population is constant but real income per capita
grows at a constant, endogenous rate. The next section addresses this point in detail.

5 Population, resources and technology

This section characterizes the equilibrium path of population and derives the main results
of this paper. Population dynamics determine the supply of labor and the extent of resource
scarcity at each point in time.An important property of themodel is that the path of population
can be studied in isolation from market size and innovation rates: system (24) and (25) fully
captures the interactions between fertility and resource scarcity, and generates the equilibrium
paths of population and resource use underlying the dynamics of aggregatemarket size. Then,
as explained in Sect. 4.2, aggregate market size and the interest rate induced by population
dynamics determine the evolution of firmsize and, ultimately, total factor productivity growth.

The next subsection studies the joint dynamics of fertility and resource endowment per
capita, characterizing the steady state with constant population. The stability properties of the
steady state crucially depend on the elasticity of substitution between labor and the natural
resource in manufacturing production: Sect. 5.2 discusses strict complementarity and strict
susbstitutability, whereas Sect. 5.3 considers the special Cobb–Douglas case.

5.1 Steady state with constant population

Consider a steady state (ωss, bss) in which both the resource per capita and the fertility rate
are constant. Imposing ω̇ = 0 and ḃ = 0 in the dynamic system (24 ) and (25), we obtain:

bss = d, (33)

bss = ρ (1 − μ)
(1 − η) · yss (ωss)

1 − (1 − η) · yss (ωss)
. (34)

Equation (33) is the obvious requirement of zero net fertility for constant population. Equation
(34) determines steady-state endwoment per capita ωss and thereby defines the stationary
value of expenditure per capita yss that is consistentwith the fertility rate bss = d . Concerning
the existence of a steady state with positive fertility rate bss > 0, it can be shown that η > ρβ

guarantees (1 − η) · yss < 1 and, hence, a positive right hand side in (34). In the remainder
of the analysis, we impose this sufficient, though not necessary, parameter restriction.14

From Proposition 1, the steady-state equilibrium (ωss, bss) also implies a stationary value
for the resource price, which we denote by pss . Concerning expenditure and population
levels, we have:

14 The proof of Proposition 1 (see Appendix) shows that equilibrium expenditure per capita is always bounded
by y (ω) ∈ (ymin, ymax), where ymin = 1

1−ρβ
and ymax = 1

(1/ε)−ρβ
. Consequently, to guarantee that the

term in brackets is always positive it is sufficient to assume 1
1−η

> ymax, which necessarily holds as long as
η > ρβ. It is possible to consider alternative cases where η � ρβ but this would complicate the phase-diagram
analysis without much gain in terms of economic insight.
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Proposition 4 Assume η > ρβ. Then, there exists a steady state where expenditure per
capita and population are, respectively:

yss = 1

1 − η
· d

d + ρ (1 − μ)
> 0, (35)

Lss = pss

yss · (1 − βρ) − 1
· � > 0. (36)

Recall that by Proposition 3, given the constant values (pss, yss, bss), real income growth
equals the constant rate of vertical innovation. An important characteristic of this steady
state is that yss and Lss are independent of technology. From (35), expenditure per capita
depends solely on preferences and demographic parameters: neither the endowment of the
natural resource, �, nor total factor productivity play any role. From (36), population is
proportional to the resource endowment but remains independent of technology, while real
income per capita grows at the endogenous rate (32). Therefore, we have a steady state with
the property that resource scarcity limits the population level, but where real income grows
at an endogenous rate driven by technological change. Before pursuing this property further,
we need to assess whether and under what circumstances the economy converges to such
steady state.

5.2 Dynamics under substitutability and complementarity

The stability of the steady state with constant population depends on the input elasticity
of substitution in the intermediate sector. We thus have three main cases: complementarity,
substitutability and unit elasticity (Cobb–Douglas). In this subsection we concentrate on
strict complementarity and strict substitutability. The phase diagrams for these cases, shown
in Fig. 2, yield the following result.

