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The Appendix collects all the proofs and derivations using both simple (flow view) public and
private R&D interaction model and the generalized (stock view) of cross-knowledge fertilization

model presented in the manuscript.

A Household problem: derivation of (5) and (6)

The current value Hamiltonian to the household problem solved by a representative individual
is

L=1Inc+¢[(r—Na+w— Poc— wsg],
where (r — A)a + w — Poc — s¢ is the budget constraint per capita, sg is lump-sum tax per

capita and ¢ is the dynamic multiplier. The necessary conditions for the maximization problem

are



Lo=(p—Ae—i — r=X) =(p—A)t—i, (A.2)

and

limeae PNt =0, (A.3)

t—oo

where the last equation is the standard transversality condition. Time-differentiating (A.1) and
substituting the result into (A.2) yields (5).

Next, household minimizes the cost expenditure per capita,

N
Xi
minPcc—/ P;—dt,
j 0

J

subject to

=[G [

Given P, and P; for all j, the F.O.C. with respect to X; yields equation (6).

o=

B A flow view model of the private and public R&D inter-

action

B.1 Proof of Lemma 1: derivation of (11), (12), and (13)

In the following, we derive a simple model with a flow view of private and public R&D interac-
tion by setting & to zero. The two knowledge accumulation processes in equations (8) and (9)

thus become

Zi = af(SG’)KiLZN (B].)

and

D; = B;Lg,. (B.2)



The interaction is only captured by the factor f(sg) which measures the knowledge spillover

from public R&D employment to private R&D technology.

B.1.1 Intermediate firm’s profit maximization problem and returns to in-house

and entry R&D

The typical intermediate firm maximizes its present value,

max V}(t):/ I1; e~ JF0GHads g 5 5 0, (B.3)
t

{LZz"Pi}

where II; = P, X; —wLx, —wLy, is the instantaneous profit flow, r is the real interest rate and
o is an exogenous death shock. The firm chooses the time path of the price, P;, and R&D, Ly,,
subject to the demand curve in (6) and the production function in (7) and the R&D technology
(B.1) in (8), taking public R&D policy s¢ as given. Moreover, we define ¢; as the co-state
variable that represents the value of the marginal unit of knowledge, The above optimization

problem becomes to maximize the following current-value Hamiltonian,

CVH; = P,X; = 27°D;"Xi = ¢ — Lz, + 4: %,

s.t. the demand curve in (6) and the R&D technology (B.1) in (8). By taking the first-order

derivative with respect to P;, we yield the rule of optimal price (11),

p=_° 2D, (B.4)
6 JE—

Moreover, the derivative of C'V H; with respect to Ly, in the linear profit function yields

(

0 forl> qaf(sq)K
Lz;=\Lz/N forl=gaf(sq)K -

00 forl < qaf(sq)K
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The interior solution is determined under the condition that the marginal cost of R&D equals

its marginal benefit. Moreover, the F.O.C. for state variable Z; is

0CV H;
0Z;

=71q¢; — ¢

Rearranging it yields the return to in-house R&D,

ol /0Z; g
TZ—FUE;—FQ—, (B.5)
4i qi

Next, considering the interior solution and takes logarithm and time derivatives on 1 =
giaf(sq)K yields ¢;/q; = —K/K. Secondly, we substitute the demand curve (6), the manufac-
turing production (7) and the pricing rule (B.4) into profit flow and yields

1 ZH(efl)D'y(efl)

I; =-LE— — — —¢—Lyg,.
€ fo 79 le de

J

Taking the derivative of II; with respect to Z; yields

1. 0(c—1) z/Vpih
Ol;/0Z; = _LE 7. N 0(e—1) pr(e—1) ;.-
€ [ f() Zj Dj dj

Substitute the resulting expression of the derivative, 0Il;/0Z;, and the condition, ¢;/¢; =
—K/K, into (B.5) along with the fact that K/K = af(sq)Lz, from (B.1). Further impos-
ing a symmetry and combining no arbitrage condition with the return to riskless loan yield the

return to in-house R&D in (12),

r=r?=af(sq) @%—% —o. (B.6)

B.1.2 Net entry/exit

The expression for the rate of return to entry is



TN—FUE%—F%. (B.7)
Taking logarithm and time derivative with respect to the free entry condition, V; = LE/SN,
yields V;/V; = E/E + A — N/N. Substituting V;/V; = F/E 4+ A — N/N and the equilibrium
profit, %LE /N —¢— Ly, into above and imposing symmetry yield the return to entry innovation
in (13), _ _

