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The Appendix collects all the proofs and derivations using both simple (flow view) public and

private R&D interaction model and the generalized (stock view) of cross-knowledge fertilization

model presented in the manuscript.

A Household problem: derivation of (5) and (6)

The current value Hamiltonian to the household problem solved by a representative individual

is

L = lnc+ ι [(r − λ)a+ w − PCc− wsG] ,

where (r − λ)a + w − PCc − sG is the budget constraint per capita, sG is lump-sum tax per

capita and ι is the dynamic multiplier. The necessary conditions for the maximization problem

are

Lc = 0 → 1

c
= ιPC , (A.1)
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La = (ρ− λ)ι− ι̇ → ι(r − λ) = (ρ− λ)ι− ι̇, (A.2)

and

lim
t−∞

ι a e−(ρ−λ)t = 0, (A.3)

where the last equation is the standard transversality condition. Time-differentiating (A.1) and

substituting the result into (A.2) yields (5).

Next, household minimizes the cost expenditure per capita,

min
Xj

PCc−
∫ N

0

Pj
Xi

L
dt,

subject to

c = Nω

[(
1

N

) 1
ε
∫ N

0

(
Xi

L

) ε−1
ε

dt

] ε
ε−1

.

Given Pc and Pj for all j, the F.O.C. with respect to Xj yields equation (6).

B A flow view model of the private and public R&D inter-

action

B.1 Proof of Lemma 1: derivation of (11), (12), and (13)

In the following, we derive a simple model with a flow view of private and public R&D interac-

tion by setting κ to zero. The two knowledge accumulation processes in equations (8) and (9)

thus become

Żi = αf(sG)KiLZi , (B.1)

and

Ḋi = BiLGi . (B.2)
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The interaction is only captured by the factor f(sG) which measures the knowledge spillover

from public R&D employment to private R&D technology.

B.1.1 Intermediate firm’s profit maximization problem and returns to in-house

and entry R&D

The typical intermediate firm maximizes its present value,

max
{LZi

,Pi}
Vi(t) =

∫ ∞
t

Πi e
−
∫ τ
t (r(s)+σ)dsdτ, σ > 0, (B.3)

where Πi ≡ PiXi−wLXi −wLZi is the instantaneous profit flow, r is the real interest rate and

σ is an exogenous death shock. The firm chooses the time path of the price, Pi, and R&D, LZi ,

subject to the demand curve in (6) and the production function in (7) and the R&D technology

(B.1) in (8), taking public R&D policy sG as given. Moreover, we define qi as the co-state

variable that represents the value of the marginal unit of knowledge, The above optimization

problem becomes to maximize the following current-value Hamiltonian,

CVHi = PiXi − Z−θi D−γi Xi − φ− LZi + qiŻi,

s.t. the demand curve in (6) and the R&D technology (B.1) in (8). By taking the first-order

derivative with respect to Pi, we yield the rule of optimal price (11),

Pi =
ε

ε− 1
Z−θi D−γi . (B.4)

Moreover, the derivative of CV Hi with respect to LZi in the linear profit function yields

LZi =


0 for 1 > qiαf(sG)K

LZ/N for 1 = qiαf(sG)K

∞ for 1 < qiαf(sG)K

.
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The interior solution is determined under the condition that the marginal cost of R&D equals

its marginal benefit. Moreover, the F.O.C. for state variable Zi is

∂CV Hi

∂Zi
= rqi − q̇i.

Rearranging it yields the return to in-house R&D,

rZ + σ ≡ ∂Πi/∂Zi
qi

+
q̇i
qi
, (B.5)

Next, considering the interior solution and takes logarithm and time derivatives on 1 =

qjαf(sG)K yields q̇i/qi = ˙−K/K. Secondly, we substitute the demand curve (6), the manufac-

turing production (7) and the pricing rule (B.4) into profit flow and yields

Πi =
1

ε
LE

Z
θ(ε−1)
i D

γ(ε−1)
i∫ N

0
Z
θ(ε−1)
j D

γ(ε−1)
j dj

− φ− LZi .

Taking the derivative of Πi with respect to Zi yields

∂Πi/∂Zi =
1

ε
LE

θ(ε− 1)

Zi

Z
θ(ε−1)
i D

γ(ε−1)
i∫ N

0
Z
θ(ε−1)
j D

γ(ε−1)
j dj

.

Substitute the resulting expression of the derivative, ∂Πi/∂Zi, and the condition, q̇i/qi =

˙−K/K, into (B.5) along with the fact that K̇/K = αf(sG)LZi from (B.1). Further impos-

ing a symmetry and combining no arbitrage condition with the return to riskless loan yield the

return to in-house R&D in (12),

r = rZ ≡ αf(sG)

[
θ(ε− 1)

ε

LE

N
− LZ
N

]
− σ. (B.6)

B.1.2 Net entry/exit

The expression for the rate of return to entry is
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rN + σ ≡ Πi

Vi
+
V̇i
Vi
. (B.7)

Taking logarithm and time derivative with respect to the free entry condition, Vi = LE/βN ,

yields V̇i/Vi = Ė/E + λ − Ṅ/N . Substituting V̇i/Vi = Ė/E + λ − Ṅ/N and the equilibrium

profit, 1
ε
LE/N−φ−LZi , into above and imposing symmetry yield the return to entry innovation

in (13),

r = rN ≡
[

1

ε

LE

N
− φ− LZ

N

]
βN

LE
+
Ė

E
+ λ− Ṅ

N
− σ. (B.8)

B.2 Proof of Lemma 2: derivation of (14) and (15)

Substituting the demand curve from (6) into the intermediate production in (7) with a sym-

metry implied by the pricing rule in (B.4), we can obtain

LX =
(ε− 1)LE

ε
+Nφ. (B.9)

Second, we plug the above expression and LN from (??) into resource constraint, L = LG +

LX + LN + LZ , to get

L = LG +
(ε− 1)LE

ε
+Nφ+ (Ṅ + σN)

LE

βN
+ LZ .

Rearranging it yields the expression for LZ/N ,

LZ
N

=
L− LG
N

− (ε− 1)LE

εN
− φ− (

Ṅ

N
+ σ)

LE

βN
.

Further substituting it into rate of return to entry in (B.8) and rearranging it yield

rN = β

[
1− (L− LG)

LE

]
+
Ė

E
+ λ.
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By applying the no arbitrage condition across rN and the riskless return rate r from the Euler

equation in (5), we, thus, can obtain equation (14),

E = E∗ ≡ β(1− sG)

β − ρ+ λ
, (B.10)

where sG = LG/L.