Proposition 5 Under substitutability, the ḃ = 0 locus is increasing and cuts the ω̇ = 0 locus
from below so that (ωss, bss) is saddle-path stable. Consequently, the steady state with con-
stant population is the global attractor of the system. Under complementarity, the ḃ = 0
locus is decreasing and cuts the ω̇ = 0 locus from above so that (ωss, bss) is an unstable
node or focus. Consequently, the steady state with constant population is a separating thresh-
old: if the resource is initially scarce (abundant) relative to labor, the economy experiences
demographic explosion (collapse).

Proposition 5 establishes that the economy converges to the steady state with constant
population if labor and the resource are substitutes in production. Under complementarity,
instead, such steady state is unstable and the economy follows diverging equilibrium paths
leading to population explosion or collapse depending on the relative scarcity of the resource
at time zero.15

The intuition for these results follows from the effects of resource scarcity on resource
income per capita established in Proposition 1. First, consider the case of substitutability:
the equilibrium trajectory lies along the saddle path depicted in Fig. 2, diagram (a). Suppose
that the resource is initially abundant, that is, ω0 > ωss . The initial equilibrium level of the
fertility rate b (0) lying along the stable arm of the saddle exceeds the death rate d = bss

15 We report the details on the uniqueness of the equilibrium path in Appendix. For brevity, we focus on
the case in which the steady-state loci intersect and the steady state exists. Nonetheless, global dynamics are
well defined and the equilibrium path is unique even when the loci do not intersect: in such cases (which are
essentially slight extensions of the Cobb–Douglas scenarios studied in Sect. 5.3) the system converges either
to exponential population growth or to population collapse, depending on the parameters.
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so that population grows and ω declines. As resources per capita shrink, the resource price,
p, rises during the transition. Crucially, when labor and resources are substitutes, the price
effect due to increasing land scarcity is not very strong and the economy experiences falling
resource income per capita, pω, and, consequently, a falling fertility rate (cf. Proposition
1). Symmetrically, if the resource is relatively scarce at time zero, ω0 < ωss , net fertility is
initially negative, population shrinks during the transition and ω rises while p falls; since the
price effect is weak, resource income per capita pω rises, driving the fertility rate up. In both
cases, the transition ends when the fertility rate equals the death rate, d = bss . Hence, under
substitutability the steady state with constant population is the global attractor of the system
because population growth generates resource income dynamics that yield self-balancing
feedback effects: as resource scarcity tightens, the resource price rises, but less than one for
one with the endowment, so that resource income per capita falls.

Now consider the case of complementarity in Fig. 2, diagram (b). In this scenario, the
steady state is not stable because the resource income effect is reversed. If the resource is
initially scarce, ω0 < ωss , the dynamics exacerbate scarcity because, as population growth
reduces ω, the resource price p rises more than one for one yielding a rise of resource
income per capita pω and a rise in fertility (cf. Proposition 1). This implies a feedback
effect whereby population grows faster and drives the economy further away from the steady
state. Resource per capita ω then tends asymptotically to zero as the economy experiences
a demographic explosion. Symmetrically, if the resource is relatively abundant at time zero,
ω0 > ωss , population shrinks and the increase in ω reduces resource income per capita via
strong reductions in the resource price p, yielding a negative effect on fertility. Hence, under
complementarity, the steady state is not the global attractor of the system because population
growth generates resource income dynamics that yield self-reinforcing feedback effects on
fertility.

The mechanism generating extinction under complementarity is quite different from that
suggested by bio-economic models in which collapse is due to over-exploitation of the nat-
ural resource base—see, e.g., D’Alessandro (2007) and, especially, Taylor (2009). In contrast
to these stories, the demographic collapse in our model is due to an excessive scarcity of
manpower that prevents the economy from taking advantage of the natural resource base.
This situation is self-reinforcing because the low resource income per capita yields below-
replacement fertility and further population decline. Moreover, as we highlighted in the
discussion of the dynamics of the innovation rates, the collapse of the population eventu-
ally results in the shutting down of R&D activity and ultimately of modern manufacturing
production itself.