T’NE|:11:;\€ _%}B_N_‘_E_}_)\_E_o‘_ (B.8)

B.2 Proof of Lemma 2: derivation of (14) and (15)

Substituting the demand curve from (6) into the intermediate production in (7) with a sym-

metry implied by the pricing rule in (B.4), we can obtain

(e—1)LE

€

Second, we plug the above expression and Ly from (?7) into resource constraint, L = Lg +

LX + LN + Lz, to get

—1)LE . LE
L:LG—I—u—l—Ngb—l—(N%—aN)——l—LZ.
BN
Rearranging it yields the expression for Ly /N,
Ly L-L —~1)LE N LE
Lr _Lole Lo DB, (N, I8
N N eN N BN

Further substituting it into rate of return to entry in (B.8) and rearranging it yield

—+ A\
IE + =+
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By applying the no arbitrage condition across " and the riskless return rate r from the Euler

equation in (5), we, thus, can obtain equation (14),

E:E*_B(l_SG)

=G (B.10)

where sg = Lg/L.
Substitutes the pricing rule into Po in (3) and combines the E* solved above, we can get

the real GDP pe capita in (15).

B.3 Firm-level innovation

Substituting r = p and £ = E* from Lemma 2 into (B.6) yields

Ly O(c—1)LE*  o+p
W—max{ € N _af(sG)’O}’ (B-11)

where the threshold,

af (sc)0(c — 1) .

"= (o +p) ’
is obtained by solving 0(621)% — a;z;’;) = 0. Substituting (B.11) into (B.1) yields equation
(16),
N/ fab(e —1) 1
=— = 1 - —_—— —0 — 0. B.12
’ max{ﬂsG)( s6) G~ T, } (B.12)

B.4 Market structure dynamics
B.4.1 Proof of Proposition 1: derivations of (CG), (17), (18) and (19)

By plugging Ly from (??), Lx from (B.9), and Lz from (B.11) into the resource constraint

and rearranging it, we obtain

g (e —1)LE* Oe—1) og+p
- L—Lg— "2 Ny A gy N
LE* “ € ¢ € N af(sq)

N+
N g



Replacing L — L with (1 — (p — X)/8) LE derived from lemma 2 into the above expression

and rearranging it yield

326[1—96(6—1)]_<p+0)_n5* ((b_a"fz;g)) (B.13)

Setting 2 = 0 and defining v = w —(p+o0) >0 (i.e., the first condition in CG), we can

obtain

v(1-sg)

nt = L (B.14)
(0= a7%)
af(sq)

which is equation (18). The boundary condition that n* < 7 which ensures the in-house R&D

being active in steady state yields the second inequality in C'G,

| :v(l——>, (B.15)

(B.16)

which is equation (19).



B.4.2 Proof of Proposition 2: derivation of (20)

Combining steady state mass of firm per capita (B.14) and the consumption expenditure E*,

we obtain the steady state firm size in equation (20),

E* (LE\" Bl-sq),( 553 _( B a+p>§
(%) _6—p+A/<¢—ﬁ;L) “Uaee) e B

and consequently the steady state in-house R&D per firm in equation (21) is

(5) " (%) -

and the steady state private knowledge growth in equation (22) is

7 = af(se) e (%) —p—o. (B.18)

€ N

B.4.3 Proof of Proposition 3

When the knowledge-base and personnel-interaction effects are absent (i.e., v = £ = 0), the
steady state consumption expenditure, E*, from (B.10) and the firm size per capita, n*, from

(B.14) become

Ef = /6(1 - SG)7
B—p+A
and
vbglfscj\)
nt = __pP=pta
(6 —722)

. . . . * * a
Both expressions are decreasing in sg. Moreover, the expressions for (LE ) , (LZ) and Z*

N N
LE\" o+p\ B
(W) —<¢‘ a )5’

above become




() ey e

., 0(e—1) (LE\"
o —“T(W) o

and

respectively. We can see that sg has no effect on all three expressions. Moreover, TFP, T, is
defined as
T=NvZD",

and thus the steady state growth of TFP, which is also the growth of output as well as con-

sumption per capita is

A

T =§* =& =wN* + 02" +yD*

/\+0{a9(6_1) (E)*—p—a],

|
&

€ N

where the second equality is implied by applying v = 0. We can see that s¢ has no impact on

~

T, y* and ¢*. We complete our proofs for Proposition 3.