Substitutes the pricing rule into PC in (3) and combines the E∗ solved above, we can get

the real GDP pe capita in (15).

B.3 Firm-level innovation

Substituting r = ρ and E = E∗ from Lemma 2 into (B.6) yields

LZ
N

= max

{
θ(ε− 1)

ε

LE∗

N
− σ + ρ

αf(sG)
, 0

}
, (B.11)

where the threshold,

n̄ =
αf(sG)θ(ε− 1)

ε(σ + ρ)
E∗,

is obtained by solving θ(ε−1)
ε

E∗

n
− σ+ρ

αf(sG)
= 0. Substituting (B.11) into (B.1) yields equation

(16),

Ẑ ≡ Żi
Z

= max

{
f(sG)(1− sG)

βαθ(ε− 1)

ε (β − ρ+ λ)

1

n
− σ − ρ, 0

}
. (B.12)

B.4 Market structure dynamics

B.4.1 Proof of Proposition 1: derivations of (CG), (17), (18) and (19)

By plugging LN from (??), LX from (B.9), and LZ from (B.11) into the resource constraint

and rearranging it, we obtain

Ṅ

N
+ σ =

β

LE∗

[
L− LG −

(ε− 1)LE∗

ε
−Nφ− θ(ε− 1)

ε
LE∗ +N

σ + ρ

αf(sG)

]
.
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Replacing L−LG with (1− (ρ− λ)/β)LE derived from lemma 2 into the above expression

and rearranging it yield

ṅ

n
=
β [1− θ(ε− 1)]

ε
− (ρ+ σ)− n β

E∗

(
φ− σ + ρ

αf(sG)

)
. (B.13)

Setting ṅ
n

= 0 and defining v ≡ β[1−θ(ε−1)]
ε

− (ρ+ σ) > 0 (i.e., the first condition in CG), we can

obtain

n∗ =

v(1−sG)
β−ρ+λ(

φ− σ+ρ
αf(sG)

) , (B.14)

which is equation (18). The boundary condition that n∗ < n̄ which ensures the in-house R&D

being active in steady state yields the second inequality in CG,

φ− ρ+ σ

f(sG)α
−
[
1 +

vε

βθ(ε− 1)

]
> 0.

Moreover, we can rewrite (B.13) as

ṅ

n
= v

(
1− n

n∗

)
, (B.15)

which is the logistic differential equation in (17). The analytical solution for it is

n(t) =
n∗

1 + e−vt
(
n∗

n0
− 1
) , (B.16)

which is equation (19).
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B.4.2 Proof of Proposition 2: derivation of (20)

Combining steady state mass of firm per capita (B.14) and the consumption expenditure E∗,

we obtain the steady state firm size in equation (20),

E∗

n∗
=

(
LE

N

)∗
=
β(1− sG)

β − ρ+ λ
/

(
v(1−sG)
β−ρ+λ

φ− σ+ρ
αf(sG)

)
=

(
φ− σ + ρ

αf(sG)

)
β

v
, (B.17)

and consequently the steady state in-house R&D per firm in equation (21) is

(
LZ
N

)∗
=
θ(ε− 1)

ε

(
LE

N

)∗
− σ + ρ

αf(sG)
.

and the steady state private knowledge growth in equation (22) is

Ẑ∗ = αf(sG)
θ(ε− 1)

ε

(
LE

N

)∗
− ρ− σ. (B.18)

B.4.3 Proof of Proposition 3

When the knowledge-base and personnel-interaction effects are absent (i.e., γ = ξ = 0), the

steady state consumption expenditure, E∗, from (B.10) and the firm size per capita, n∗, from

(B.14) become

E∗ =
β(1− sG)

β − ρ+ λ
,

and

n∗ =

v(1−sG)
β−ρ+λ(
φ− σ+ρ

α

) .
Both expressions are decreasing in sG. Moreover, the expressions for

(
LE
N

)∗, (LZ
N

)∗ and Ẑ∗

above become (
LE

N

)∗
=

(
φ− σ + ρ

α

)
β

v
,
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(
LZ
N

)∗
=
θ(ε− 1)

ε

(
LE

N

)∗
− σ + ρ

α
,

and

Ẑ∗ = α
θ(ε− 1)

ε

(
LE

N

)∗
− ρ− σ,

respectively. We can see that sG has no effect on all three expressions. Moreover, TFP, T , is

defined as

T ≡ NωZθDγ,

and thus the steady state growth of TFP, which is also the growth of output as well as con-

sumption per capita is

T̂ ∗ = ŷ∗ = ĉ∗ = ωN̂∗ + θẐ∗ + γD̂∗

= ωλ+ θ

[
α
θ(ε− 1)

ε

(
LE

N

)∗
− ρ− σ

]
,

where the second equality is implied by applying γ = 0. We can see that sG has no impact on

T̂ ∗, ŷ∗ and ĉ∗. We complete our proofs for Proposition 3.

B.4.4 Proof of Proposition 4

When the knowledge-base and personnel-interaction effects are present (i.e., γ, ξ > 0), the

steady state consumption expenditure E∗ from (B.10) and the firm size n∗ from (B.14) are

E∗ =
β(1− sG)

β − ρ+ λ
,

and

n∗ =

v(1−sG)
β−ρ+λ(

φ− σ+ρ
αf(sG)

) ,

9



which both remain decreasing in sG, while the expressions for
(
LE
N

)∗, (LZ
N

)∗ and Ẑ∗ above

become (
LE

N

)∗
=

(
φ− σ + ρ

αf(sG)

)
β

v
, (B.19)

(
LZ
N

)∗
=
θ(ε− 1)

ε

(
LE

N

)∗
− σ + ρ

αf(sG)
,

and

Ẑ∗ = αf(sG)
θ(ε− 1)

ε

(
LE

N

)∗
− ρ− σ. (B.20)

All expressions are increasing in sG. Besides, the steady state growth of TFP as well as the

growth of output and consumption per capita becomes

T̂ ∗ = ŷ∗ = ĉ∗ = ωN̂∗ + θẐ∗ + γD̂∗

= ωλ+ θ

[
αf(sG)

θ(ε− 1)

ε

(
LE

N

)∗
− ρ− σ

]
+ γ

LG
L

(
L

N

)∗
= ωλ+ θ

[
αf(sG)

θ(ε− 1)

ε

(
LE

N

)∗
− ρ− σ

]
+ γ

sG/ v(1−sG)
β−ρ+λ(

φ− σ+ρ
αf(sG)

)
 ,

which is clearly increasing in sG. We complete the proof of Proposition 4.

