Online Appendix for "Public R\&D, Private R\&D and
 Growth: A Schumpeterian Approach" by Huang, Lai and

Peretto

August 11, 2023

The Appendix collects all the proofs and derivations using both simple (flow view) public and private R\&D interaction model and the generalized (stock view) of cross-knowledge fertilization model presented in the manuscript.

A Household problem: derivation of (5) and (6)

The current value Hamiltonian to the household problem solved by a representative individual is

$$
\mathcal{L}=\ln c+\iota\left[(r-\lambda) a+w-P_{C} c-w s_{G}\right],
$$

where $(r-\lambda) a+w-P_{C} c-s_{G}$ is the budget constraint per capita, s_{G} is lump-sum tax per capita and ι is the dynamic multiplier. The necessary conditions for the maximization problem are

$$
\begin{equation*}
\mathcal{L}_{c}=0 \quad \rightarrow \quad \frac{1}{c}=\iota P_{C}, \tag{A.1}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{a}=(\rho-\lambda) \iota-i \quad \rightarrow \quad \iota(r-\lambda)=(\rho-\lambda) \iota-i, \tag{A.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\mathrm{t}-\infty} \iota a e^{-(\rho-\lambda) t}=0, \tag{A.3}
\end{equation*}
$$

where the last equation is the standard transversality condition. Time-differentiating (A.1) and substituting the result into (A.2) yields (5).

Next, household minimizes the cost expenditure per capita,

$$
\min _{X_{j}} P_{C} c-\int_{0}^{N} P_{j} \frac{X_{i}}{L} d t
$$

subject to

$$
c=N^{\omega}\left[\left(\frac{1}{N}\right)^{\frac{1}{\epsilon}} \int_{0}^{N}\left(\frac{X_{i}}{L}\right)^{\frac{\epsilon-1}{\epsilon}} d t\right]^{\frac{\epsilon}{\epsilon-1}} .
$$

Given P_{c} and P_{j} for all j, the F.O.C. with respect to X_{j} yields equation (6).

B A flow view model of the private and public R\&D interaction

B. 1 Proof of Lemma 1: derivation of (11), (12), and (13)

In the following, we derive a simple model with a flow view of private and public R\&D interaction by setting κ to zero. The two knowledge accumulation processes in equations (8) and (9) thus become

$$
\begin{equation*}
\dot{Z}_{i}=\alpha f\left(s_{G}\right) K_{i} L_{Z_{i}}, \tag{B.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{D}_{i}=B_{i} L_{G_{i}} . \tag{B.2}
\end{equation*}
$$

The interaction is only captured by the factor $f\left(s_{G}\right)$ which measures the knowledge spillover from public $\mathrm{R} \& \mathrm{D}$ employment to private $\mathrm{R} \& \mathrm{D}$ technology.

B.1.1 Intermediate firm's profit maximization problem and returns to in-house and entry R\&D

The typical intermediate firm maximizes its present value,

$$
\begin{equation*}
\max _{\left\{L_{z_{i}}, P_{i}\right\}} V_{i}(t)=\int_{t}^{\infty} \Pi_{i} e^{-\int_{t}^{\tau}(r(s)+\sigma) d s} d \tau, \quad \sigma>0, \tag{B.3}
\end{equation*}
$$

where $\Pi_{i} \equiv P_{i} X_{i}-w L_{X_{i}}-w L_{Z_{i}}$ is the instantaneous profit flow, r is the real interest rate and σ is an exogenous death shock. The firm chooses the time path of the price, P_{i}, and R\&D, $L_{Z_{i}}$, subject to the demand curve in (6) and the production function in (7) and the $\mathrm{R} \& \mathrm{D}$ technology (B.1) in (8), taking public R\&D policy s_{G} as given. Moreover, we define q_{i} as the co-state variable that represents the value of the marginal unit of knowledge, The above optimization problem becomes to maximize the following current-value Hamiltonian,

$$
C V H_{i}=P_{i} X_{i}-Z_{i}^{-\theta} D_{i}^{-\gamma} X_{i}-\phi-L_{Z_{i}}+q_{i} \dot{Z}_{i},
$$

s.t. the demand curve in (6) and the R\&D technology (B.1) in (8). By taking the first-order derivative with respect to P_{i}, we yield the rule of optimal price (11),

$$
\begin{equation*}
P_{i}=\frac{\epsilon}{\epsilon-1} Z_{i}^{-\theta} D_{i}^{-\gamma} . \tag{B.4}
\end{equation*}
$$

Moreover, the derivative of $C V H_{i}$ with respect to $L_{Z_{i}}$ in the linear profit function yields

$$
L_{Z_{i}}= \begin{cases}0 & \text { for } 1>q_{i} \alpha f\left(s_{G}\right) K \\ L_{Z} / N & \text { for } 1=q_{i} \alpha f\left(s_{G}\right) K \\ \infty & \text { for } 1<q_{i} \alpha f\left(s_{G}\right) K\end{cases}
$$

The interior solution is determined under the condition that the marginal cost of $\mathrm{R} \& \mathrm{D}$ equals its marginal benefit. Moreover, the F.O.C. for state variable Z_{i} is

$$
\frac{\partial C V H_{i}}{\partial Z_{i}}=r q_{i}-\dot{q}_{i} .
$$

Rearranging it yields the return to in-house R\&D,

$$
\begin{equation*}
r^{Z}+\sigma \equiv \frac{\partial \Pi_{i} / \partial Z_{i}}{q_{i}}+\frac{\dot{q}_{i}}{q_{i}}, \tag{B.5}
\end{equation*}
$$

Next, considering the interior solution and takes logarithm and time derivatives on $1=$ $q_{j} \alpha f\left(s_{G}\right) K$ yields $\dot{q}_{i} / q_{i}=-\dot{K} / K$. Secondly, we substitute the demand curve (6), the manufacturing production (7) and the pricing rule (B.4) into profit flow and yields

$$
\Pi_{i}=\frac{1}{\epsilon} L E \frac{Z_{i}^{\theta(\epsilon-1)} D_{i}^{\gamma(\epsilon-1)}}{\int_{0}^{N} Z_{j}^{\theta(\epsilon-1)} D_{j}^{\gamma(\epsilon-1)} d j}-\phi-L_{Z_{i}}
$$

Taking the derivative of Π_{i} with respect to Z_{i} yields

$$
\partial \Pi_{i} / \partial Z_{i}=\frac{1}{\epsilon} L E \frac{\theta(\epsilon-1)}{Z_{i}} \frac{Z_{i}^{\theta(\epsilon-1)} D_{i}^{\gamma(\epsilon-1)}}{\int_{0}^{N} Z_{j}^{\theta(\epsilon-1)} D_{j}^{\gamma(\epsilon-1)} d j}
$$

Substitute the resulting expression of the derivative, $\partial \Pi_{i} / \partial Z_{i}$, and the condition, $\dot{q}_{i} / q_{i}=$ $-\dot{K} / K$, into (B.5) along with the fact that $\dot{K} / K=\alpha f\left(s_{G}\right) L_{Z_{i}}$ from (B.1). Further imposing a symmetry and combining no arbitrage condition with the return to riskless loan yield the return to in-house R\&D in (12),

$$
\begin{equation*}
r=r^{Z} \equiv \alpha f\left(s_{G}\right)\left[\frac{\theta(\epsilon-1)}{\epsilon} \frac{L E}{N}-\frac{L_{Z}}{N}\right]-\sigma . \tag{B.6}
\end{equation*}
$$

B.1.2 Net entry/exit

The expression for the rate of return to entry is

$$
\begin{equation*}
r^{N}+\sigma \equiv \frac{\Pi_{i}}{V_{i}}+\frac{\dot{V}_{i}}{V_{i}} . \tag{B.7}
\end{equation*}
$$