B.4.4 Proof of Proposition 4

When the knowledge-base and personnel-interaction effects are present (i.e., v,£ > 0), the

steady state consumption expenditure £* from (B.10) and the firm size n* from (B.14) are

B — ﬁ(l — SG),
B—p+A
and
v(l—sg)
n* — B—p+A

_ ot )’
<¢ af(SG))



which both remain decreasing in sg, while the expressions for (%)*, (LWZ)* and Z* above

become
(52202

(%) =" (F) -
" 7 - af(sG)Q(t D (%) P (B.20)

All expressions are increasing in sg. Besides, the steady state growth of TFP as well as the

growth of output and consumption per capita becomes

T =¢* =& =wN* + 02" +yD*

=wA+40 [ozf(sc)e(ee_ D) (%)* —p—a] —i—v% (%)*
* v(l-sg)
=wA+0 [ozf( 0)0(66_1) (%) —p—a] + SG/%
( _af(SG)>

which is clearly increasing in sg. We complete the proof of Proposition 4.

B.4.5 Proof of Proposition 5: derivation of (23), (24) and (25)
Since n* is decreasing in sq, a decrease in sg from s increases n* such that
(1-sc)

n’ _ (o-s15) _

__otp
(¢’ af<s%>)

We can obtain n* = n (1 + e *A) from (B.16) and substituting it into (B.15) yields transitional

path of net entry rate per capita,

no_ L n (i 1 e VA
n " n(l+evA) )~ (1+evA) ) ~ (A +evA)

10



and thus the path of net entry rate in equation (23),

N e tA
— =+ B.21
N (+evin) " (B21)

~

N

We next substitute n* = n (1 + e " A) into (B.17) yields the transitional path for firm size,

*

- (B.22)

— (14e7"A) (¢— i ) b

af(sa)) v’
Plugging it back to (B.12) yields transitional path of private knowledge growth in equation
(24),

. Oe —1

Z=(1+e¢"A) (af(sc)p — 0o —p) pole=1) _ o —p. (B.23)

ve

Finally, the transitional path of TFP growth rate is obtained by taking logarithm and time

derivative of T = N“Z? D} with respect to time and yields

T =wN+0Z+~D.
Substituting N and Z from the above expressions and D from (B.2) (where D; = D;ke = D;52)

and n* = n (1 + e “*A) into above yield the expression (25),

s 1 e UtA ot 662<€—1)
T_E_l ((1+€—vtA)+)\)+(1+€ A)(Oéf(SG)(b—a—p)T_U_p
(1+e“A)
+7—*Sg.
n

We complete the proof for Proposition (5).

11



B.5 The dynamic relation between public and private R&D
B.5.1 The derivation for the share of labor force employed in R&D sector

To derive the transitional path of in-house R&D per firm, we substitute (B.22) into (B.11) and

yields
Lg(t)
N(t)

= (1+e"A) (¢_ otp ) pole—1) o+p

af(sa) ew  af(se)
Multiplying both sides of the above expression by the mass of firm per capita and further

substituting n* from (B.14) into it yield the share of labor force employed in in-house R&D as

(B.24)

L) (1-sg) [69(6—1)_ v(o + p) 1 ]
e daf(sq)—o—p(l+e A

N _BLy _SIn_E ﬁJr
N"EL L " 3\NT7)

Substituting (B.21) and E* = i éi;ﬁ) into above, we get the transitional path of employment

share of entry R&D

Ly(t)  (1-sq) ( e A
(1

0 "5 pia +6vtA)+/\+0'). (B.25)

Finally, summing up (B.24) and (B.25), we obtain the transitional path of labor share of

employment in private R&D.

Lot) + Int) (1 s0) [59(6‘” LA : S

B - +
L(?) B=p+A € paf(sc)—o—p(L+eA) = (1+evA)
B.5.2 The derivation for the share of R&D expenditure to GDP ratio

Now we are in a position to derive the transitional path of R&D expenditure to GDP ratio.

First, the public R&D expenditure to GDP ratio is

12



U)(t)Lg(t) LG . Sa
Po(t)Y(t) — LE*  E*

Next, the in-house R&D expenditure to GDP share is

w(t)Lz(t) Ly Lz/L  (1-sq) BO(e — 1) v(o + p) 1

Po(t)Y(t) ~ LE* B+ E(B-ptAN| ¢ daf(se) —o—p(l+eA)]’

and the total private R&D expenditure to GDP share is

Po(t)Y () LE* E*
(1—s¢) Bole—1) v(o +p) 1 e A
FB-p+N | ¢ saflsa) o plterd) (1reva) ]
B.6 Welfare
Consider the utility,
U= / e P L(t)Inc(t) dt, (B.26)
0

where the ¢(t) is the aggregator of intermediate goods with social return to variety,

o-r (GG

Substituting the demand from (6), using the pricing rule and the symmetry assumption, the