B.4.5 Proof of Proposition 5: derivation of (23), (24) and (25)

Since n∗ is decreasing in sG, a decrease in sG from s0
G increases n∗ such that

n∗

n0

− 1 ≡

(1−sG)(
φ− σ+ρ

αf(sG)

)
(1−s0G)(
φ− σ+ρ

αf(s0
G

)

) − 1 ≡ ∆ > 0.

We can obtain n∗ = n (1 + e−vt∆) from (B.16) and substituting it into (B.15) yields transitional

path of net entry rate per capita,

ṅ

n
= v

(
1− n

n (1 + e−vt∆)

)
=

(
1− 1

(1 + e−vt∆)

)
=

e−vt∆

(1 + e−vt∆)
.
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and thus the path of net entry rate in equation (23),

N̂ ≡ Ṅ

N
=

e−vt∆

(1 + e−vt∆)
+ λ. (B.21)

We next substitute n∗ = n (1 + e−vt∆) into (B.17) yields the transitional path for firm size,

E∗

n
=
(
1 + e−vt∆

)(
φ− σ + ρ

αf(sG)

)
β

v
. (B.22)

Plugging it back to (B.12) yields transitional path of private knowledge growth in equation

(24),

Ẑ =
(
1 + e−vt∆

)
(αf(sG)φ− σ − ρ)

βθ(ε− 1)

vε
− σ − ρ. (B.23)

Finally, the transitional path of TFP growth rate is obtained by taking logarithm and time

derivative of T ≡ NωZθ
iD

γ
i with respect to time and yields

T̂ = ωN̂ + θẐ + γD̂.

Substituting N̂ and Ẑ from the above expressions and D̂ from (B.2) (where Ḋi = Di
LG
N

= Di
sG
n
)

and n∗ = n (1 + e−vt∆) into above yield the expression (25),

T̂ =
1

ε− 1

(
e−vt∆

(1 + e−vt∆)
+ λ

)
+
(
1 + e−vt∆

)
(αf(sG)φ− σ − ρ)

βθ2(ε− 1)

vε
− σ − ρ

+ γ
(1 + e−vt∆)

n∗
sG.

We complete the proof for Proposition (5).
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B.5 The dynamic relation between public and private R&D

B.5.1 The derivation for the share of labor force employed in R&D sector

To derive the transitional path of in-house R&D per firm, we substitute (B.22) into (B.11) and

yields
LZ(t)

N(t)
=
(
1 + e−vt∆

)(
φ− σ + ρ

αf(sG)

)
βθ(ε− 1)

εv
− σ + ρ

αf(sG)
.

Multiplying both sides of the above expression by the mass of firm per capita and further

substituting n∗ from (B.14) into it yield the share of labor force employed in in-house R&D as

LZ(t)

L(t)
=

(1− sG)

β − ρ+ λ

[
βθ(ε− 1)

ε
− v(σ + ρ)

φαf(sG)− σ − ρ
1

(1 + e−vt∆)

]
(B.24)

Moreover, rearranging (??) yields

Ṅ

N
=
β

E

LN
L
− σ =>

LN
L

=
E

β

(
Ṅ

N
+ σ

)
.

Substituting (B.21) and E∗ = β(1−sG)
β−ρ+λ

into above, we get the transitional path of employment

share of entry R&D
LN(t)

L(t)
=

(1− sG)

β − ρ+ λ

(
e−vt∆

(1 + e−vt∆)
+ λ+ σ

)
. (B.25)

Finally, summing up (B.24) and (B.25), we obtain the transitional path of labor share of

employment in private R&D.

LZ(t) + LN(t)

L(t)
=

(1− sG)

β − ρ+ λ

[
βθ(ε− 1)

ε
− v(σ + ρ)

φαf(sG)− σ − ρ
1

(1 + e−vt∆)
+

e−vt∆

(1 + e−vt∆)
+ λ+ σ

]
.

B.5.2 The derivation for the share of R&D expenditure to GDP ratio

Now we are in a position to derive the transitional path of R&D expenditure to GDP ratio.

First, the public R&D expenditure to GDP ratio is
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w(t)LG(t)

PC(t)Y (t)
≡ LG
LE∗

=
sG
E∗

.

Next, the in-house R&D expenditure to GDP share is

w(t)LZ(t)

PC(t)Y (t)
≡ LZ
LE∗

=
LZ/L

E∗
=

(1− sG)

E∗(β − ρ+ λ)

[
βθ(ε− 1)

ε
− v(σ + ρ)

φαf(sG)− σ − ρ
1

(1 + e−vt∆)

]
,

and the total private R&D expenditure to GDP share is

w(t)(LZ(t) + LN(t))

PC(t)Y (t)
≡ LZ + LN

LE∗
=

(LZ + LN)/L

E∗
=

(1− sG)

E∗(β − ρ+ λ)

[
βθ(ε− 1)

ε
− v(σ + ρ)

φαf(sG)− σ − ρ
1

(1 + e−vt∆)
+

e−vt∆

(1 + e−vt∆)
+ λ+ σ

]
.

B.6 Welfare

Consider the utility,

U =

∫ ∞
0

e−ρtL(t)lnc(t) dt, (B.26)

where the c(t) is the aggregator of intermediate goods with social return to variety,

c(t) = Nω

[(
1

N

) 1
ε
∫ N

0

(
Xi

L

) ε−1
ε

dt

] ε
ε−1

, ε > 1 ω > 0.

Substituting the demand from (6), using the pricing rule and the symmetry assumption, the

above expression becomes

c(t) = TωE, (B.27)
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where Tω ≡ ε−1
ε
NωZθDγ and Zi = Z and Di = D for all i. Taking logarithm on Tω yields

lnTω = ln
ε− 1

ε
+ ωlnN + θlnZi + γlnDi

= ln
ε− 1

ε
+ ω (lnL+ lnn) + θ

(
lnZi,0 +

∫ t

0

Ẑtdt

)
+ γ

(
lnDi,0 +

∫ t

0

D̂tdt

)
= ln

ε− 1

ε
+ ω

(
lnL0 +

∫ t

0

λdt+ lnn

)
+ θlnZi,0 + θẐ∗t+ θ

∫ t

0

(
Ẑt − Ẑ∗

)
dt

+ γlnDi,0 + γD̂∗t+ γ

∫ t

0

D̂t − D̂∗dt

= ln
ε− 1

ε
+ +ω (lnL0 + λt+ lnn) + θlnZi,0 + γlnDi,0 + θẐ∗t+ θ

∫ t

0

(
Ẑt − Ẑ∗

)
dt

+ γD̂∗t+ γ

∫ t

0

D̂t − D̂∗dt

= ln
ε− 1

ε
+ +ω (lnL0 + λt+ lnn) .+ θlnZi,0 + γlnDi,0 + θẐ∗t+ θ

∫ t

0

(
Ẑt − Ẑ∗

)
dt

+ γ
sG
n∗
t+ γ

∫ t

0

(sG
n
− sG
n∗

)
dt.