Taking logarithm and time derivative with respect to the free entry condition, $V_{i}=L E / \beta N$, yields $\dot{V}_{i} / V_{i}=\dot{E} / E+\lambda-\dot{N} / N$. Substituting $\dot{V}_{i} / V_{i}=\dot{E} / E+\lambda-\dot{N} / N$ and the equilibrium profit, $\frac{1}{\epsilon} L E / N-\phi-L_{Z_{i}}$, into above and imposing symmetry yield the return to entry innovation in (13),

$$
\begin{equation*}
r=r^{N} \equiv\left[\frac{1}{\epsilon} \frac{L E}{N}-\phi-\frac{L_{Z}}{N}\right] \frac{\beta N}{L E}+\frac{\dot{E}}{E}+\lambda-\frac{\dot{N}}{N}-\sigma . \tag{B.8}
\end{equation*}
$$

B. 2 Proof of Lemma 2: derivation of (14) and (15)

Substituting the demand curve from (6) into the intermediate production in (7) with a symmetry implied by the pricing rule in (B.4), we can obtain

$$
\begin{equation*}
L_{X}=\frac{(\epsilon-1) L E}{\epsilon}+N \phi . \tag{B.9}
\end{equation*}
$$

Second, we plug the above expression and L_{N} from (??) into resource constraint, $L=L_{G}+$ $L_{X}+L_{N}+L_{Z}$, to get

$$
L=L_{G}+\frac{(\epsilon-1) L E}{\epsilon}+N \phi+(\dot{N}+\sigma N) \frac{L E}{\beta N}+L_{Z}
$$

Rearranging it yields the expression for L_{Z} / N,

$$
\frac{L_{Z}}{N}=\frac{L-L_{G}}{N}-\frac{(\epsilon-1) L E}{\epsilon N}-\phi-\left(\frac{\dot{N}}{N}+\sigma\right) \frac{L E}{\beta N} .
$$

Further substituting it into rate of return to entry in (B.8) and rearranging it yield

$$
r^{N}=\beta\left[1-\frac{\left(L-L_{G}\right)}{L E}\right]+\frac{\dot{E}}{E}+\lambda .
$$

By applying the no arbitrage condition across r^{N} and the riskless return rate r from the Euler equation in (5), we, thus, can obtain equation (14),

$$
\begin{equation*}
E=E^{*} \equiv \frac{\beta\left(1-s_{G}\right)}{\beta-\rho+\lambda}, \tag{B.10}
\end{equation*}
$$

where $s_{G}=L_{G} / L$.
Substitutes the pricing rule into P_{C} in (3) and combines the E^{*} solved above, we can get the real GDP pe capita in (15).

B. 3 Firm-level innovation

Substituting $r=\rho$ and $E=E^{*}$ from Lemma 2 into (B.6) yields

$$
\begin{equation*}
\frac{L_{Z}}{N}=\max \left\{\frac{\theta(\epsilon-1)}{\epsilon} \frac{L E^{*}}{N}-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}, 0\right\} \tag{B.11}
\end{equation*}
$$

where the threshold,

$$
\bar{n}=\frac{\alpha f\left(s_{G}\right) \theta(\epsilon-1)}{\epsilon(\sigma+\rho)} E^{*},
$$

is obtained by solving $\frac{\theta(\epsilon-1)}{\epsilon} \frac{E^{*}}{n}-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}=0$. Substituting (B.11) into (B.1) yields equation (16),

$$
\begin{equation*}
\hat{Z} \equiv \frac{\dot{Z}_{i}}{Z}=\max \left\{f\left(s_{G}\right)\left(1-s_{G}\right) \frac{\beta \alpha \theta(\epsilon-1)}{\epsilon(\beta-\rho+\lambda)} \frac{1}{n}-\sigma-\rho, \quad 0\right\} \tag{B.12}
\end{equation*}
$$

B. 4 Market structure dynamics

B.4.1 Proof of Proposition 1: derivations of $(C G)$, (17), (18) and (19)

By plugging L_{N} from (??), L_{X} from (B.9), and L_{Z} from (B.11) into the resource constraint and rearranging it, we obtain

$$
\frac{\dot{N}}{N}+\sigma=\frac{\beta}{L E^{*}}\left[L-L_{G}-\frac{(\epsilon-1) L E^{*}}{\epsilon}-N \phi-\frac{\theta(\epsilon-1)}{\epsilon} L E^{*}+N \frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right] .
$$

Replacing $L-L_{G}$ with $(1-(\rho-\lambda) / \beta) L E$ derived from lemma 2 into the above expression and rearranging it yield

$$
\begin{equation*}
\frac{\dot{n}}{n}=\frac{\beta[1-\theta(\epsilon-1)]}{\epsilon}-(\rho+\sigma)-n \frac{\beta}{E^{*}}\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right) . \tag{B.13}
\end{equation*}
$$

Setting $\frac{\dot{n}}{n}=0$ and defining $v \equiv \frac{\beta[1-\theta(\epsilon-1)]}{\epsilon}-(\rho+\sigma)>0$ (i.e., the first condition in $C G$), we can obtain

$$
\begin{equation*}
n^{*}=\frac{\frac{v\left(1-s_{G}\right)}{\beta-\rho+\lambda}}{\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right)}, \tag{B.14}
\end{equation*}
$$

which is equation (18). The boundary condition that $n^{*}<\bar{n}$ which ensures the in-house $\mathrm{R} \& \mathrm{D}$ being active in steady state yields the second inequality in $C G$,

$$
\phi-\frac{\rho+\sigma}{f\left(s_{G}\right) \alpha}-\left[1+\frac{v \epsilon}{\beta \theta(\epsilon-1)}\right]>0
$$

Moreover, we can rewrite (B.13) as

$$
\begin{equation*}
\frac{\dot{n}}{n}=v\left(1-\frac{n}{n^{*}}\right) \tag{B.15}
\end{equation*}
$$

which is the logistic differential equation in (17). The analytical solution for it is

$$
\begin{equation*}
n(t)=\frac{n^{*}}{1+e^{-v t}\left(\frac{n^{*}}{n_{0}}-1\right)} \tag{B.16}
\end{equation*}
$$

which is equation (19).

B.4.2 Proof of Proposition 2: derivation of (20)

Combining steady state mass of firm per capita (B.14) and the consumption expenditure E^{*}, we obtain the steady state firm size in equation (20),

$$
\begin{equation*}
\frac{E^{*}}{n^{*}}=\left(\frac{L E}{N}\right)^{*}=\frac{\beta\left(1-s_{G}\right)}{\beta-\rho+\lambda} /\left(\frac{\frac{v\left(1-s_{G}\right)}{\beta-\rho+\lambda}}{\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}}\right)=\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right) \frac{\beta}{v} \tag{B.17}
\end{equation*}
$$

and consequently the steady state in-house $\mathrm{R} \& \mathrm{D}$ per firm in equation (21) is

$$
\left(\frac{L_{Z}}{N}\right)^{*}=\frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)} .
$$

and the steady state private knowledge growth in equation (22) is

$$
\begin{equation*}
\hat{Z}^{*}=\alpha f\left(s_{G}\right) \frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\rho-\sigma . \tag{B.18}
\end{equation*}
$$

B.4.3 Proof of Proposition 3

When the knowledge-base and personnel-interaction effects are absent (i.e., $\gamma=\xi=0$), the steady state consumption expenditure, E^{*}, from (B.10) and the firm size per capita, n^{*}, from (B.14) become

$$
E^{*}=\frac{\beta\left(1-s_{G}\right)}{\beta-\rho+\lambda},
$$

and

$$
n^{*}=\frac{\frac{v\left(1-s_{G}\right)}{\beta-\rho+\lambda}}{\left(\phi-\frac{\sigma+\rho}{\alpha}\right)} .
$$

Both expressions are decreasing in s_{G}. Moreover, the expressions for $\left(\frac{L E}{N}\right)^{*},\left(\frac{L_{Z}}{N}\right)^{*}$ and \hat{Z}^{*} above become

$$
\left(\frac{L E}{N}\right)^{*}=\left(\phi-\frac{\sigma+\rho}{\alpha}\right) \frac{\beta}{v}
$$

$$
\left(\frac{L_{Z}}{N}\right)^{*}=\frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\frac{\sigma+\rho}{\alpha},
$$

and

$$
\hat{Z}^{*}=\alpha \frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\rho-\sigma,
$$

respectively. We can see that s_{G} has no effect on all three expressions. Moreover, TFP, T, is defined as

$$
T \equiv N^{\omega} Z^{\theta} D^{\gamma}
$$

and thus the steady state growth of TFP, which is also the growth of output as well as consumption per capita is

$$
\begin{aligned}
\hat{T}^{*} & =\hat{y}^{*}=\hat{c}^{*}=\omega \hat{N}^{*}+\theta \hat{Z}^{*}+\gamma \hat{D}^{*} \\
& =\omega \lambda+\theta\left[\alpha \frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\rho-\sigma\right],
\end{aligned}
$$

where the second equality is implied by applying $\gamma=0$. We can see that s_{G} has no impact on \hat{T}^{*}, \hat{y}^{*} and \hat{c}^{*}. We complete our proofs for Proposition 3.