1

dt] , €>1 w>0.

above expression becomes

c(t) = T,E, (B.27)

13



where T, = %N “7Z9D7 and Z; = Z and D; = D for all i. Taking logarithm on 7}, yields

InT, = ln6 —~ +wnN + OInZ; + ~vInD;
€
1 t t
= lne +w(InL +1nn) + 6 (an@O + / tht> + v (lnDz-,o + / Dtdt>
0 0
— t A t A A
L (mLO v / Adt + lnn> S QInZig + 02+ 0 / (Zt - Z*) dt
€ 0 0

t
+~vInD; o+ vD*t + 7/ D, — D*dt
0

-1 . t, . R
— S~ W (InLo + M+ Inn) + 0InZig +AInDig + 02t + 0 / (Zt . Z*) dt
€ 0
t
+vD*t + 7/ D, — D*dt
0

=1In

t
+ +w(InLy + At 4 Inn) . 4+ 0InZ; o +yInD; o + 02t + 6 / (Z} — Z> dt
€ 0

t
S S S
+’y—ft+’y/ <—G——f)dt.
n o \n n

Substituting the solution for n from (B.16), the growth paths of in-house and public R&D
technology from (B.12) and B.2 and their steady state values into above and defining InT,, =

ln% +wlnLy + 0InZ; o + yInD, o, we obtain

*

InT,, = InT, o +wAt +w | In - + [92* + ’ys—f] t

1+ et (g—;—1>
vo [ (0™ =DE o) (s M E o)) e [ (22 a

n*

2 Sa n OzQ(G — 1) E ¢ TZ*
= lnTw,O + |:QZ + 7; + (.U)\i| t+ w <1nn01_|—e—0_\’tA> + 9f<SG)fE ; — 1 dt

t
+7/ <S—G—S—f)dt
o \n n

A Sa 1+A
— InT,, [ez* s A}t 1 n— =
nily, o+ —I—’yn*—l—w —|—w(nno—|— nl—l—e_VtA)

+ [w‘;—G +0 (Z +o+ p)] /Ot (e7A) dt,

abf(e—1) E

€ n*

where the last two two terms using the fact that Z* = f(s¢) — 0 — p, the solution for

14



n=n(t) = W in (B.16), and the definition, A = - —

We further solve [ (e "'A)dt = —Le A+ LA = 2(1—e~*") and substitute it back to the

above expression and yield

InT,, = InT,, o + wlnny + [92* —1—78—6: +w)\} t+ [WS—C: + 6 <Z* +a—|—p>}
n n
. ) 1+ A
“\Mrema )

Taking logarithm on (B.27) and substituting In7;, back to it yield

s |1

(1—e

Ine(t) = InE + InT,, o + wlnng + [92* + 75—G + w)\} t+ [’ys—G +0 (Z* +o0+ p)} (1—e)
n* n*

w 11 R .

We further substitute the above expression back to the life time utility (B.26) and set F' =

<D

InT,, o + wlnng = 0, we get

(1—e)

U_ / P
0

R . A
F+InE + [02*+78—f+m}t+ [78—3+9<Z*+0+p>} =
n n v

1+ A
In—— | | dt
T ( " +e—VtA)
InE . o0 . A [
- = [GZ* +28 —i—cu)\] / e~ PVt + [fyS—G + (Z* +o —i—p)} —/ e~ PN — eV dt
p—A n* 0 n* v Jo
(@) ®

o 1+ A
—(p=M)t In—-= ) at
o [T ()

J/

-~

(c)

Next, we obtain the closed form solution for (a), (b) and (c) as follows:

15



By setting a = t and db = e~(»"N!dt, we get the expression for (a) with integration by part,
o SG Y
02 +9°% wwA] [ ey
n 0
oSG b - o —(p-Mt
= (027 4928 wn] [ S | = [ gy
n* p—A . 0 p—A

_ gz 5G b e OO_ L o h
= |02 ++5 —l—w)\]{ e T

0 0
02 S +wh 02" + D"+ wh
(p—A)* (p—A)*

The integration for (b) is

73_ +0(Z2"+o+p e~ PV — )t
[ero(zeeo)] 2
|

/ - (e 0N _ ortrr) gy
0

| |2 Dzeo(zers)s
p—A+v
[75—§+8(2*+0+p)]A [7b*+9<2*+0+p>}A
) (=N p=N+v)