Substituting the solution for n from (B.16), the growth paths of in-house and public R&D

technology from (B.12) and B.2 and their steady state values into above and defining lnTω,0 ≡

ln ε−1
ε

+ ωlnL0 + θlnZi,0 + γlnDi,0, we obtain

lnTω = lnTω,0 + ωλt+ ω

ln
n∗

1 + e−vt
(

n∗

n0
− 1
)
+

[
θẐ∗ + γ

sG
n∗

]
t

+ θ

∫ t

0

[(
f(sG)

αθ(ε− 1)

ε

E

n
− σ − ρ

)
−
(
f(sG)

αθ(ε− 1)

ε

E

n∗
− σ − ρ

)]
dt+ γ

∫ t

0

(sG
n
− sG
n∗

)
dt

= lnTω,0 +
[
θẐ∗ + γ

sG
n∗

+ ωλ
]
t+ ω

(
lnn0

n∗

n0

1 + e−vt∆

)
+ θf(sG)

αθ(ε− 1)

ε

E

n∗

∫ t

0

(
n∗

n
− 1

)
dt

+ γ

∫ t

0

(sG
n
− sG
n∗

)
dt

= lnTω,0 +
[
θẐ∗ + γ

sG
n∗

+ ωλ
]
t+ ω

(
lnn0 + ln

1 + ∆

1 + e−vt∆

)
+
[
γ
sG
n∗

+ θ
(
Ẑ∗ + σ + ρ

)] ∫ t

0

(
e−vt∆

)
dt,

where the last two two terms using the fact that Ẑ∗ = f(sG)αθ(ε−1)
ε

E
n∗ − σ − ρ, the solution for
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n = n(t) = n∗

1+e−vt
(
n∗
n0
−1
) in (B.16), and the definition, ∆ ≡ n∗

n0
− 1.

We further solve
∫ t

0
(e−vt∆) dt = − 1

v
e−vt∆ + 1

v
∆ = ∆

v
(1− e−vt) and substitute it back to the

above expression and yield

lnTω = lnTω,0 + ωlnn0 +
[
θẐ∗ + γ

sG
n∗

+ ωλ
]
t+
[
γ
sG
n∗

+ θ
(
Ẑ∗ + σ + ρ

)] ∆

v
(1− e−vt)

+ ω

(
ln

1 + ∆

1 + e−vt∆

)
.

Taking logarithm on (B.27) and substituting lnTω back to it yield

lnc(t) = lnE + lnTω,0 + ωlnn0 +
[
θẐ∗ + γ

sG
n∗

+ ωλ
]
t+
[
γ
sG
n∗

+ θ
(
Ẑ∗ + σ + ρ

)] ∆

v
(1− e−vt)

+ ω

(
ln

1 + ∆

1 + e−vt∆

)
.

We further substitute the above expression back to the life time utility (B.26) and set F ≡

lnTω,0 + ωlnn0 = 0, we get

U =

∫ ∞
0

e−(ρ−λ)t

[
F + lnE +

[
θẐ∗ + γ

sG
n∗

+ ωλ
]
t+
[
γ
sG
n∗

+ θ
(
Ẑ∗ + σ + ρ

)] ∆

v
(1− e−vt)

+ ω

(
ln

1 + ∆

1 + e−vt∆

)]
dt

=
lnE

ρ− λ
+
[
θẐ∗ + γ

sG
n∗

+ ωλ
] ∫ ∞

0

e−(ρ−λ)ttdt︸ ︷︷ ︸
(a)

+
[
γ
sG
n∗

+
(
Ẑ∗ + σ + ρ

)] ∆

v

∫ ∞
0

e−(ρ−λ)t(1− e−vt)dt︸ ︷︷ ︸
(b)

+

∫ ∞
0

e−(ρ−λ)tω

(
ln

1 + ∆

1 + e−vt∆

)
dt︸ ︷︷ ︸

(c)

.

Next, we obtain the closed form solution for (a), (b) and (c) as follows:
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By setting a = t and db = e−(ρ−λ)tdt, we get the expression for (a) with integration by part,

[
θẐ∗ + γ

sG
n∗

+ ωλ
] ∫ ∞

0

e−(ρ−λ)ttdt

=
[
θẐ∗ + γ

sG
n∗

+ ωλ
] [
− t

ρ− λ
e−(ρ−λ)t

]∞
0

−
∫ ∞

0

− 1

ρ− λ
e−(ρ−λ)tdt

]

=
[
θẐ∗ + γ

sG
n∗

+ ωλ
]{
− t

ρ− λ
e−(ρ−λ)t

]∞
0

− 1

(ρ− λ)2 e
−(ρ−λ)t

]∞
0

}

=
θẐ∗ + γ sG

n∗ + ωλ

(ρ− λ)2 =
θẐ∗ + γD̂∗ + ωλ

(ρ− λ)2 .

The integration for (b) is

[
γ
sG
n∗

+ θ
(
Ẑ∗ + σ + ρ

)] ∆

v

∫ ∞
0

e−(ρ−λ)t(1− e−vt)dt

=
[
γ
sG
n∗

+ θ
(
Ẑ∗ + σ + ρ

)] ∆

v

∫ ∞
0

(
e−(ρ−λ)t − e(−ρ+λ−v)t

)
dt

=

[
γ sG
n∗ + θ

(
Ẑ∗ + σ + ρ

)]
∆
v

ρ− λ
−

[
γ sG
n∗ + θ

(
Ẑ∗ + σ + ρ

)]
∆
v

ρ− λ+ v

=

[
γ sG
n∗ + θ

(
Ẑ∗ + σ + ρ

)]
∆

(ρ− λ) ((ρ− λ) + v)
=

[
γD̂∗ + θ

(
Ẑ∗ + σ + ρ

)]
∆

(ρ− λ) ((ρ− λ) + v)
.