Also, our results are novel with respect to those of Unified Growth Theory because the
qualitative dynamics described in Fig. 2 are generated by a price effect that does not arise
if there is no resource market—as in Galor and Weil (2000)—or, if there is, when labor and
resources exhibit a unit elasticity of substitution, as in Lucas (2002). To make this point
transparent, we now turn to the Cobb–Douglas case and show that the steady state with
constant population is indeed created by the resource price effect.

5.3 The special Cobb–Douglas case

When the intermediate sector’s technology takes the Cobb–Douglas form, the steady state
with constant population does not exist and the model predicts that population grows or
shrinks forever at a constant rate. The proof follows from Proposition 1. A unit elasticity
of input substitution implies that neither expenditures nor the fertility rate are affected by
variations in resources per capita. Consequently, the ω̇ = 0 and ḃ = 0 loci become horizontal
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Fig. 2 Phase diagrams of system (24) and (25). Under substitutability and complementarity—graphs (a),
(b), respectively – the locus ḃ = 0 is a monotonous function determining a unique steady state with constant
population. In the Cobb–Douglas case, depending on the parameter values, population grows exponentially
in subcase (i), declines exponentially in subcase (ii), is constant in the special subcase (iii)

straight lines. The properties of the dynamic system (24) and (25) fall in three subcases: (i)
the ḃ = 0 locus lies below the ω̇ = 0 locus, (ii) the ḃ = 0 locus lies above the ω̇ = 0 locus,
or (iii) the two loci coincide.

Figure 2, panel c, describes the phase diagram in all subcases (see theAppendix for details).
The common characteristic is that, given the initial condition ω (0) = ω0, the fertility rate
lies along the ḃ = 0 locus at time zero.16 In subcase (i), the economy moves along the
ḃ = 0 locus and population grows at a constant exponential rate during the whole transition,
implying that the resource endowment per capita shrinks to zero asymptotically. Subcase (ii)
is specular: the economymoves along the ḃ = 0 locus with permanently declining population
and no transitional dynamics in the fertility rate. In subcase (iii), the parameters are such that
the equilibrium fertility rate exactly coincides with the exogenous mortality rate. However,
this steady state is different from the one arising with non-unit input elasticity as there are
no interactions between resource scarcity and fertility over time: the economy maintains the
initial resource endowment per capita ω0 forever.

16 All explosive paths yielding b (t) → ∞ or b (t) < 0 at some finite date are ruled out by standard arguments:
they either violate the transversality condition or the household’s budget constraint.
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5.4 Remarks

5.4.1 Robustness

Our main results concerning the existence and stability properties of the steady state with
constant population are robust to alternative specifications of fertility preferences. In the
current analysis, the cost of child bearing cost is determined by the assumed trade-off between
consumption per adult and consumption per child. The original version of this paper (Peretto
and Valente 2013) obtains the same predictions by assuming, instead, that child bearing
entails a fixed time cost of reproduction which reduces total labor supply and thereby the
household labor income. More generally, the model predictions do not hinge on the nature
of child bearing costs but rather on the fact that the response of fertility to increased resource
scarcity is determined by variations in resouce income per capita. For example, the ‘resource
price mechanism’ driving the results would not arise in the absence of a resource market with
effective property rights.

5.4.2 Constant long-run population under complementarity

In the previous analysis, the economy permanently diverges from the steady state with con-
stant population if labor and resources are complements. However, minimal extensions of
the model may generate constant long-run population even under complementarity. In the
original version of this paper (Peretto and Valente 2013), for example, we assume that a
fraction of the per capita endowment of the resource cannot be exploited for production
purposes—e.g., part of the economy’s total land must be devoted to residential use. The
existence of a minimum resource requirement allows the economy to avoid demographic
explosion even under complementarity. The reason is that, as the resource per capita moves
close to the minimum threshold level, the land price signals congestion and fertility rates are
subject to an enhanced preventive check that always stabilizes the population level before it
grows too large. Moreover, this mechanism also operates with Cobb–Douglas technology,
implying that the standard result of exponential population growth is a rather special case.