Finally, integration of (¢) with certain approximation yields

o 1+ A i —
/0 e~ (PN, <ln1—|—e——vtA) dt:/o e~ (PNt [ln(l—l—A)—ln (1+€ tA)]dt

~ / e~ (Pt [A - e_”tA} dt
0

1 1 wvA

16



C The general model of knowledge cross fertilization (the
stock view)

We recover the general cross-fertilization knowledge spillover function with two knowledge

stocks from (8) and (9) which are

1

1—|—/€<%) !
Z; = K, | ———~2| Ly, C.1
of (se)Ki | — et | L, (1)

and
575
1+/§<%>

D, = D; ‘ L C.2
1+k G (C2)

C.1 Proof of Lemma 2

Before we proceed, we adopt the same procedure as we prove for Lemma 2 in subsection 2.1,

we find that Lemma 2 also holds in this general version of the model with

. _ B(1—=s¢)

E=p=22""¢
B—p+A

and r = p.

C.2 Innovation behavior

The intermediate firm’s profit maximization yields the derivative of profit function as in the
flow version under symmetry,
1 Ef(e—1)

3HZ 8ZZ - —L )
/ e N Z

17



while the F.O.C. of current-value Hamiltonian function with respect to L, yields

1+/<(k;)"rr

> —afso)ic |

where K = K; = Z; = Z and k = D/K = D;/K; under symmetry.

Taking the logarithm of 1/q and differentiating it with respect time yields

q (k) k4

iV "7 C.3

L 9
Plugging (?7?) and (C.3) back to (B.6) and using the fact that » = p and £ = E* yield the key

equation for private R&D behavior:

pt+o= 6(6;1)%04(30) {1111(:) ]n .10 %—Z- (C.4)

Next, with some manipulation, the return to entry in symmetric equilibrium becomes

o v [1E" Lz| pBn n
p+U_V+V_Ln ¢ N]E* n
C|1E Z Bn 0
e - ¥ 1| 7.~
En Lin(Di)" 7 Ex n
aftsoyt, [ L]
(C.5)
where the second equality is applied by using (C.1).
C.3 The Firm innovation
Noting that k/k = D — Z, we substitute it into (C.4) and obtain
O(e—1)LE _1 1 k (k)" - 1 5
= — 1 1 k)"n — D — Z.
p+o c Naf(SG)( +"<5) n[ +"€( )]n [1—}-/{(1{3)”] [14—/{(]6)77]

18



Rearrange it and replace D with (C.2). Using r = p and E = E* implied in Lemma 2, we

obtain

1 1
€e— % k(k)T | n r(k)" k(k)~%] 3
A (_9< o (s) [T et ) SG) L,
J = .
1

Ttn(k)7

This function identifies the boundary of the region with Z =0 (or Lyz/N > 0), that is,

1 1
0(e—1) % 1+k(E)7 | 7 k(k)? 1+r(k)%]%
( (e 'E af(sq) [ +1+(n) }n - [1+E~c()k)’7] [ +1J(n3 } SG)

o+ p

n>ng,_o(k) =

Rewriting the mass of firm in per capita term n from the entry process in (?7?) yields

B

n
—=—Ly—0—\.
n LE Y 7=

We further replace % in (C.5) with the above expression and rearranging it yields

~

LN:[1 (p—)x)] B 7

— ¢+ 1

n k()17
af(5G> [%}"

We further substitute Z from (C.6) into above and rearranging it yields

Ly 1 fe—1) (p—N]F
N L (L r(k)) A
1
r(k)" 14x(k)" %3
[1+E€()k)n]|: 1J(r,3 } o+

af(sq)(1+ /{)*% 1+ Ii(k)n]%—l'

19
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Similarly, this function can identify the boundary of the region with LTN > (. By solving LTN =0

for the threshold, ny,—o r,>0(k), we obtain

1

5173
1+k(k)

L g

K(k)"

ek

LD (1w ()7) - 252 B4
n 2 nLNZO,LZ>0<k) = ot p[ltR k)] L (C].O)

of (s [ LR ] 7

for the region when LTN = 0 and LWZ > 0. Moreover, let both Z = 0 and LWN = 01in (C.9), we

can solve the boundary

1 (p—MN] E"
> _ = |- = ——
N 2 NLN=0,Lz=0 L 3 &
for the region when both LWN =0 and LWZ = (0. Combining the two boundaries derived above,

we can identify the region above the curve of Ly = 0 shown in figure 1.

C.4 Cross-fertilization global dynamics (a “substitute” scenario i.e.,

0O<n<land 0<d<1)

Proof of Proposition 8 and the phase diagram in Figure 1.