Finally, integration of (c) with certain approximation yields

∫ ∞
0

e−(ρ−λ)tω

(
ln

1 + ∆

1 + e−vt∆

)
dt =

∫ ∞
0

e−(ρ−λ)tω
[
ln (1 + ∆)− ln

(
1 + e−vt∆

)]
dt

'
∫ ∞

0

e−(ρ−λ)tω
[
∆− e−vt∆

]
dt

= ω∆

(
1

(ρ− λ)
− 1

(ρ− λ) + v

)
=

ωv∆

(ρ− λ) [(ρ− λ) + v]
.
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C The general model of knowledge cross fertilization (the

stock view)

We recover the general cross-fertilization knowledge spillover function with two knowledge

stocks from (8) and (9) which are

Żi = αf(sG)Ki

1 + κ
(
Di
Ki

)η
1 + κ


1
η

LZi , (C.1)

and

Ḋi = Di

1 + κ
(
Di
Ki

)−δ
1 + κ


1
δ

LGi . (C.2)

C.1 Proof of Lemma 2

Before we proceed, we adopt the same procedure as we prove for Lemma 2 in subsection 2.1,

we find that Lemma 2 also holds in this general version of the model with

E = E∗ ≡ β(1− sG)

β − ρ+ λ
,

and r = ρ.

C.2 Innovation behavior

The intermediate firm’s profit maximization yields the derivative of profit function as in the

flow version under symmetry,

∂Πi/∂Zi =
1

ε
L
E

N

θ(ε− 1)

Z
,
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while the F.O.C. of current-value Hamiltonian function with respect to LZi yields

1

qi
= αf(sG)K

[
1 + κ (k)η

1 + κ

] 1
η

,

where K = Ki = Zi = Z and k ≡ D/K = Di/Ki under symmetry.

Taking the logarithm of 1/q and differentiating it with respect time yields

q̇

q
= − κ (k)η

[1 + κ (k)η]

k̇

k
− Ẑ. (C.3)

Plugging (??) and (C.3) back to (B.6) and using the fact that r = ρ and E = E∗ yield the key

equation for private R&D behavior:

ρ+ σ =
θ(ε− 1)

ε

LE

N
αf(sG)

[
1 + κ (k)η

1 + κ

] 1
η

− κ (k)η

[1 + κ (k)η]

k̇

k
− Ẑ. (C.4)

Next, with some manipulation, the return to entry in symmetric equilibrium becomes

ρ+ σ =
Π

V
+
V̇

V
=

[
1

ε

E∗

n
− φ− LZ

N

]
βn

E∗
− ṅ

n

=

1

ε

E∗

n
− φ− Ẑ

αf(sG)Ki

[
1+κ

(
Di
Ki

)η
1+κ

] 1
η

 βnE∗ − ṅ

n
,

(C.5)

where the second equality is applied by using (C.1).

C.3 The Firm innovation

Noting that k̇/k = D̂ − Ẑ, we substitute it into (C.4) and obtain

ρ+ σ =
θ(ε− 1)

ε

LE

N
αf(sG)(1 + κ)−

1
η [1 + κ (k)η]

1
η − κ (k)η

[1 + κ (k)η]
D̂ − 1

[1 + κ (k)η]
Ẑ.
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Rearrange it and replace D̂ with (C.2). Using r = ρ and E = E∗ implied in Lemma 2, we

obtain

Ẑ =

(
θ(ε−1)
ε

E∗αf(sG)
[

1+κ(k)η

1+κ

] 1
η − κ(k)η

[1+κ(k)η ]

[
1+κ(k)−δ

1+κ

] 1
δ
sG

)
1
n
− σ − ρ

1
1+κ(k)η

. (C.6)

This function identifies the boundary of the region with Ẑ = 0 (or LZ/N > 0), that is,

n > nẐ=0(k) ≡

(
θ(ε−1)
ε

E∗αf(sG)
[

1+κ(k)η

1+κ

] 1
η − κ(k)η

[1+κ(k)η ]

[
1+κ(k)−δ

1+κ

] 1
δ
sG

)
σ + ρ

. (C.7)

Rewriting the mass of firm in per capita term n from the entry process in (??) yields

ṅ

n
=

β

LE
LN − σ − λ. (C.8)

We further replace ṅ
n
in (C.5) with the above expression and rearranging it yields

LN
N

=

[
1

ε
− (ρ− λ)

β

]
E∗

n
−

φ+
Ẑ

αf(sG)
[

1+κ(k)η

1+κ

] 1
η

 . (C.9)

We further substitute Ẑ from (C.6) into above and rearranging it yields

LN
N

=

[
1

ε
− θ(ε− 1)

ε
(1 + κ (k)η)− (ρ− λ)

β

]
E∗

n
− φ

+

κ(k)η

[1+κ(k)η ]

[
1+κ(k)−δ

1+κ

] 1
δ sG
n

+ σ + ρ

αf(sG)(1 + κ)−
1
η [1 + κ (k)η]

1
η
−1
.
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Similarly, this function can identify the boundary of the region with LN
N
> 0. By solving LN

N
= 0

for the threshold, nLN=0,LZ>0(k), we obtain

n ≥ nLN=0,LZ>0(k) ≡

[
1
ε
− θ(ε−1)

ε
(1 + κ (k)η)− (ρ−λ)

β

]
E∗ +

κ(k)η
[
1+κ(k)−δ

1+κ

] 1
δ
sG

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η

φ− σ+ρ[1+κ(k)η ]

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η

(C.10)

for the region when LN
N

= 0 and LZ
N
> 0. Moreover, let both Ẑ = 0 and LN

N
= 0 in (C.9), we

can solve the boundary

n ≥ nLN=0,LZ=0 ≡
[

1

ε
− (ρ− λ)

β

]
E∗

φ

for the region when both LN
N

= 0 and LZ
N

= 0. Combining the two boundaries derived above,

we can identify the region above the curve of LN = 0 shown in figure 1.

C.4 Cross-fertilization global dynamics (a “substitute” scenario i.e.,

0 < η ≤ 1 and 0 < δ ≤ 1)

Proof of Proposition 8 and the phase diagram in Figure 1.

Global dynamics of this general model can be characterized by the activation of in-house and

entry R&D into four regions:
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Region 1: LZ > 0 and LN > 0.