5.4.3 Technological change

Weassumed that the technological changedriving long-rungrowth—i.e., vertical innovations—
is Hicks-neutral with respect to labor and land. It is possible to introduce land-augmenting
technological change, as in UGT, but doing so would complicate the model without adding
insight to this paper’s research question. Since we focus on the future prospects for economic
growth, we do not need to postulate a bias of technological change which may instead be
relevant to study, e.g., the industrial take-off or the escape from a Malthusian trap.

5.4.4 Related empirical evidence

Our emphasis on the cases of complementarity and substitutability seems relevant from
an empirical perspective since recent cross-country evidence rejects the hypothesis of unit
elasticity between labor and land (or between labor and natural resources interpreted as
fixed factors: see Ashraf et al. 2008; Weil and Wilde 2009). In particular, most contributions
find high estimated values for the elasticity of substitution—e.g., Weil and Wilde (2009)
report estimates ranging from 1.6 to 8.0. Concerning the joint dynamics of population and

123



J Econ Growth (2015) 20:305–331 323

income, however, there is no empirical work that attempts at testing the impulse-response
mechanism between fertility and resource income that characterizes our model.17 A recent
study that points in a similar direction is Brückner and Schwandt (2014): although their
analysis abstracts from feedback effects induced by the elasticity of substitution, they show
that positive income shocks raise population growth via increased fertility.We explain further
the link between our theory and Brückner and Schwandt’s (2014) empirical findings Sect. 6.1
below.

6 Exogenous shocks and quantitative analysis

This section presents three applications of our model. First, we study the fertility response
to exogenous income shocks (Sect. 6.1), showing that the core mechanism of our theory is
consistent with recent evidence on the fertility-income relationship (Brückner and Schwandt
2014). Second, in order to check the plausibility of the theoretical predictions, we apply
the model to the United States by calibrating the parameters to match the 1960–2012 data
on birth rates and land scarcity (Sect. 6.2). In this exercise, we use the US economy as
a laboratory: the simulation yields a reference future equilibrium path for the 1960–2100
period, using the parameters of the in-sample calibration for 1960–2012. This application
of the model to a single economy only requires a minimal departure from the hypothe-
sis of a perfectly closed system. Third, we extend the benchmark simulation for the US
to study, both qualitatively and quantitatively, the consequences of a demographic shock
(Sect. 6.3).

6.1 Fertility response to income shocks

In a recent paper, Brückner and Schwandt (2014) document the fertility effects of income
shocks using state-of-the-art dynamic panels for a large number of countries. Importantly,
they use shocks to the world oil price as an instrument in the identification procedure,
obtaining the result—crucial for our purposes—that positive exogenous income shocks raise
population growth via increased fertility. While Brückner and Schwandt (2014) do not spec-
ify a theoretical model, their empirical result appears to address the core mechanism of
our model, i.e., the fertility response to income variations for given values of the funda-
mental demographic parameters. We illustrate how by considering a parameter shock that
modifies the steady state land-to-population ratio exclusively through the resource income
channel.

Suppose that labor and land are substitutes. The economy is initially in the steady state
with constant population, and there is a permanent unexpected rise in ε. Recalling expression
(22), this shock produces a ceteris paribus increase in the amount of resource income. In the
phase diagram of system (24) and (25), the shock implies a counter-clockwise rotation of the
ḃ = 0 locus whereas the ω̇ = 0 locus is unchanged.18 As shown in Fig. 3, diagram (a), the
shock yields a new steady state in which the long-run fertility rate bss is the same as before

17 This is partly due to lack of data on land rents for many countries, including the most developed economies.
The same problem of data availability constrains the methods for estimating the elasticity of substitution (see
Weil and Wilde 2009).
18 Formally, the reason for the shift is that a higher ε raises bss

max, i.e., the horizontal aymptote of the ḃ = 0
locus. In economic terms, variations in the parameters governing resource demand change resource income and
thereby the opportunity cost of fertility—which means modifying the ḃ = 0 locus—while the same variations
leave the natural law of resource depletion (24) unaffected.
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but the long-run level of land per capita ωss is lower (ω′′ < ω′). The intuition is that the
positive income shock lowers the opportunity cost of fertility and initially drives the current
birth rate above replacement. In the long run, instead, population is stabilized again as the
price effect generated by the increased scarcity offsets the net private gains from population
expansion.