B.4.4 Proof of Proposition 4

When the knowledge-base and personnel-interaction effects are present (i.e., $\gamma, \xi>0$), the steady state consumption expenditure E^{*} from (B.10) and the firm size n^{*} from (B.14) are

$$
E^{*}=\frac{\beta\left(1-s_{G}\right)}{\beta-\rho+\lambda},
$$

and

$$
n^{*}=\frac{\frac{v\left(1-s_{G}\right)}{\beta-\rho+\lambda}}{\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right)},
$$

which both remain decreasing in s_{G}, while the expressions for $\left(\frac{L E}{N}\right)^{*},\left(\frac{L_{z}}{N}\right)^{*}$ and \hat{Z}^{*} above become

$$
\begin{gather*}
\left(\frac{L E}{N}\right)^{*}=\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right) \frac{\beta}{v} \tag{B.19}\\
\left(\frac{L_{Z}}{N}\right)^{*}=\frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)},
\end{gather*}
$$

and

$$
\begin{equation*}
\hat{Z}^{*}=\alpha f\left(s_{G}\right) \frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\rho-\sigma . \tag{B.20}
\end{equation*}
$$

All expressions are increasing in s_{G}. Besides, the steady state growth of TFP as well as the growth of output and consumption per capita becomes

$$
\begin{aligned}
\hat{T}^{*} & =\hat{y}^{*}=\hat{c}^{*}=\omega \hat{N}^{*}+\theta \hat{Z}^{*}+\gamma \hat{D}^{*} \\
& =\omega \lambda+\theta\left[\alpha f\left(s_{G}\right) \frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\rho-\sigma\right]+\gamma \frac{L_{G}}{L}\left(\frac{L}{N}\right)^{*} \\
& =\omega \lambda+\theta\left[\alpha f\left(s_{G}\right) \frac{\theta(\epsilon-1)}{\epsilon}\left(\frac{L E}{N}\right)^{*}-\rho-\sigma\right]+\gamma\left(s_{G} / \frac{\frac{v\left(1-s_{G}\right)}{\beta-\rho+\lambda}}{\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right)}\right)
\end{aligned}
$$

which is clearly increasing in s_{G}. We complete the proof of Proposition 4.

B.4.5 Proof of Proposition 5: derivation of (23), (24) and (25)

Since n^{*} is decreasing in s_{G}, a decrease in s_{G} from s_{G}^{0} increases n^{*} such that

$$
\frac{n^{*}}{n_{0}}-1 \equiv \frac{\frac{\left(1-s_{G}\right)}{\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right)}}{\frac{\left(1-s_{G}^{G}\right)}{\left(\phi-\frac{\sigma+o}{\alpha f\left(s_{G}^{(0)}\right)}\right)}}-1 \equiv \Delta>0 .
$$

We can obtain $n^{*}=n\left(1+e^{-v t} \Delta\right)$ from (B.16) and substituting it into (B.15) yields transitional path of net entry rate per capita,

$$
\frac{\dot{n}}{n}=v\left(1-\frac{n}{n\left(1+e^{-v t} \Delta\right)}\right)=\left(1-\frac{1}{\left(1+e^{-v t} \Delta\right)}\right)=\frac{e^{-v t} \Delta}{\left(1+e^{-v t} \Delta\right)} .
$$

and thus the path of net entry rate in equation (23),

$$
\begin{equation*}
\hat{N} \equiv \frac{\dot{N}}{N}=\frac{e^{-v t} \Delta}{\left(1+e^{-v t} \Delta\right)}+\lambda \tag{B.21}
\end{equation*}
$$

We next substitute $n^{*}=n\left(1+e^{-v t} \Delta\right)$ into (B.17) yields the transitional path for firm size,

$$
\begin{equation*}
\frac{E^{*}}{n}=\left(1+e^{-v t} \Delta\right)\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right) \frac{\beta}{v} . \tag{B.22}
\end{equation*}
$$

Plugging it back to (B.12) yields transitional path of private knowledge growth in equation (24),

$$
\begin{equation*}
\hat{Z}=\left(1+e^{-v t} \Delta\right)\left(\alpha f\left(s_{G}\right) \phi-\sigma-\rho\right) \frac{\beta \theta(\epsilon-1)}{v \epsilon}-\sigma-\rho . \tag{B.23}
\end{equation*}
$$

Finally, the transitional path of TFP growth rate is obtained by taking logarithm and time derivative of $T \equiv N^{\omega} Z_{i}^{\theta} D_{i}^{\gamma}$ with respect to time and yields

$$
\hat{T}=\omega \hat{N}+\theta \hat{Z}+\gamma \hat{D}
$$

Substituting \hat{N} and \hat{Z} from the above expressions and \hat{D} from (B.2) (where $\dot{D}_{i}=D_{i} \frac{L_{G}}{N}=D_{i} \frac{s_{G}}{n}$) and $n^{*}=n\left(1+e^{-v t} \Delta\right)$ into above yield the expression (25),

$$
\begin{aligned}
\hat{T} & =\frac{1}{\epsilon-1}\left(\frac{e^{-v t} \Delta}{\left(1+e^{-v t} \Delta\right)}+\lambda\right)+\left(1+e^{-v t} \Delta\right)\left(\alpha f\left(s_{G}\right) \phi-\sigma-\rho\right) \frac{\beta \theta^{2}(\epsilon-1)}{v \epsilon}-\sigma-\rho \\
& +\gamma \frac{\left(1+e^{-v t} \Delta\right)}{n^{*}} s_{G} .
\end{aligned}
$$

We complete the proof for Proposition (5).

B. 5 The dynamic relation between public and private R\&D

B.5.1 The derivation for the share of labor force employed in R\&D sector

To derive the transitional path of in-house R\&D per firm, we substitute (B.22) into (B.11) and yields

$$
\frac{L_{Z}(t)}{N(t)}=\left(1+e^{-v t} \Delta\right)\left(\phi-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)}\right) \frac{\beta \theta(\epsilon-1)}{\epsilon v}-\frac{\sigma+\rho}{\alpha f\left(s_{G}\right)} .
$$

Multiplying both sides of the above expression by the mass of firm per capita and further substituting n^{*} from (B.14) into it yield the share of labor force employed in in-house R\&D as

$$
\begin{equation*}
\frac{L_{Z}(t)}{L(t)}=\frac{\left(1-s_{G}\right)}{\beta-\rho+\lambda}\left[\frac{\beta \theta(\epsilon-1)}{\epsilon}-\frac{v(\sigma+\rho)}{\phi \alpha f\left(s_{G}\right)-\sigma-\rho} \frac{1}{\left(1+e^{-v t} \Delta\right)}\right] \tag{B.24}
\end{equation*}
$$

Moreover, rearranging (??) yields

$$
\frac{\dot{N}}{N}=\frac{\beta}{E} \frac{L_{N}}{L}-\sigma \Rightarrow>\frac{L_{N}}{L}=\frac{E}{\beta}\left(\frac{\dot{N}}{N}+\sigma\right) .
$$

Substituting (B.21) and $E^{*}=\frac{\beta\left(1-s_{G}\right)}{\beta-\rho+\lambda}$ into above, we get the transitional path of employment share of entry R\&D

$$
\begin{equation*}
\frac{L_{N}(t)}{L(t)}=\frac{\left(1-s_{G}\right)}{\beta-\rho+\lambda}\left(\frac{e^{-v t} \Delta}{\left(1+e^{-v t} \Delta\right)}+\lambda+\sigma\right) . \tag{B.25}
\end{equation*}
$$

Finally, summing up (B.24) and (B.25), we obtain the transitional path of labor share of employment in private $R \& D$.
$\frac{L_{Z}(t)+L_{N}(t)}{L(t)}=\frac{\left(1-s_{G}\right)}{\beta-\rho+\lambda}\left[\frac{\beta \theta(\epsilon-1)}{\epsilon}-\frac{v(\sigma+\rho)}{\phi \alpha f\left(s_{G}\right)-\sigma-\rho} \frac{1}{\left(1+e^{-v t} \Delta\right)}+\frac{e^{-v t} \Delta}{\left(1+e^{-v t} \Delta\right)}+\lambda+\sigma\right]$.