Substitute (C.6) into (C.5). With some manipulation, we obtain the expression for the firm

size dynamics,

ṅ

n
=

[
1

ε
− θ(ε− 1)

ε
(1 + κ (k)η)− (ρ+ σ)

β

]
β +

κ (k)η
[

1+κ(k)−δ

1+κ

] 1
δ
sG

αf(sG)
[

1+κ(k)η

1+κ

] 1
η

β

E∗

−

φ− (σ + ρ)(1 + κ (k)η)

αf(sG)
[

1+κ(k)η

1+κ

] 1
η

 βn
E∗

. (C.11)

Next, using (C.2) to subtract (C.6) and rearranging it yield the expression for the dynamics of

knowledge stock ratio k,

k̇

k
= (1 + κ (k)η)


[

1+κ(k)−δ

1+κ

] 1
δ
sG − θ(ε−1)

ε
E∗αf(sG)

[
1+κ(k)η

1+κ

] 1
η

n
+ (σ + ρ)

 (C.12)

This dynamics system is governed by the following two loci. Setting ṅ
n

= 0 in (C.11) yields

nṅ=0(k) ≡

[
1
ε
− θ(ε−1)

ε
(1 + κ (k)η)− (ρ+σ)

β

]
E∗ +

κ(k)η
[
1+κ(k)−δ

1+κ

] 1
δ
sG

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η[

φ− (σ+ρ)(1+κ(k)η)

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η

] ,

where ṅ ≥ 0 when n ≤ nṅ=0(k).

Setting k̇
k

= 0 in (C.12) yields

nk̇=0(k) ≡
θ(ε−1)
ε

E∗αf(sG)
[

1+κ(k)η

1+κ

] 1
η −

[
1+κ(k)−δ

1+κ

] 1
δ
sG

σ + ρ
, (C.13)

where k̇ ≥ 0 when n ≥ nk̇=0(k), We obtain k1 by solving nṅ=0(k) = 0 and yield
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k1 = argsolve


[

1

ε
− θ(ε− 1)

ε
(1 + κ (k)η)− (ρ+ σ)

β

]
E∗ +

κ (k)η
[

1+κ(k)−δ

1+κ

] 1
δ
sG

αf(sG)
[

1+κ(k)η

1+κ

] 1
η

= 0

 .

(C.14)

Next, we obtain k2 by solving nk̇=0(k) = 0 and yield

k2 = argsolve

θ(ε− 1)

ε
E∗αf(sG)

[
1 + κ (k)η

1 + κ

] 1
η

=

[
1 + κ (k)−δ

1 + κ

] 1
δ

sG

 (C.15)

To characterize properly the phase diagram for this region involving the following three steps:

In the first step,

we prove that (i)

[
φ− (σ+ρ)(1+κ(k)η)

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η

]
is increasing in k and converges to φ from below; (ii)

nṅ=0(k) is decreasing in k with k greater than a threshold value k3; (iii) lim
k→0+

nṅ=0(k) = +∞.

Proof:

(i)

[
φ− (σ+ρ)(1+κ(k)η)

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η

]
is increasing in k and converges to φ from below.

Under the assumption that φ− (σ+ρ)

αf(sG)(1+κ)
− 1
η
> 0, when 0 < η ≤ 1, the denominator in nṅ=0(k),[

φ− (σ+ρ)

αf(sG)(1+κ)
− 1
η [1+κ(k)η ]

1
η−1

]
, is always positive and increasing in k because [1+κ(k)η ]

1
η

(1+κ(k)η)
= (1 +

κ (k)η)
1
η
−1 > 1 for all k > 0 under 0 < η ≤ 1 and itself is increasing in k. Moreover, since

lim
k→∞

[1 + κ (k)η]
1
η
−1

=∞, it converges to φ from below as k →∞.

(ii) lim
k→0+

nṅ=0(k) = +∞.

When 0 < η ≤ 1, we obtain

lim
k→0+

(1 + κ (k)η) = 1,

and
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lim
k→0+

[1 + κ (k)η]
1
η =

[
1 + lim

k→0+
κ (k)η

] 1
η

= [1 + 0]
1
η = 1.

Both equations imply that

lim
k→0+

(1 + κ (k)η)

[1 + κ (k)η]
1
η

= 1.

Moreover,

lim
k→0+

κ (k)η[
1 + κ (k)−δ

]− 1
δ

=
κ (k)η[

1 + κ 1

(k)δ

]− 1
δ

=
κ (k)η[

(k)δ+κ

(k)δ

]− 1
δ

=
κ (k)η

[(k)δ+κ]
− 1
δ

(k)−1

=
κ (k)η−1[

(k)δ + κ
]− 1

δ

=∞.

Once we have the above results in hand, we can find that when 0 < η ≤ 1,

lim
k→0+

[
1
ε
− θ(ε−1)

ε
(1 + κ (k)η)− (ρ+σ)

β

]
E∗ +

κ(k)η(1+κ)−
1
δ [1+κ(k)−δ]

1
δ sG

αf(sG)(1+κ)
− 1
η [1+κ(k)η ]

1
η[

φ− (σ+ρ)(1+κ(k)η)

αf(sG)(1+κ)
− 1
η [1+κ(k)η ]

1
η

]

=

lim
k→0+

[
1
ε
− θ(ε−1)

ε
(1 + κ (k)η)− (ρ+σ)

β

]
E∗ + (1+κ)−

1
δ sG

αf(sG)(1+κ)
− 1
η

lim
k→0+

1

[1+κ(k)η ]
1
η

lim
k→0+

κ(k)η

[1+κ(k)−δ]
− 1
δ

lim
k→0+

[
φ− (σ+ρ)(1+κ(k)η)

αf(sG)(1+κ)
− 1
η [1+κ(k)η ]

1
η

] =∞.

(iii) nṅ=0(k) is decreasing in k with a sufficient condition that k is greater than a

threshold value k3.

Next, we know that the first term in the numerator of nṅ=0(k) is
[

1
ε
− θ(ε−1)

ε
(1 + κ (k)η)− (ρ+σ)

β

]
E∗

which is decreasing in k and reaches −∞ when k goest to ∞. Moreover, with some manipula-

tion, the second term in the numerator becomes

κ (k)η
[
1 + κ (k)−δ

] 1
δ
sG

αf(sG)
[

1+κ(k)η

1+κ

] 1
η

=
κ
[
1 + κ (k)−δ

] 1
δ
sG

αf(sG)(1 + κ)−
1
η

[
(k)−η

2

+ κ (k)η(1−η)
] 1
η

,
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in which the term
[
1 + κ (k)−δ

] 1
δ on the top is decreasing in k with lim

k→∞

[
1 + κ (k)−δ

] 1
δ

= 1 and

the term
[
(k)−η

2

+ κ (k)η(1−η)
] 1
η on the bottom is increasing in k when k >

(
η

(1−η)κ

) 1
η , where

the proof is shown below:

∂

[
(k)−η

2

+ κ (k)η(1−η)
] 1
η

∂k
=

1

η

[
(k)−η

2

+ κ (k)η(1−η)
] 1
η
−1

η
[
(−η + κ (k)η (1− η)) (k)−η

2−1
]
> 0

=> −η + κ (k)η (1− η) > 0 => κ (k)η >
η

(1− η)
=> k >

(
η

(1− η)κ

) 1
η

.