The sequence of events triggered by the shock is as follows. First, given ω, the positive
shock to resource demand yields a higher resource price p. Second, the resulting upward
jump in resource income raises expenditure per capita y. Third, the fertility rate b initially
reacts to the higher expenditure with an upward jump on the saddle path leading to the new
steady state. Fourth, higher expenditure and slower population growth increase firm size,
inducing entry of new firms as well as more vertical R&D investment by existing firms: the
higher rates of horizontal and vertical innovations raise TFP growth both in the short and in
steady state.

Following the same logical order, the graphs reported in Fig. 3, panel b, provide a quantita-
tive assessment of both the initial and the transitional effects of the income shock. We obtain
these diagrams assuming an initial steady statewith ε = 2.20 and a shock to ε = 2.46 . All the
other parameter values are the same as in the calibration that we discuss in the next subsection.

Beyond its illustrative purpose, the numerical exercise delivers an additional result. Under
the assumed parameters, the growth rates of TFP and real output converge to the new steady
state level following qualitatively different transitional paths. Specifically, after the initial
jumps, TFP growth declines monotonically whereas real output growth exhibits a hump-
shaped path—i.e., it keeps on increasing for a while after the shock, reaches a peak and
then converges from above to the long-run level.19 Driving this difference is the behavior
of the transitional resource-income effect, see Eq. (26), which is strictly negative during
the transition because we have ẏ/y < 0 and ṗ/p > 0. This effect becomes smaller and
smaller in absolute value as time passes, as y and p approach the respective steady states.
In our calibration, this effect dominates the transitional TFP slowdown in the short-medium
run, determining the hump-shaped path of real income growth. We will encounter a similar
effect in the next subsection, where we apply the model to the US economy and interpret
this mechanism as a “resource-income drag” linked to the transitional decline of population
growth.

6.2 Birth rates and land scarcity in US

This subsection performs a numerical simulation of the model to study the joint dynamics
of birth rates and land scarcity in the United States. As a first step, we introduce a minor
modification to the theorywhich allows us to reinterpret themodel as one of a single economy
that is subject to migratory inflows. We then calibrate the model to match the 1960–2012
data on birth rates and land scarcity in the US, obtaining a reference future equilibrium path
for the whole present century.

Like in other industrialized economies, the age-adjusted fertility rate in the US is already
below the replacement level20: total births are only slightly above total deaths, and a relevant

19 In Fig. 3, panel b, the pre-shock growth rate of both TFP and real output is 1.45% and the new long-run
growth rate, represented by the dotted lines, is 1.83%. The last graph shows that G (t) reaches a peak above
2% and then converges to 1.83% only in the very long run: the convergence speed of real output growth is
rather slow relative to the other variables, which makes the hump-shaped transitional path difficult to show in
Fig. 3, panel b.
20 According to World Bank (2014) data, in each year within the 2011–2013 period, the average fertility rate
in the US is 1.9 children per woman, strictly below the replacement ratio of 2.1.
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Fig. 3 Effects of an exogenous income shock generated by an increase in the value of ε. See Sect. 6.1 for
details on each graph

component of population growth is represented by positive net immigration. In order to
capture this aspect, we re-define the law of motion of population as

L̇ (t) = b (t) · L (t) − d · L (t) + ν · L (t) (37)

where v is the net migration rate, measuring the ratio between immigrants, net of emigrants,
and domestic population at each point in time. Assuming that v is an exogenous constant
capturing an average value, our model yields exactly the same results as before with a small,
though empirically relevant difference: the steady state is now characterized by a fertility
rate equal to the difference between the death rate and the migration rate

bss = d − ν.