B.5.2 The derivation for the share of R\&D expenditure to GDP ratio

Now we are in a position to derive the transitional path of $R \& D$ expenditure to GDP ratio. First, the public R\&D expenditure to GDP ratio is

$$
\frac{w(t) L_{G}(t)}{P_{C}(t) Y(t)} \equiv \frac{L_{G}}{L E^{*}}=\frac{s_{G}}{E^{*}} .
$$

Next, the in-house R\&D expenditure to GDP share is

$$
\frac{w(t) L_{Z}(t)}{P_{C}(t) Y(t)} \equiv \frac{L_{Z}}{L E^{*}}=\frac{L_{Z} / L}{E^{*}}=\frac{\left(1-s_{G}\right)}{E^{*}(\beta-\rho+\lambda)}\left[\frac{\beta \theta(\epsilon-1)}{\epsilon}-\frac{v(\sigma+\rho)}{\phi \alpha f\left(s_{G}\right)-\sigma-\rho} \frac{1}{\left(1+e^{-v t} \Delta\right)}\right],
$$

and the total private $\mathrm{R} \& \mathrm{D}$ expenditure to GDP share is

$$
\begin{aligned}
& \frac{w(t)\left(L_{Z}(t)+L_{N}(t)\right)}{P_{C}(t) Y(t)} \equiv \frac{L_{Z}+L_{N}}{L E^{*}}=\frac{\left(L_{Z}+L_{N}\right) / L}{E^{*}}= \\
& \frac{\left(1-s_{G}\right)}{E^{*}(\beta-\rho+\lambda)}\left[\frac{\beta \theta(\epsilon-1)}{\epsilon}-\frac{v(\sigma+\rho)}{\phi \alpha f\left(s_{G}\right)-\sigma-\rho} \frac{1}{\left(1+e^{-v t} \Delta\right)}+\frac{e^{-v t} \Delta}{\left(1+e^{-v t} \Delta\right)}+\lambda+\sigma\right] .
\end{aligned}
$$

B. 6 Welfare

Consider the utility,

$$
\begin{equation*}
U=\int_{0}^{\infty} e^{-\rho t} L(t) \ln c(t) d t \tag{B.26}
\end{equation*}
$$

where the $c(t)$ is the aggregator of intermediate goods with social return to variety,

$$
c(t)=N^{\omega}\left[\left(\frac{1}{N}\right)^{\frac{1}{\epsilon}} \int_{0}^{N}\left(\frac{X_{i}}{L}\right)^{\frac{\epsilon-1}{\epsilon}} d t\right]^{\frac{\epsilon}{\epsilon-1}}, \quad \epsilon>1 \quad \omega>0 .
$$

Substituting the demand from (6), using the pricing rule and the symmetry assumption, the above expression becomes

$$
\begin{equation*}
c(t)=T_{\omega} E, \tag{B.27}
\end{equation*}
$$

where $T_{\omega} \equiv \frac{\epsilon-1}{\epsilon} N^{\omega} Z^{\theta} D^{\gamma}$ and $Z_{i}=Z$ and $D_{i}=D$ for all i. Taking logarithm on T_{ω} yields

$$
\begin{aligned}
\ln T_{\omega} & =\ln \frac{\epsilon-1}{\epsilon}+\omega \ln N+\theta \ln Z_{i}+\gamma \ln D_{i} \\
& =\ln \frac{\epsilon-1}{\epsilon}+\omega(\ln L+\ln n)+\theta\left(\ln Z_{i, 0}+\int_{0}^{t} \hat{Z}_{t} d t\right)+\gamma\left(\ln D_{i, 0}+\int_{0}^{t} \hat{D}_{t} d t\right) \\
& =\ln \frac{\epsilon-1}{\epsilon}+\omega\left(\ln L_{0}+\int_{0}^{t} \lambda d t+\ln n\right)+\theta \ln Z_{i, 0}+\theta \hat{Z}^{*} t+\theta \int_{0}^{t}\left(\hat{Z}_{t}-\hat{Z}^{*}\right) d t \\
& +\gamma \ln D_{i, 0}+\gamma \hat{D}^{*} t+\gamma \int_{0}^{t} \hat{D}_{t}-\hat{D}^{*} d t \\
& =\ln \frac{\epsilon-1}{\epsilon}++\omega\left(\ln L_{0}+\lambda t+\ln n\right)+\theta \ln Z_{i, 0}+\gamma \ln D_{i, 0}+\theta \hat{Z}^{*} t+\theta \int_{0}^{t}\left(\hat{Z}_{t}-\hat{Z}^{*}\right) d t \\
& +\gamma \hat{D}^{*} t+\gamma \int_{0}^{t} \hat{D}_{t}-\hat{D}^{*} d t \\
& =\ln \frac{\epsilon-1}{\epsilon}++\omega\left(\ln L_{0}+\lambda t+\ln n\right) .+\theta \ln Z_{i, 0}+\gamma \ln D_{i, 0}+\theta \hat{Z}^{*} t+\theta \int_{0}^{t}\left(\hat{Z}_{t}-\hat{Z}^{*}\right) d t \\
& +\gamma \frac{s_{G}}{n^{*}} t+\gamma \int_{0}^{t}\left(\frac{s_{G}}{n}-\frac{s_{G}}{n^{*}}\right) d t .
\end{aligned}
$$

Substituting the solution for n from (B.16), the growth paths of in-house and public R\&D technology from (B.12) and B. 2 and their steady state values into above and defining $\ln T_{\omega, 0} \equiv$ $\ln \frac{\epsilon-1}{\epsilon}+\omega \ln L_{0}+\theta \ln Z_{i, 0}+\gamma \ln D_{i, 0}$, we obtain

$$
\begin{aligned}
\ln T_{\omega} & =\ln T_{\omega, 0}+\omega \lambda t+\omega\left(\ln \frac{\mathrm{n}^{*}}{1+\mathrm{e}^{-\mathrm{vt}}\left(\frac{\mathrm{n}^{*}}{\mathrm{n}_{0}}-1\right)}\right)+\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}\right] t \\
& +\theta \int_{0}^{t}\left[\left(f\left(s_{G}\right) \frac{\alpha \theta(\epsilon-1)}{\epsilon} \frac{E}{n}-\sigma-\rho\right)-\left(f\left(s_{G}\right) \frac{\alpha \theta(\epsilon-1)}{\epsilon} \frac{E}{n^{*}}-\sigma-\rho\right)\right] d t+\gamma \int_{0}^{t}\left(\frac{s_{G}}{n}-\frac{s_{G}}{n^{*}}\right) d t \\
& =\ln T_{\omega, 0}+\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right] t+\omega\left(\operatorname{lnn}_{0} \frac{\frac{\mathrm{n}^{*}}{\mathrm{n}_{0}}}{1+\mathrm{e}^{-\mathrm{vt}} \Delta}\right)+\theta f\left(s_{G}\right) \frac{\alpha \theta(\epsilon-1)}{\epsilon} \frac{E}{n^{*}} \int_{0}^{t}\left(\frac{n^{*}}{n}-1\right) d t \\
& +\gamma \int_{0}^{t}\left(\frac{s_{G}}{n}-\frac{s_{G}}{n^{*}}\right) d t \\
& =\ln T_{\omega, 0}+\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right] t+\omega\left(\operatorname{lnn}_{0}+\ln \frac{1+\Delta}{1+\mathrm{e}^{-\mathrm{vt} \Delta}}\right) \\
& +\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \int_{0}^{t}\left(e^{-v t} \Delta\right) d t
\end{aligned}
$$