This implies the entire term,
κ(k)η[1+κ(k)−δ]

1
δ sG

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η

, is decreasing k when k >
(

η
(1−η)κ

) 1
η and

converges to 0. With all the information above indicates that nṅ=0(k) is decreasing in k and

converges to −∞ when k >
(

η
(1−η)κ

) 1
η and it crosses horizontal axis in k1 from above as we

have obtained previously.

Next, we can also easily see that nṅ=0(k) has the same shape as the LN = 0 boundary

in (C.10), but is everywhere below it. Besides, we will prove later that the LZ = 0 (Ẑ = 0)

boundary in (C.7) starts out from a positive kz from the horizontal axis and is increasing in k

and since lim
k→0+

nṅ=0(k) = +∞ is proved in (ii), there exists a intersection between LZ = 0 and

nṅ=0(k), where the intersection in the dimension of n is n̄∗ =
[

1
ε
− ρ+σ

β

]
E∗

φ
.1

We further substituting n̄∗ into nṅ=0(k), we can obtain k3 that solves

[
1

ε
− ρ+ σ

β

]
E∗

φ
=

[
1
ε
− θ(ε−1)

ε
(1 + κ (k)η)− (ρ+σ)

β

]
E∗ +

κ(k)η
[
1+κ(k)−δ

1+κ

] 1
δ
sG

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η[

φ− (σ+ρ)(1+κ(k)η)

αf(sG)[ 1+κ(k)
η

1+κ ]
1
η

] .

If we specify the condition that k > k3 >
(

η
(1−η)κ

) 1
η , Then we can guarantee that nṅ=0(k) is

monotonically decreasing in k for all k > k3. Therefore, the proofs for (i), (ii) and (iii) are

1Specifically by substituting Ẑ = 0 into (C.5) yields ṅ
n =

[
1
ε
E∗

n − φ
]
βn
E∗ − (ρ+ σ) and solving ṅ

n = 0, we can

obtain n̄∗ =
[
1
ε −

ρ+σ
β

]
E∗

φ .
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complete.

In the second step,

It is easy to verify that nk̇=0(k) from (C.13) starts out zero at k2 and is monotonically increasing

in k.

In the third step,

we show that k1 > k2 as follows,

Proof of k1 > k2:

Rewrite equations (C.14) and (C.15) of the solutions k1 and k2 as:

[
1+κ(k)−δ

1+κ

] 1
δ
sG

αf(sG)
[

1+κ(k)η

1+κ

] 1
η

= −
[

1

ε
− θ(ε− 1)

ε
(1 + κ (k)η)− (ρ+ σ)

β

]
E∗

κ (k)η
=> k1,

and

[
1+κ(k)−δ

1+κ

] 1
δ
sG

αf(sG)(1 + κ)−
1
η

[
1+κ(k)η

1+κ

] 1
η

=
θ(ε− 1)

ε
E∗ => k2.

The assumption that v > 0 in baseline model implies that right-hand side of the top equation

is always less than the right-hand side of the bottom equation as shown below:

−
[

1

ε
− θ(ε− 1)

ε
(1 + κ (k)η)− (ρ+ σ)

β

]
E∗

κ (k)η

= −
[

1

ε
− θ(ε− 1)

ε
− (ρ+ σ)

β

]
E∗

κ (k)η
+
θ(ε− 1)

ε
E∗ <

θ(ε− 1)

ε
E∗,

where −
[

1
ε
− θ(ε−1)

ε
− (ρ+σ)

β

]
= − v

β
< 0.

Since the left hand side of the two equations is decreasing in k, it follows that k1 > k2.
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Besides, the LZ = 0 (Ẑ = 0) boundary in (C.7) starts out with positive kz because

lim
k→0+

nẐ=0(k) = −∞ and nẐ=0(k) is increasing in k. This can be verified by showing that

the limits of the first term and the second term are

lim
k→0+

θ(ε− 1)

ε
E∗αf(sG)(1 + κ)−

1
η [1 + κ (k)η]

1
η =

θ(ε− 1)

ε
E∗αf(sG)(1 + κ)−

1
η ,

and

lim
k→0+

κ (k)η

[1 + κ (k)η]
(1 + κ)−

1
δ

[
1 + κ (k)−δ

] 1
δ
sG =∞.

Moreover, the derivative of nẐ=0(k) with respect to k, after some manipulation, becomes

∂nẐ=0(k)

∂k

=
κ (k)η−1

[1 + κ (k)η]

[
θ(ε− 1)

ε
E∗αf(sG)(1 + κ)−

1
η [1 + κ (k)η]

1
η − η

[1 + κ (k)η]

[
1 + κ (k)−δ

] 1
δ

(1 + κ)−
1
δ sG

]
+

κ (k)η

[1 + κ (k)η]
κ (k)−δ−1

[
1 + κ (k)−δ

] 1
δ

(1 + κ)−
1
δ sG.

Using Ẑ = 0, i.e.,

n(σ + ρ) =
θ(ε− 1)

ε
E∗αf(sG)(1 + κ)−

1
η [1 + κ (k)η]

1
η − κ (k)η

[1 + κ (k)η]
(1 + κ)−

1
δ

[
1 + κ (k)−δ

] 1
δ
sG,

and substituting it into above and rearrange it, we get

∂nẐ=0(k)

∂k
=

κ (k)η−1

[1 + κ (k)η]


 n(σ + ρ)[

1+κ(k)−δ

1+κ

] 1
δ
sG

+
κ (k)η

[1 + κ (k)η]
− η

[1 + κ (k)η]
+ κ (k)−δ

[1 + κ (k)−δ

1 + κ

] 1
δ

sG


> 0.
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To guarantee the above inequality to hold, we need

n(σ + ρ)

(1 + κ)−
1
δ

[
1 + κ (k)−δ

] 1
δ
sG

+
κ (k)η

[1 + κ (k)η]
+ κ (k)−δ >

η

[1 + κ (k)η]

=
n(σ + ρ)

(1 + κ)−
1
δ

[
1 + κ (k)−δ

] 1
δ
sG

+ 1 + κ (k)−δ > 1 >
1 + η

[1 + κ (k)η]
.