In this situation, population is constant but the birth rate is strictly below the death rate as
long as net immigration is positive, ν > 0. Infact, by comparing (1) with (37), we can define
d̄ ≡ d −ν and re-obtain the original model in which d̄ replaces d in all our analytical results.
In particular, the steady state bss = d̄ is the long run equilibrium of the economy under
substitutability, as we have shown in Sect. 5.2. In the remainder of this section, this setup
will be our benchmark model. In particular, we will interpret variable b (t) as the US crude
birth rate, and we identify the fixed factor ‘natural resource’ with total available land in the
US.

Considering the US economy, the two empirical facts that are relevant to our analysis are
well known. First, starting from the peak reached in the late 1950s, the birth rate declined
substantially during the 1960s, experiencing a sharp drop during the oil crises of the 1970s
and then fluctutating slightly above 1% until nowadays. Second, land per capita declined
during the same period as population density grew by 70% between 1960 and 2011. These
dynamics would correspond, in our model, to an equilibrium path featuring a joint decline in
both b (t) and ω (t), a transitional behavior that only arises under substitutability between
land and labor.21 In order to address this point quantitatively, we calibrate the parameters of

21 Assuming ω0 > ωss , the only equilibrium path that is consistent with a joint decline in both b (t) and ω (t)
is the superior branch of the saddle in Fig. 2, graph (a), which refers to the case of substitutability.
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system (24) and (25) in order to match the past trends in birth rates and land per capita. The
net migration and death rates are set equal to v = 0.30% and d = 0.85%, in line with the
recently observed averages. The steady state is thus characterized by

lim
t→∞ b (t) = d̄ = d − v = 0.55%.

For the intermediate sector, we assume the CES production function

F
(
L Xi − φ, Ri

) =
[
ψ · (

L Xi − φ
) τ−1

τ + (1 − ψ) · R
τ−1
τ

i

] τ
τ−1

,

where ψ ∈ (0, 1) is the labor share, and τ is the input elasticity of substitution. Given this
technology, the cost-share function S (p), as defined in expression (22 ), reads

S (p) = (1 − ψ)τ p1−τ

ψτw1−τ + (1 − ψ)τ p1−τ
.

Fixing a set of benchmark valuesρ = 2%, η = 0.6,ψ = 0.85, andβ = 0.03,we calibrate the
remaining parameters (ε, μ, τ) to ensure: (i) the existence of the steady state bss = 0.55%;
(ii) the feasibility of an initial equilibrium value b (0) ≈ 2.4%, consistent with the US birth
rate in 1960; (iii) a convergence speed to the steady state consistent with the rate of fertility
decline observed between 1960 and 2012 in the US. Among the combinations satisfying
these requirements, we choose ε = 2.46, μ = 0.95, τ = 4 (see the Appendix for further
details).

Figure 4, diagram (a), describes the components of population growth, and superimposes
the actual 1960–2012 data series on the simulated paths, covering the 1960–2100 period.
According to the simulation, the birth rate will fall below the death rate by the end of the
present century: thereforth, population growth is only due to immigration. The simulated
paths of land price, land per capita, and land income per capita are reported in Fig. 4,
diagram (b), with an ex-post normalization (1960 = 1) for each variable that facilitates the
comparison among the respective growth rates.22 Substitutability implies that while p (t)
grows, land income per capita p (t) ω (t) declines. The closeness of the simulated path ω (t)
to the data of US land per capita confirms the good average matching between simulated
and observed population growth rates in the 1960–2012 period.23 The lack of data on land
rents prevented us from constructing a comparable ‘actual time series’ for land income per
capita.24