Global dynamics of this general model can be characterized by the activation of in-house and

entry R&D into four regions:
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Region 1: Lz >0 and Ly > 0.

Substitute (C.6) into (C.5). With some manipulation, we obtain the expression for the firm

size dynamics,

VA

1
s () [P

af(sc) [ﬂ—(iw

¢ p

SI3

I

|

|
i
+

N
=
=

|

L

™
+

=

(C.11)

Next, using (C.2) to subtract (C.6) and rearranging it yield the expression for the dynamics of

knowledge stock ratio k,

K(k)~® 5 €e— k(k)? 5
LB s - A Eraf(sq) ML)

== (1+x(k)") | +(o+p) (C.12)

=l I

n

This dynamics system is governed by the following two loci. Setting % =0in (C.11) yields

S

-6
iy [ 25870 g

uf (s 12002

12D () - 2 B

’n,h:o(k) = 5

[¢_M

of (s [ L2 ] 7

where 7 > 0 when n < n;—o(k).

Setting % = 01in (C.12) yields

=

€— K 0 (k) "°
Ut Eraf(sa) MR - [ s
o+ p

where k& > 0 when n > n;_,(k), We obtain k; by solving n,—o(k) = 0 and yield
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Gy [ ]

1 —1 K
ky = argsolve ¢ |— — M(l +r (k)" — %] E* + o — =0
€ € Kk(K) | m
af(sa) [_1+1+(1;:) }
(C.14)
Next, we obtain ks by solving n;_,(k) = 0 and yield

_ Ole—1) .. L+ (0)"]7 (14 k)]

k’g = argsolve TE CYf(SG) |:1—{——/{ = ]_—|——/<J Sag (015)

To characterize properly the phase diagram for this region involving the following three steps:

In the first step,

we prove that (i) [¢ — M] is increasing in k and converges to ¢ from below; (ii)

af (sq)[FEEE ]

ni—o(k) is decreasing in k with k greater than a threshold value ks; (iii) klim+nﬁ:0(k) = +o0.
—0
Proof:

(i) |o— M is increasing in £ and converges to ¢ from below.
Oéf(SG)[M]"

1+k
Under the assumption that ¢ — —( (?(er ) = > 0, when 0 < n < 1, the denominator in n;,—o(k),
af(sg)(1+k) 7
1
(o+p) : - - — Ln(k)")T _
— , is always positive and increasing in k£ because ‘*~—~+~ = (1 +
{ af(sa)(1+n)‘3z[1+n(1€)"]5‘1} s p & Trnen) =

/ﬁz(l{)")%fl > 1 for all £ > 0 under 0 < n < 1 and itself is increasing in k. Moreover, since

klim 1+k (l{:)”ﬁ_l = 00, it converges to ¢ from below as k — oc.
—00

(ii) kliréinﬁzo(k) = +o0.

When 0 < n <1, we obtain

lim (14 (k)") = 1,

k—0+

and
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1
1 n 1
lim [1 Mn =114 1i o= n=1.
tim [ w07 = |1t () = 1 0
Both equations imply that
1 n
lim LHERD
S0 (L (R
Moreover,
U] n n n n—1
khm+ K (k) _ K (k) _ Kk (k) _ [mé(k;)] L K (k) o
—0 I i 1 | 7@ (k)‘SJm} -3 (k)°+k| 9 [ 5 }_3
RO I LR I o= (k)" + &

Once we have the above results in hand, we can find that when 0 < n <1,

[% — YD (1 4k (k)T) —

1

k(k)? (14#) "8 [145(k) 0] 3 s
af(s)(145) 7 [1s(k)"] 7

(p+o)
B

|2+

lim
k—0t

{ L O }
af (s6)(1+w) 7 [Ltr (k)]0

_1
lim 1_@(1+K(k>n)_ (p;a)} B 4 0 e iy _lim BB
ko0t LS ‘ af (s6) (1+x) 7 k=0 [14x(k)") 7 k=0 [14a(k) ] 75
lim {qﬁ_ (o) (Lt()) 1}
k=0 of (sa)(1+r) 7 [L+a(k)")7

(iii) ns—o(k) is decreasing in k with a sufficient condition that %k is greater than a

threshold value ks.