where the last two two terms using the fact that $\hat{Z}^{*}=f\left(s_{G} \frac{\alpha \theta(\epsilon-1)}{\epsilon} \frac{E}{n^{*}}-\sigma-\rho\right.$, the solution for
$n=n(t)=\frac{n^{*}}{1+e^{-v t}\left(\frac{n^{*}-1}{n_{0}}\right)}$ in (B.16), and the definition, $\Delta \equiv \frac{n^{*}}{n_{0}}-1$.
We further solve $\int_{0}^{t}\left(e^{-v t} \Delta\right) d t=-\frac{1}{v} e^{-v t} \Delta+\frac{1}{v} \Delta=\frac{\Delta}{v}\left(1-e^{-v t}\right)$ and substitute it back to the above expression and yield

$$
\begin{aligned}
\ln T_{\omega} & =\ln T_{\omega, 0}+\omega \operatorname{lnn}_{0}+\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right] t+\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \frac{\Delta}{v}\left(1-e^{-v t}\right) \\
& +\omega\left(\ln \frac{1+\Delta}{1+\mathrm{e}^{-\mathrm{vt} \Delta}}\right)
\end{aligned}
$$

Taking logarithm on (B.27) and substituting $\ln T_{\omega}$ back to it yield

$$
\begin{aligned}
\ln c(t) & =\ln E+\ln T_{\omega, 0}+\omega \operatorname{lnn}_{0}+\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right] t+\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \frac{\Delta}{v}\left(1-e^{-v t}\right) \\
& +\omega\left(\ln \frac{1+\Delta}{1+\mathrm{e}^{-\mathrm{vt} \Delta}}\right)
\end{aligned}
$$

We further substitute the above expression back to the life time utility (B.26) and set $F \equiv$ $\ln T_{\omega, 0}+\omega \ln n_{0}=0$, we get

$$
\begin{aligned}
U & =\int_{0}^{\infty} e^{-(\rho-\lambda) t}\left[F+\ln E+\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right] t+\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \frac{\Delta}{v}\left(1-e^{-v t}\right)\right. \\
& \left.+\omega\left(\ln \frac{1+\Delta}{1+\mathrm{e}^{-\mathrm{vt}} \Delta}\right)\right] d t \\
& =\frac{\ln E}{\rho-\lambda}+\underbrace{\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right] \int_{0}^{\infty} e^{-(\rho-\lambda) t} t d t}_{(a)}+\left[\gamma \frac{s_{G}}{n^{*}}+\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \underbrace{\frac{\Delta}{v} \int_{0}^{\infty} e^{-(\rho-\lambda) t}\left(1-e^{-v t}\right) d t}_{(b)} \\
& +\underbrace{\int_{0}^{\infty} e^{-(\rho-\lambda) t} \omega\left(\ln \frac{1+\Delta}{1+\mathrm{e}^{-\mathrm{vt} \Delta} \Delta}\right) d t}_{(\operatorname{dn}} .
\end{aligned}
$$

Next, we obtain the closed form solution for $(a),(b)$ and (c) as follows:

By setting $a=t$ and $d b=e^{-(\rho-\lambda) t} d t$, we get the expression for (a) with integration by part,

$$
\begin{aligned}
& {\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right] \int_{0}^{\infty} e^{-(\rho-\lambda) t} t d t} \\
& \left.=\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right]\left[-\frac{t}{\rho-\lambda} e^{-(\rho-\lambda) t}\right]_{0}^{\infty}-\int_{0}^{\infty}-\frac{1}{\rho-\lambda} e^{-(\rho-\lambda) t} d t\right] \\
& \left.\left.=\left[\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda\right]\left\{-\frac{t}{\rho-\lambda} e^{-(\rho-\lambda) t}\right]_{0}^{\infty}-\frac{1}{(\rho-\lambda)^{2}} e^{-(\rho-\lambda) t}\right]_{0}^{\infty}\right\} \\
& =\frac{\theta \hat{Z}^{*}+\gamma \frac{s_{G}}{n^{*}}+\omega \lambda}{(\rho-\lambda)^{2}}=\frac{\theta \hat{Z}^{*}+\gamma \hat{D}^{*}+\omega \lambda}{(\rho-\lambda)^{2}} .
\end{aligned}
$$

The integration for (b) is

$$
\begin{aligned}
& {\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \frac{\Delta}{v} \int_{0}^{\infty} e^{-(\rho-\lambda) t}\left(1-e^{-v t}\right) d t } \\
= & {\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \frac{\Delta}{v} \int_{0}^{\infty}\left(e^{-(\rho-\lambda) t}-e^{(-\rho+\lambda-v) t}\right) d t } \\
= & \frac{\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \frac{\Delta}{v}}{\rho-\lambda}-\frac{\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \frac{\Delta}{v}}{\rho-\lambda+v} \\
= & \frac{\left[\gamma \frac{s_{G}}{n^{*}}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \Delta}{(\rho-\lambda)((\rho-\lambda)+v)}=\frac{\left[\gamma \hat{D}^{*}+\theta\left(\hat{Z}^{*}+\sigma+\rho\right)\right] \Delta}{(\rho-\lambda)((\rho-\lambda)+v)} .
\end{aligned}
$$

Finally, integration of (c) with certain approximation yields

$$
\begin{aligned}
\int_{0}^{\infty} e^{-(\rho-\lambda) t} \omega\left(\ln \frac{1+\Delta}{1+\mathrm{e}^{-\mathrm{vt}} \Delta}\right) d t & =\int_{0}^{\infty} e^{-(\rho-\lambda) t} \omega\left[\ln (1+\Delta)-\ln \left(1+e^{-v t} \Delta\right)\right] d t \\
& \simeq \int_{0}^{\infty} e^{-(\rho-\lambda) t} \omega\left[\Delta-e^{-v t} \Delta\right] d t \\
& =\omega \Delta\left(\frac{1}{(\rho-\lambda)}-\frac{1}{(\rho-\lambda)+v}\right)=\frac{\omega v \Delta}{(\rho-\lambda)[(\rho-\lambda)+v]}
\end{aligned}
$$

C The general model of knowledge cross fertilization (the stock view)

We recover the general cross-fertilization knowledge spillover function with two knowledge stocks from (8) and (9) which are

$$
\begin{equation*}
\dot{Z}_{i}=\alpha f\left(s_{G}\right) K_{i}\left[\frac{1+\kappa\left(\frac{D_{i}}{K_{i}}\right)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}} L_{Z_{i}} \tag{C.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{D}_{i}=D_{i}\left[\frac{1+\kappa\left(\frac{D_{i}}{K_{i}}\right)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} L_{G_{i}} \tag{C.2}
\end{equation*}
$$

C. 1 Proof of Lemma 2

Before we proceed, we adopt the same procedure as we prove for Lemma 2 in subsection 2.1, we find that Lemma 2 also holds in this general version of the model with

$$
E=E^{*} \equiv \frac{\beta\left(1-s_{G}\right)}{\beta-\rho+\lambda},
$$

and $r=\rho$.