We complete the simulation by setting the technological parameters (α, θ, δ, φ) so
as to obtain a long-run growth rate of output equal to Gss = 1.83%.25 Figure 4,
diagram (c), draws the resulting equilibrium path and further distinguishes among
TFP and transitional components of output growth. Total factor productivity declines
because the effect of entry/horizontal innovations—i.e., the term (ε − 1)−1 · Ṅ/N in
Eq. (26)—vanishes quickly whereas the TFP growth due to vertical innovations, θ ·
Ż/Z , grows over time but at slow pace. Importantly, the overall output growth rate

22 The actual values at time zero (i.e., year = 1960) obtained from the simulation are p (0) = 0.0152,
ω (0) = 95.28 and, consequently, p (0) ω (0) = 1.45.
23 The series of land per capita (1960–2012) appearing in Fig. 4, graph (b), is the inverse of population density
as reported by the World Bank (2014).
24 The only related evidence is the 1990–2011 series of natural resource incomes compiled by the World
Bank (2014), which shows that ‘forest land rents’ have been capturing a declining share of total US income
during the last two decades—a trend that is consistent with our model’s predictions under substitutability.
25 Specifically, we set α = 2.5, θ = 0.07, φ = 1 and δ = 0.1%.
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G (t) increases over time despite the TFP slowdown, according to the mechanism
noted in Sect. 6.1. The present context allows us to interpret this phenomenon as fol-
lows.

When labor and land are substitutes, the transitional resource-income effect in Eq. (26)
operates like a resource-income drag in the short run. Infact, when population grows rel-
atively fast, the resource price grows quickly, and a relatively high value of ṗ/p > 0
keeps the output growth rate low in the short run. As time passes, population growth slows
down and the same mechanism makes the transitional resource-income effect smaller in
absolute value, pushing up the overall output growth rate during the whole transition—cf.
Fig. 4, diagram (c). The fact that the resource-income drag may be quantitatively relevant
for transitional output growth is an interesting result that should deserve careful empirical
scrutiny.

6.3 Demographic shock

This section exploits the benchmark simulation of theUS economy to study the consequences
of a future reduction in the US migration rate. In qualitative terms, the model yields clear
predictions: considering the phase diagram of system (24) and (25), a permanent reduction
of the average migration rate, v, induces an upward shift of the ω̇ = 0 locus like the one
depicted in Fig. 5, graph (a). Differently from the income shock studied in Sect. 6.1, the
migration shock modifies both the fertility rate bss and the level of per capita resource
ωss in the long run. More precisely, the drop in net migration generates a sequence of (i)
lower population growth rates and (ii) higher birth rates relative to the pre-shock situation,
regardless of whether the economy is initially in the steady state.26 The intuition for result
(i) is that a drop in the migration rate is equivalent to an increase in the death rate: the
reduction of v directly reduces population growth and thus raises land per capita in the long
run—e.g., from ω′ to ω′′ > ω′ in Fig. 5, graph (a). The intuition for result (ii) is that lower
migration induces labor scarcity and thereby a higher net private benefit from fertility. It
follows that the sudden drop in net immigration does not translate into an equivalent drop in
the population growth rate because it is partially offset by an increase in the domestic birth
rate.

In order to analyze future reductions in the US migration rate, we assume that, at the
time of the shock, the economy is placed to the right of the initial steady state, i.e., land per
capita is above the pre-shock steady state ω′ in Fig. 5, graph (a). The qualitative features
of the transitional dynamics depend on how far land per capita is from ω′ when the shock
hits. If it is realtively close (e.g., ω = ωa), the transition features reversion: the previously
declining birth rate jumps upwards, and keeps on increasing thereafter. If it is relatively far
(e.g., ω = ωb), instead, the birth rate overshoots upward and converges to the new long-run
value from above.