Next, we know that the first term in the numerator of n;,—q(k) is

(pto)

L%k (k) - &

E*

which is decreasing in k and reaches —oo when £ goest to oco. Moreover, with some manipula-

tion, the second term in the numerator becomes

R (R |1 5 ()

=

|

Sa

5G K [1 + K (kz)f‘s]

af(sq) [

1+r(k)"
1+k }

1
n

b

af(sq)(1+ m)’% [(/g)*ﬁQ + K (k)n(ln)]rlz
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1 1
in which the term [1 + kK (k)_é] " on the top is decreasing in k with klim [1 + K (k;)_‘s} " =1and
—00

the term [(k)*?72 + K (k:)"(lfn)} " on the bottom is increasing in k when k > <(1_"77)H) , where

3=

the proof is shown below:

1
n

(k;)_"2 + /i(k:)n(l_")
a[ Ok } -

2

(07 k=] (= 7 (1= ) (0] > 0

| =

=>-n+rk)"(1-n)>0=>k(k)">

1

1 H
(k)" K -9 S "
()" [1+n(k) "] ¢ is decreasing k when k > ((1—n)n> " and

ek
converges to 0. With all the information above indicates that n,—o(k) is decreasing in k and

1
n . . . .
converges to —oo when £ > (ﬁ) and it crosses horizontal axis in k; from above as we

This implies the entire term,

have obtained previously.

Next, we can also easily see that n,—¢(k) has the same shape as the Ly = 0 boundary

A~

in (C.10), but is everywhere below it. Besides, we will prove later that the Ly = 0 (Z = 0)
boundary in (C.7) starts out from a positive k, from the horizontal axis and is increasing in k

and since lim+nﬁ:0(k) = 400 is proved in (ii), there exists a intersection between Lz = 0 and
k—0

B 1

niy—o(k), where the intersection in the dimension of n is n* = [% — M} 5

B

We further substituting n* into n,—¢(k), we can obtain k3 that solves

S

)
iy [ 25870 g

[l — AN 4o (k) — V’;#U)} B+

[1 p—{—a] E* _ ¢ af(sc)[lt'l(?n]%
‘ v ¢ b — {o+p)(tr(k))
af(sq)[HEE]m

1
If we specify the condition that k > k3 > (ﬁ) ", Then we can guarantee that n;—o(k) is

monotonically decreasing in k for all & > k3. Therefore, the proofs for (i), (ii) and (iii) are

1Specifically by substituting Z = 0 into (C.5) yields % = [lE—* — d)] g—" — (p + o) and solving % =0, we can

€EMN
sk _ |1 _ pto| ET
obtain n* = [E 5 } 5
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complete.

In the second step,

It is easy to verify that n;_, (k) from (C.13) starts out zero at ko and is monotonically increasing

in k.

In the third step,

we show that ki > ko as follows,
Proof of k; > ks:

Rewrite equations (C.14) and (C.15) of the solutions k; and k» as:

14rk(k)~° 5
14k

5G 1 O(e—1) (p+o0)
] ~(1+k(k)") - PIAU R k1,
of(sq) [ | N

and

=

[1+n(k)*5} s

K G (e —1

1+ = (6 )E* => k’g.
€

1

_1 w(k)T | n

af(sq)(1+ )70 [H2ll]”

The assumption that v > 0 in baseline model implies that right-hand side of the top equation

is always less than the right-hand side of the bottom equation as shown below:

- E_—@(ezl)(ﬂrn(l{;)n)_ (PEU)} ,{g)n
N M) o] B sen s
- L € 3 }/@(k)"—'— c E - E*,
Where—[l—@_%]__%<o

Since the left hand side of the two equations is decreasing in k, it follows that k; > ks.
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Besides, the Ly = 0 (Z = 0) boundary in (C.7) starts out with positive k. because
lim+nZ:0(k) = —oo and ny_y(k) is increasing in k. This can be verified by showing that
k—0

the limits of the first term and the second term are

tm 2D B po0) (1 )3 (14 197 = 2D e (sg) (1 + ),

k—07+ € €

3=

and

=

n
lim il <k)

i Ot 1] s oo

Moreover, the derivative of n;_,(k) with respect to k, after some manipulation, becomes

Ong_o(k)
ok
= K (R [0~ 1) *af(s k) P i — K k k)55
- M prassaa s ) 1m0 e [t ()b
k(K 3

. 2 R (07 [Lm 0] (14 ) s

1+ K (k)"

Using 7 = 0, i.e.,

Oe—1) _, _1 1 K (k)" 1 5%
no+p) = = Baf(se)(1+ )77 LR (0] = 2 S () [T (07 s,
and substituting it into above and rearrange it, we get
Ony_o(k)  w (k)" notp) W) m s [LEs (k)
ok [L4+a®E)] || [1memo1s  BHaET 145 (K) L+ 5
]

> 0.
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To guarantee the above inequality to hold, we need

n(o +p) K (k)" y 0

T 7+ (k) -

A+t Ln ] s TV [T+ xR
= — +1+r(k) 5>1>m_

A+ m)7 3 [T+ (k)] s

As a result, we can find a sufficient condition,
k (k)" >n.