C. 2 Innovation behavior

The intermediate firm's profit maximization yields the derivative of profit function as in the flow version under symmetry,

$$
\partial \Pi_{i} / \partial Z_{i}=\frac{1}{\epsilon} L \frac{E}{N} \frac{\theta(\epsilon-1)}{Z}
$$

while the F.O.C. of current-value Hamiltonian function with respect to $L_{Z_{i}}$ yields

$$
\frac{1}{q_{i}}=\alpha f\left(s_{G}\right) K\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}
$$

where $K=K_{i}=Z_{i}=Z$ and $k \equiv D / K=D_{i} / K_{i}$ under symmetry.
Taking the logarithm of $1 / q$ and differentiating it with respect time yields

$$
\begin{equation*}
\frac{\dot{q}}{q}=-\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]} \frac{\dot{k}}{k}-\hat{Z} \tag{C.3}
\end{equation*}
$$

Plugging (??) and (C.3) back to (B.6) and using the fact that $r=\rho$ and $E=E^{*}$ yield the key equation for private $R \& D$ behavior:

$$
\begin{equation*}
\rho+\sigma=\frac{\theta(\epsilon-1)}{\epsilon} \frac{L E}{N} \alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}-\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]} \frac{\dot{k}}{k}-\hat{Z} \tag{C.4}
\end{equation*}
$$

Next, with some manipulation, the return to entry in symmetric equilibrium becomes

$$
\begin{align*}
\rho+\sigma & =\frac{\Pi}{V}+\frac{\dot{V}}{V}=\left[\frac{1}{\epsilon} \frac{E^{*}}{n}-\phi-\frac{L_{Z}}{N}\right] \frac{\beta n}{E^{*}}-\frac{\dot{n}}{n} \\
& =\left[\frac{1}{\epsilon} \frac{E^{*}}{n}-\phi-\frac{\hat{Z}}{\alpha f\left(s_{G}\right) K_{i}\left[\frac{1+\kappa\left(\frac{D_{i}}{K_{i}}\right)^{\eta}}{1+\kappa}\right]^{\frac{1}{n}}}\right] \frac{\beta n}{E^{*}}-\frac{\dot{n}}{n}, \tag{C.5}
\end{align*}
$$

where the second equality is applied by using (C.1).

C. 3 The Firm innovation

Noting that $\dot{k} / k=\hat{D}-\hat{Z}$, we substitute it into (C.4) and obtain

$$
\rho+\sigma=\frac{\theta(\epsilon-1)}{\epsilon} \frac{L E}{N} \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}-\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]} \hat{D}-\frac{1}{\left[1+\kappa(k)^{\eta}\right]} \hat{Z} .
$$

Rearrange it and replace \hat{D} with (C.2). Using $r=\rho$ and $E=E^{*}$ implied in Lemma 2, we obtain

$$
\begin{equation*}
\hat{Z}=\frac{\left(\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}-\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}\right) \frac{1}{n}-\sigma-\rho}{\frac{1}{1+\kappa(k)^{\eta}}} . \tag{C.6}
\end{equation*}
$$

This function identifies the boundary of the region with $\hat{Z}=0$ (or $L_{Z} / N>0$), that is,

$$
\begin{equation*}
n>n_{\hat{Z}=0}(k) \equiv \frac{\left(\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}-\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}\right)}{\sigma+\rho} . \tag{C.7}
\end{equation*}
$$

Rewriting the mass of firm in per capita term n from the entry process in (??) yields

$$
\begin{equation*}
\frac{\dot{n}}{n}=\frac{\beta}{L E} L_{N}-\sigma-\lambda . \tag{C.8}
\end{equation*}
$$

We further replace $\frac{\dot{n}}{n}$ in (C.5) with the above expression and rearranging it yields

$$
\begin{equation*}
\frac{L_{N}}{N}=\left[\frac{1}{\epsilon}-\frac{(\rho-\lambda)}{\beta}\right] \frac{E^{*}}{n}-\left[\phi+\frac{\hat{Z}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}\right] \tag{C.9}
\end{equation*}
$$

We further substitute \hat{Z} from (C.6) into above and rearranging it yields

$$
\begin{aligned}
\frac{L_{N}}{N} & =\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho-\lambda)}{\beta}\right] \frac{E^{*}}{n}-\phi \\
& +\frac{\frac{\kappa(k) \eta^{\eta}}{\left[1+\kappa(k)^{\eta}\right]}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} \frac{s_{G}}{n}+\sigma+\rho}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}-1}}
\end{aligned}
$$

Similarly, this function can identify the boundary of the region with $\frac{L_{N}}{N}>0$. By solving $\frac{L_{N}}{N}=0$ for the threshold, $n_{L_{N}=0, L_{Z}>0}(k)$, we obtain

$$
\begin{equation*}
n \geq n_{L_{N}=0, L_{Z}>0}(k) \equiv \frac{\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho-\lambda)}{\beta}\right] E^{*}+\frac{\kappa(k)^{\eta}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}}{\phi-\frac{\sigma+\rho\left[1+\kappa(k)^{\eta}\right]}{\alpha f\left(s_{G}\right)\left[\frac{[+\kappa k}{1+k}\right]^{\frac{1}{\eta}}}} \tag{C.10}
\end{equation*}
$$

for the region when $\frac{L_{N}}{N}=0$ and $\frac{L_{Z}}{N}>0$. Moreover, let both $\hat{Z}=0$ and $\frac{L_{N}}{N}=0$ in (C.9), we can solve the boundary

$$
n \geq n_{L_{N}=0, L_{Z}=0} \equiv\left[\frac{1}{\epsilon}-\frac{(\rho-\lambda)}{\beta}\right] \frac{E^{*}}{\phi}
$$

for the region when both $\frac{L_{N}}{N}=0$ and $\frac{L_{Z}}{N}=0$. Combining the two boundaries derived above, we can identify the region above the curve of $L_{N}=0$ shown in figure 1 .

C. 4 Cross-fertilization global dynamics (a "substitute" scenario i.e.,

$$
0<\eta \leq 1 \text { and } 0<\delta \leq 1)
$$

Proof of Proposition 8 and the phase diagram in Figure 1.

Global dynamics of this general model can be characterized by the activation of in-house and entry $\mathrm{R} \& \mathrm{D}$ into four regions:

Region 1: $L_{Z}>0$ and $L_{N}>0$.

Substitute (C.6) into (C.5). With some manipulation, we obtain the expression for the firm size dynamics,

$$
\begin{align*}
\frac{\dot{n}}{n} & =\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] \beta+\frac{\kappa(k)^{\eta}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}} \frac{\beta}{E^{*}} \\
& -\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}\right] \frac{\beta n}{E^{*}} . \tag{C.11}
\end{align*}
$$

Next, using (C.2) to subtract (C.6) and rearranging it yield the expression for the dynamics of knowledge stock ratio k,

$$
\begin{equation*}
\frac{\dot{k}}{k}=\left(1+\kappa(k)^{\eta}\right)\left[\frac{\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}-\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}{n}+(\sigma+\rho)\right] \tag{C.12}
\end{equation*}
$$

This dynamics system is governed by the following two loci. Setting $\frac{\dot{n}}{n}=0$ in (C.11) yields

$$
n_{\dot{n}=0}(k) \equiv \frac{\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] E^{*}+\frac{\kappa(k)^{\eta}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\sigma}} s_{G}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k) \eta}{1+\kappa}\right]^{\frac{1}{\eta}}}}{\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}\right]},
$$

where $\dot{n} \geq 0$ when $n \leq n_{\dot{n}=0}(k)$.
Setting $\frac{\dot{k}}{k}=0$ in (C.12) yields

$$
\begin{equation*}
n_{\dot{k}=0}(k) \equiv \frac{\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}-\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}{\sigma+\rho} \tag{C.13}
\end{equation*}
$$

where $\dot{k} \geq 0$ when $n \geq n_{\dot{k}=0}(k)$, We obtain k_{1} by solving $n_{\dot{n}=0}(k)=0$ and yield

$$
\begin{equation*}
k_{1}=\operatorname{argsolve}\left\{\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] E^{*}+\frac{\kappa(k)^{\eta}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}=0\right\} . \tag{C.14}
\end{equation*}
$$

Next, we obtain k_{2} by solving $n_{k=0}(k)=0$ and yield

$$
\begin{equation*}
k_{2}=\operatorname{argsolve}\left\{\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}=\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}\right\} \tag{C.15}
\end{equation*}
$$

To characterize properly the phase diagram for this region involving the following three steps:

In the first step,

we prove that (i) $\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}\right]$ is increasing in k and converges to ϕ from below; (ii) $n_{\dot{n}=0}(k)$ is decreasing in k with k greater than a threshold value k_{3}; (iii) $\lim _{\mathrm{k} \rightarrow 0^{+}} \mathrm{n}_{\dot{\mathrm{n}}=0}(\mathrm{k})=+\infty$.