As a result, we can find a sufficient condition,

κ (k)η > η.

This can be further guaranteed by the restriction that κ (k)η > η
1−η > η which is the same

restriction we make to ensure nṅ=0(k) is decreasing in k. Therefore, nẐ=0(k) is increasing in k

and lim
k→0+

nẐ=0(k) = −∞. This guarantees that LZ = 0 (Ẑ = 0) boundary in (C.7) starts out

with positive kz which solves LZ = 0 when n = 0, that is,

0 =
θ(ε− 1)

ε
E∗αf(sG)(1 + κ)−

1
η [1 + κ (kz)

η]
1
η − κ (kz)

η

[1 + κ (kz)
η]

(1 + κ)−
1
δ

[
1 + κ (kz)

−δ
] 1
δ
sG.

Also note that since
sG

f(sG)E∗
=

1
f(sG)
sG

E∗
=

1(
1
sG

+ ξ
)
E∗

is increasing in sG, Both k1 and k2 are increasing in sG. This suggests that the ṅ = 0 locus

shifts up with sG while the k̇ = 0 locus shifts down. With all the above information allows us

to characterize the phase diagram for the system dynamics of region 1. The boundaries (ie.,

LZ = 0 and LN = 0) separates this region with others.
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C.5 Derivation for Equations (30) and (31)

Steady state requires (C.4) to become

ρ+ σ =
θ(ε− 1)

ε

E∗

n
αf(sG)(1 + κ)−

1
η [1 + κ (k)η]

1
η − Ẑ, (C.16)

and (C.5) to become

ρ+ σ =

[
1

ε

E∗

n
− φ− Ẑ

αf(sG)Ki(1 + κ)−
1
η [1 + κ (k)η]

1
η

]
βn

E∗
. (C.17)

We replace E∗/n by substituting (C.17) into (C.16). After some manipulation yields equation

(31),

Ẑ =
[
φαf(sG)(1 + κ)−

1
η [1 + κ (k)η]

1
η − (ρ+ σ)

] θβ(ε− 1)

εv
− (ρ+ σ) .

Moreover, we know that the two knowledge growth rates are equal in steady state, implying

that

Ẑ∗ = D̂∗ = (1 + κ)−
1
δ

[
1 + κ (k)−δ

] 1
δ sG
n
. (C.18)

We rearrange (C.18) and substitute (C.16) for n, which yields equation (30),

Ẑ =
ρ+ σ

E∗
α
θ(ε−1)
ε

f(sG)(1+κ)
− 1
η [1+κ(k)η ]

1
η

(1+κ)−
1
δ [1+κ(k)−δ]

1
δ sG

− 1

.

C.6 Some interesting properties

For sG = 0, the system dynamics in (C.11) and (C.12) can be degenerated to

ṅ

n
=

[
1

ε
− θ(ε− 1)

ε
(1 + κ (k)η)− (ρ+ σ)

β

]
β −

[
φ− (σ + ρ)(1 + κ (k)η)

α(1 + κ)−
1
η [1 + κ (k)η]

1
η

]
βn

E∗
, (C.19)
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and
k̇

k
= (1 + κ (k)η)

[
− θ(ε−1)

ε
E∗α(1 + κ)−

1
η [1 + κ (k)η]

1
η

n
+ (σ + ρ)

]
, (C.20)

where the two loci governing the dynamics are

ṅ ≥ 0 : n ≤ nṅ=0(k) =

[
1
ε
− θ(ε−1)

ε
(1 + κ (k)η)− (ρ+σ)

β

]
β[

φ− (σ+ρ)(1+κ(k)η)

α(1+κ)
− 1
η [1+κ(k)η ]

1
η

]
β
E∗

,

and

k̇ ≥ 0 : n ≥ nk̇=0(k) ≡
θ(ε−1)
ε

E∗α(1 + κ)−
1
η [1 + κ (k)η]

1
η

(σ + ρ)
.

The condition for LZ > 0 (i.e.,ẐsG=0 > 0) is

ẐsG=0 =

(
θ(ε−1)
ε

E∗α(1 + κ)−
1
η [1 + κ (k)η]

1
η

)
1
n
− σ − ρ

1
1+κ(k)η

> 0

=> n <
θ(ε−1)
ε

E∗α(1 + κ)−
1
η [1 + κ (k)η]

1
η

σ + ρ
,

which identifies the region of phrase space where k̇ < 0. The non-negativity constraint on LZ

implies that we have k̇ = 0 whenever

n ≥ nẐsG=0
(k) ≡

θ(ε−1)
ε

E∗α(1 + κ)−
1
η [1 + κ (k)η]

1
η

σ + ρ
.

The nẐsG=0
(k) locus has intercept,

nẐsG=0
(0) =

θ(ε−1)
ε

E∗α(1 + κ)−
1
η

σ + ρ
.

The phase diagram we obtained can be distinguished into two main cases:
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Case 1: for

nṅ=0(0) ≤ nẐsG=0
(0) :

[
1
ε
− θ(ε−1)

ε
− (ρ+σ)

β

]
[
φ− (σ+ρ)

α(1+κ)
− 1
η

] ≤
θ(ε−1)
ε

α(1 + κ)−
1
η

σ + ρ

[
1

ε
− (ρ+ σ)

β

]
≤ φ

θ(ε−1)
ε

α(1 + κ)−
1
η

σ + ρ
,

all initial conditions (k0, n0) yield paths that converge to the unique steady state (0, n∗), which

is the steady state endogenous growth driven by private R&D activity of the baseline Schum-

peterian model with no government.

Case 2: for

nṅ=0(0) > nẐsG=0
(0) :

[
1

ε
− (ρ+ σ)

β

]
> φ

θ(ε−1)
ε

α(1 + κ)−
1
η

σ + ρ
,

there is a set of zero growth steady state, the union of the point (k̄∗, n̄∗) and the points (k̃∗, n̄∗)

for k̃ ∈ (0, k̄∗). All initial conditions (k0, n0) yield paths that converge to a point in this set.

The value k̄∗ is uniquely determined by the parameters (we find k̄∗ and n̄∗ by solving (C.19)

and (C.20) at ṅ
n

= k̇
k

= 0). In contrast, the value k̃∗ depends on the specific path dictated by

the initial condition and the law of motion of the system.
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