In our quantitative analysis, we consider the benchmark simulation of the US economy
and assume that the net migration rate halves—i.e., v declines from 0.30 to 0.15%—from
year 2025 onwards. At the time of the shock, land per capita is far from our reference steady

26 To prove this statement, consider Fig. 5, graph (a), and suppose that the economy is initially placed along
any given point along the saddle path leading to the initial steady state

(
d̄ ′, ω′). After the shock, the birth rate

jumps upward on the new saddle path leading to the new steady state
(
d̄ ′′, ω′′) given the pre-shock level of

resource per capita ω′. In such a point, the gap between the after-shock fertility rate and d̄ ′′ is smaller than
the gap between the pre-shock fertility rate and d̄ ′, which implies that the after-shock population growth rate
is lower than the before-shock population growth rate.
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Fig. 4 Model simulation over the 1960–2100 period and US data over the 1960–2012 period. See Sect. 6.2
for details on each graph
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Fig. 5 Model simulation: the effects of an exogenous permanent reduction in the US net migration rate from
the year 2025 onwards (v falls from 0.30 to 0.15%). See Sect. 6.3 for details on each graph

state so that we observe the overshooting effect27: the birth rate and the population growth
rate jump in opposite directions when the shock hits, and decline over time afterwords, as
shown in Fig. 5, graphs (b), (c). Considering the resource price and expenditure per capita,
neither p nor y change their levels at the time of the shock but their respective growth rates
do react to the demographic change: as shown in Fig. 5, graph (d), slower population growth
implies slower growth in the resource price. As regards real output growth, the demographic
shock affects G (t) during the transition but not in the long run. During the transition, output
growth is subject to two contrasting effects. On the one hand, slower growth in the resource
price implies a smaller transitional resource-income effect (cf. Fig. 5, graph (d)) and therefore
a positive effect on output growth. On the other hand, the shock implies slower TFP growth
during the transition: reduced population growth slows down the growth of market size Ly,
which reduces the incentives to innovate and yields a fall in the rate of entry of new firms (see
Fig. 5, graph (e)). In our simulation, the positive transitional effect dominates although real
output growth is only slightly higher: at the timeof the shock,G (t) jumps from1.58 to 1.61%.

We can consider this analysis as an example of quantitative analysis suggesting further
applications. In particular, the model may be fruitfully extended to include, e.g., endogenous
migratory flows, differences in fertility preferences between locals and foreigners, inequality
in land distribution across resident households.

27 In terms of the analytical phase diagram in Fig. 5, graph (a), the US economy exhibits a land per capita
equal to ωc so that the pre-shock birth rate is still above the long-run after-shock birth rate d̄ ′′. The resulting
transitional dynamics exhibit overshooting but are slightly different from the transitional path that would arise
starting from point ωb (which is associated to a pre-shock birth rate strictly below the long-run after-shock
birth rate d̄ ′′).
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7 Conclusion

This paper investigated the dynamic interdependence of resource scarcity, income and popu-
lation in a Schumpeterian model with endogenous fertility. The analysis offers the following
results. When labor and resources are strict complements or strict substitutes in production,
the increase in resource scarcity induced by population growth generates price effects that
modify income per capita yielding opposite feedback effects on fertility. These price effects
create a steady state in which population is constant, income per capita grows at a constant
endogenous rate, and population size is independent of technology. Under substitutability,
this steady state is the system’s global attractor. Under complementarity, instead, it is a sep-
arating threshold and the population level follows diverging paths: higher (lower) resource
scarcity generated by the growth (decline) of population increases (decreases) income per
capita and fertility rates, implying self-reinforcing feedback effects that drive the economy
towards demographic explosion (extinction).

The paper thus proposes a theory of the population level which is consistent with the fact
that Planet Earth has a finite carrying capacity of people. This basic characteristic of closed
systems is not captured bybalancedgrowthmodels that feature exponential population growth
in the long run. Nonetheless, our theory can be exploited to perform a quantitative analysis
of real-world economies. Given the lack of global data, we focused on the US economy as a
laboratory to analyze the joint dynamics of population, income, land scarcity and total factor
productivity. Future quantitative research may exploit the benchmark model to include, e.g.,
endogenous migratory flows, preference heterogeneity and inequality in land distribution
across households.
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