Proof:

(i) $\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}\right]$ is increasing in k and converges to ϕ from below.

Under the assumption that $\phi-\frac{(\sigma+\rho)}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}}>0$, when $0<\eta \leq 1$, the denominator in $n_{\dot{n}=0}(k)$, $\left[\phi-\frac{(\sigma+\rho)}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}-1}}\right]$, is always positive and increasing in k because $\frac{\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}{\left(1+\kappa(k)^{\eta}\right)}=(1+$ $\left.\kappa(k)^{\eta}\right)^{\frac{1}{\eta}-1}>1$ for all $k>0$ under $0<\eta \leq 1$ and itself is increasing in k. Moreover, since $\lim _{k \rightarrow \infty}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}-1}=\infty$, it converges to ϕ from below as $k \rightarrow \infty$.
(ii) $\lim _{\mathrm{k} \rightarrow 0^{+}} \mathrm{n}_{\mathrm{n}=0}(\mathrm{k})=+\infty$.

When $0<\eta \leq 1$, we obtain

$$
\lim _{k \rightarrow 0^{+}}\left(1+\kappa(k)^{\eta}\right)=1
$$ and

$$
\lim _{k \rightarrow 0^{+}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}=\left[1+\lim _{k \rightarrow 0^{+}} \kappa(k)^{\eta}\right]^{\frac{1}{\eta}}=[1+0]^{\frac{1}{\eta}}=1 .
$$

Both equations imply that

$$
\lim _{k \rightarrow 0^{+}} \frac{\left(1+\kappa(k)^{\eta}\right)}{\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}=1 .
$$

Moreover,

$$
\lim _{k \rightarrow 0^{+}} \frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{-\delta}\right]^{-\frac{1}{\delta}}}=\frac{\kappa(k)^{\eta}}{\left[1+\kappa \frac{1}{(k)^{\delta}}\right]^{-\frac{1}{\delta}}}=\frac{\kappa(k)^{\eta}}{\left[\frac{(k)^{\delta}+\kappa}{(k)^{\delta}}\right]^{-\frac{1}{\delta}}}=\frac{\kappa(k)^{\eta}}{\frac{\left[(k)^{\delta}+\kappa\right]^{-\frac{1}{\delta}}}{(k)^{-1}}}=\frac{\kappa(k)^{\eta-1}}{\left[(k)^{\delta}+\kappa\right]^{-\frac{1}{\delta}}}=\infty .
$$

Once we have the above results in hand, we can find that when $0<\eta \leq 1$,

$$
\begin{gathered}
\lim _{k \rightarrow 0^{+}} \frac{\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] E^{*}+\frac{\kappa(k)^{\eta}(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta^{\prime}}} s_{G}}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}}{\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}\right]} \\
=\frac{\lim _{k \rightarrow 0^{+}}\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] E^{*}+\frac{(1+\kappa)^{-\frac{1}{\delta} s_{G}}}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}} \lim _{k \rightarrow 0^{+}} \frac{1}{\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}} \lim _{k \rightarrow 0^{+}} \frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{-\delta}\right]^{-\frac{1}{\delta}}}}{\lim _{k \rightarrow 0^{+}}\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}\right]}=\infty .
\end{gathered}
$$

(iii) $n_{\dot{n}=0}(k)$ is decreasing in k with a sufficient condition that k is greater than a threshold value k_{3}.

Next, we know that the first term in the numerator of $n_{\dot{n}=0}(k)$ is $\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] E^{*}$ which is decreasing in k and reaches $-\infty$ when k goest to ∞. Moreover, with some manipulation, the second term in the numerator becomes

$$
\frac{\kappa(k)^{\eta}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}=\frac{\kappa\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[(k)^{-\eta^{2}}+\kappa(k)^{\eta(1-\eta)}\right]^{\frac{1}{\eta}}},
$$

in which the term $\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}}$ on the top is decreasing in k with $\lim _{k \rightarrow \infty}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}}=1$ and the term $\left[(k)^{-\eta^{2}}+\kappa(k)^{\eta(1-\eta)}\right]^{\frac{1}{\eta}}$ on the bottom is increasing in k when $k>\left(\frac{\eta}{(1-\eta) \kappa}\right)^{\frac{1}{\eta}}$, where the proof is shown below:

$$
\begin{aligned}
\partial \frac{\left[(k)^{-\eta^{2}}+\kappa(k)^{\eta(1-\eta)}\right]^{\frac{1}{\eta}}}{\partial k} & =\frac{1}{\eta}\left[(k)^{-\eta^{2}}+\kappa(k)^{\eta(1-\eta)}\right]^{\frac{1}{\eta}-1} \eta\left[\left(-\eta+\kappa(k)^{\eta}(1-\eta)\right)(k)^{-\eta^{2}-1}\right]>0 \\
& =>-\eta+\kappa(k)^{\eta}(1-\eta)>0 \Rightarrow \kappa(k)^{\eta}>\frac{\eta}{(1-\eta)}=>k>\left(\frac{\eta}{(1-\eta) \kappa}\right)^{\frac{1}{\eta}} .
\end{aligned}
$$

This implies the entire term, $\frac{\kappa(k)^{\eta}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}}}{\alpha f\left(s_{G}\right)\left[\frac{\left[1+(k)^{\eta}\right.}{1+\kappa}\right]^{\frac{1}{\eta}}}$, is decreasing k when $k>\left(\frac{\eta}{(1-\eta) \kappa}\right)^{\frac{1}{\eta}}$ and converges to 0 . With all the information above indicates that $n_{\dot{n}=0}(k)$ is decreasing in k and converges to $-\infty$ when $k>\left(\frac{\eta}{(1-\eta) \kappa}\right)^{\frac{1}{\eta}}$ and it crosses horizontal axis in k_{1} from above as we have obtained previously.

Next, we can also easily see that $n_{\dot{n}=0}(k)$ has the same shape as the $L_{N}=0$ boundary in (C.10), but is everywhere below it. Besides, we will prove later that the $L_{Z}=0(\hat{Z}=0)$ boundary in (C.7) starts out from a positive k_{z} from the horizontal axis and is increasing in k and since $\lim _{\mathrm{k} \rightarrow 0^{+}} \mathrm{n}_{\dot{\mathrm{n}}=0}(\mathrm{k})=+\infty$ is proved in (ii), there exists a intersection between $L_{Z}=0$ and $n_{\dot{n}=0}(k)$, where the intersection in the dimension of n is $\bar{n}^{*}=\left[\frac{1}{\epsilon}-\frac{\rho+\sigma}{\beta}\right] \frac{E^{*}}{\phi} .{ }^{1}$

We further substituting \bar{n}^{*} into $n_{\dot{n}=0}(k)$, we can obtain k_{3} that solves

$$
\left[\frac{1}{\epsilon}-\frac{\rho+\sigma}{\beta}\right] \frac{E^{*}}{\phi}=\frac{\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] E^{*}+\frac{\kappa(k)^{\eta}\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k) \eta}{1+\kappa}\right]^{\frac{1}{\eta}}}}{\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k) \eta^{\eta}\right)}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}\right]}
$$

If we specify the condition that $k>k_{3}>\left(\frac{\eta}{(1-\eta) \kappa}\right)^{\frac{1}{\eta}}$, Then we can guarantee that $n_{\dot{n}=0}(k)$ is monotonically decreasing in k for all $k>k_{3}$. Therefore, the proofs for (i), (ii) and (iii) are

[^0]complete.