This can be further guaranteed by the restriction that s (k)7 > 72, > n which is the same

restriction we make to ensure n,—o(k) is decreasing in k. Therefore, n,_,(k) is increasing in k

and klim+n2:0(k) — —o0. This guarantees that Ly = 0 (Z = 0) boundary in (C.7) starts out
—0

with positive k, which solves L; = 0 when n = 0, that is,

Cfe—1) _1 m K (k)" 1 55
0= - E*af(s¢g)(1+ k) 7 [1+k(k,)"] m(l—km) > [1—1—1{(1{:3) ] sq-
Also note that since
Sa 1 1

E* - f(sc) s - *
f(sc) S E (é + 5) E
is increasing in sg, Both k; and ky are increasing in sg. This suggests that the n = 0 locus
shifts up with s while the & = 0 locus shifts down. With all the above information allows us

to characterize the phase diagram for the system dynamics of region 1. The boundaries (ie.,

Lz =0 and Ly = 0) separates this region with others.
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C.5 Derivation for Equations (30) and (31)

Steady state requires (C.4) to become

pto=" DB s 1w L ()7 - 2, (C.16)
and (C.5) to become
pro= |12 4o z_ | o (C.17)
€n af(sq)Ki(1+ k)7 [1+k (k)" | £

We replace E*/n by substituting (C.17) into (C.16). After some manipulation yields equation
(31),

Z = [paf(se)1+r) 77 [1+ (k)" - (p+0)

1 }—95(6_1)—(p+0).

Moreover, we know that the two knowledge growth rates are equal in steady state, implying

that

=

20 =D = (1R 14k e (C.18)

We rearrange (C.18) and substitute (C.16) for n, which yields equation (30),
p+o

o) f(5) (14m) T [LR(R)]T
(140 L)) s

7 =

E*

C.6 Some interesting properties

For sg = 0, the system dynamics in (C.11) and (C.12) can be degenerated to

no_ E_M(lJﬂ{(k)n)_M}ﬁ_ [¢_ :

n € € 15}

(0 +p)(1+r®)) | pn
1+ r5) 7 [1+k (k)] B

(C.19)

3=
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and

) D prg, k) W K (k)77
—:(1+/£(k)")[ — Eralltr) [t (k)] + (o +p)

, (C.20)

Rl I

n

where the two loci governing the dynamics are

L e (g 4 (k)T — (p;a)] 3

o (o | 5 ’
a(14r) T [14r(k)M7 | E°

nZO ngnnzg(/{):[

and ) )
UV pra(l + k)0 1+ k (k)]

E>0: n>n;_o(k) = o +7)

The condition for Ly > 0 (i.e.,Zs,—o > 0) is

) (@E*au v R) T[4k (k)n]%) 1_5—p
ZSGZO: 1 >0
1+k(k)"
D a1+ k)7 [1+k k)"
e ( l [ (k)"] |
o+p

which identifies the region of phrase space where k < 0. The non-negativity constraint on L

implies that we have k = 0 whenever

3=

U Bra(1+ )70 [1+ # (k)]
o+ p

nzng (k)=

The "o (k) locus has intercept,

U pra(l+ k)

Mo (0) = e

The phase diagram we obtained can be distinguished into two main cases:
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Case 1: for

0(e—1 +o
[% - (e } — (pﬁ )] 9(6;1)04(1 + H)_%
ni=0(0) <ny - (0): v+ p
=
a(l+k) 7

Y

Loteta)] a1 w7
€ 6] - o+p

all initial conditions (kg, ng) yield paths that converge to the unique steady state (0,n*), which
is the steady state endogenous growth driven by private R&D activity of the baseline Schum-

peterian model with no government.

Case 2: for

{1 (p+ ‘ﬂ LM all )

Nj—0(0) > N 0(0) : - — s

Y

€ B

there is a set of zero growth steady state, the union of the point (k*,n*) and the points (Zz*, n*)
for k € (0, k*). All initial conditions (kg,n¢) yield paths that converge to a point in this set.
The value k* is uniquely determined by the parameters (we find &* and #2* by solving (C.19)
and (C.20) at % = % = 0). In contrast, the value k* depends on the specific path dictated by

the initial condition and the law of motion of the system.
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