In the second step,

It is easy to verify that $n_{\dot{k}=0}(k)$ from (C.13) starts out zero at k_{2} and is monotonically increasing in k.

In the third step,

we show that $k_{1}>k_{2}$ as follows,

Proof of $k_{1}>k_{2}$:

Rewrite equations (C.14) and (C.15) of the solutions k_{1} and k_{2} as:

$$
\frac{\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}=-\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] \frac{E^{*}}{\kappa(k)^{\eta}}=>k_{1},
$$

and

$$
\frac{\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}{\alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[\frac{1+\kappa(k)^{\eta}}{1+\kappa}\right]^{\frac{1}{\eta}}}=\frac{\theta(\epsilon-1)}{\epsilon} E^{*}=>k_{2} .
$$

The assumption that $v>0$ in baseline model implies that right-hand side of the top equation is always less than the right-hand side of the bottom equation as shown below:

$$
\begin{aligned}
-\left[\frac{1}{\epsilon}-\right. & \left.\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] \frac{E^{*}}{\kappa(k)^{\eta}} \\
& =-\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}-\frac{(\rho+\sigma)}{\beta}\right] \frac{E^{*}}{\kappa(k)^{\eta}}+\frac{\theta(\epsilon-1)}{\epsilon} E^{*}<\frac{\theta(\epsilon-1)}{\epsilon} E^{*}
\end{aligned}
$$

where $-\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}-\frac{(\rho+\sigma)}{\beta}\right]=-\frac{v}{\beta}<0$.
Since the left hand side of the two equations is decreasing in k, it follows that $k_{1}>k_{2}$.

Besides, the $L_{Z}=0(\hat{Z}=0)$ boundary in (C.7) starts out with positive k_{z} because $\lim _{k \rightarrow 0^{+}} n_{\hat{Z}=0}(k)=-\infty$ and $n_{\hat{Z}=0}(k)$ is increasing in k. This can be verified by showing that the limits of the first term and the second term are

$$
\lim _{k \rightarrow 0^{+}} \frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}=\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}},
$$

and

$$
\lim _{k \rightarrow 0^{+}} \frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]}(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} s_{G}=\infty .
$$

Moreover, the derivative of $n_{\hat{Z}=0}(k)$ with respect to k, after some manipulation, becomes

$$
\begin{aligned}
& \frac{\partial n_{\hat{Z}=0}(k)}{\partial k} \\
& =\frac{\kappa(k)^{\eta-1}}{\left[1+\kappa(k)^{\eta}\right]}\left[\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}-\frac{\eta}{\left[1+\kappa(k)^{\eta}\right]}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}}(1+\kappa)^{-\frac{1}{\delta}} s_{G}\right] \\
& +\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]} \kappa(k)^{-\delta-1}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}}(1+\kappa)^{-\frac{1}{\delta}} s_{G} .
\end{aligned}
$$

$\operatorname{Using} \hat{Z}=0$, i.e.,
$n(\sigma+\rho)=\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}-\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]}(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} s_{G}$,
and substituting it into above and rearrange it, we get

$$
\frac{\partial n_{\hat{Z}=0}(k)}{\partial k}=\frac{\kappa(k)^{\eta-1}}{\left[1+\kappa(k)^{\eta}\right]}\left[\left(\frac{n(\sigma+\rho)}{\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}}+\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]}-\frac{\eta}{\left[1+\kappa(k)^{\eta}\right]}+\kappa(k)^{-\delta}\right)\left[\frac{1+\kappa(k)^{-\delta}}{1+\kappa}\right]^{\frac{1}{\delta}} s_{G}\right]
$$

>0.

To guarantee the above inequality to hold, we need

$$
\begin{aligned}
& \frac{n(\sigma+\rho)}{(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} s_{G}}+\frac{\kappa(k)^{\eta}}{\left[1+\kappa(k)^{\eta}\right]}+\kappa(k)^{-\delta}>\frac{\eta}{\left[1+\kappa(k)^{\eta}\right]} \\
& =\frac{n(\sigma+\rho)}{(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} s_{G}}+1+\kappa(k)^{-\delta}>1>\frac{1+\eta}{\left[1+\kappa(k)^{\eta}\right]} .
\end{aligned}
$$

As a result, we can find a sufficient condition,

$$
\kappa(k)^{\eta}>\eta .
$$

This can be further guaranteed by the restriction that $\kappa(k)^{\eta}>\frac{\eta}{1-\eta}>\eta$ which is the same restriction we make to ensure $n_{\dot{n}=0}(k)$ is decreasing in k. Therefore, $n_{\hat{Z}=0}(k)$ is increasing in k and $\lim _{k \rightarrow 0^{+}} n_{\hat{Z}=0}(k)=-\infty$. This guarantees that $L_{Z}=0(\hat{Z}=0)$ boundary in (C.7) starts out with positive k_{z} which solves $L_{Z}=0$ when $n=0$, that is,

$$
0=\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa\left(k_{z}\right)^{\eta}\right]^{\frac{1}{\eta}}-\frac{\kappa\left(k_{z}\right)^{\eta}}{\left[1+\kappa\left(k_{z}\right)^{\eta}\right]}(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa\left(k_{z}\right)^{-\delta}\right]^{\frac{1}{\delta}} s_{G} .
$$

Also note that since

$$
\frac{s_{G}}{f\left(s_{G}\right) E^{*}}=\frac{1}{\frac{f\left(s_{G}\right)}{s_{G}} E^{*}}=\frac{1}{\left(\frac{1}{s_{G}}+\xi\right) E^{*}}
$$

is increasing in s_{G}, Both k_{1} and k_{2} are increasing in s_{G}. This suggests that the $\dot{n}=0$ locus shifts up with s_{G} while the $\dot{k}=0$ locus shifts down. With all the above information allows us to characterize the phase diagram for the system dynamics of region 1. The boundaries (ie., $L_{Z}=0$ and $\left.L_{N}=0\right)$ separates this region with others.

C. 5 Derivation for Equations (30) and (31)

Steady state requires (C.4) to become

$$
\begin{equation*}
\rho+\sigma=\frac{\theta(\epsilon-1)}{\epsilon} \frac{E^{*}}{n} \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}-\hat{Z}, \tag{C.16}
\end{equation*}
$$

and (C.5) to become

$$
\begin{equation*}
\rho+\sigma=\left[\frac{1}{\epsilon} \frac{E^{*}}{n}-\phi-\frac{\hat{Z}}{\alpha f\left(s_{G}\right) K_{i}(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}\right] \frac{\beta n}{E^{*}} . \tag{C.17}
\end{equation*}
$$

We replace E^{*} / n by substituting (C.17) into (C.16). After some manipulation yields equation (31),

$$
\hat{Z}=\left[\phi \alpha f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}-(\rho+\sigma)\right] \frac{\theta \beta(\epsilon-1)}{\epsilon v}-(\rho+\sigma) .
$$

Moreover, we know that the two knowledge growth rates are equal in steady state, implying that

$$
\begin{equation*}
\hat{Z}^{*}=\hat{D}^{*}=(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} \frac{s_{G}}{n} \tag{C.18}
\end{equation*}
$$

We rearrange (C.18) and substitute (C.16) for n, which yields equation (30),

$$
\hat{Z}=\frac{\rho+\sigma}{E^{*} \frac{\alpha \frac{\theta(\epsilon-1)}{\epsilon} f\left(s_{G}\right)(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}{(1+\kappa)^{-\frac{1}{\delta}}\left[1+\kappa(k)^{-\delta}\right]^{\frac{1}{\delta}} s_{G}}-1} .
$$

C. 6 Some interesting properties

For $s_{G}=0$, the system dynamics in (C.11) and (C.12) can be degenerated to

$$
\begin{equation*}
\frac{\dot{n}}{n}=\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] \beta-\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}\right] \frac{\beta n}{E^{*}}, \tag{C.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\dot{k}}{k}=\left(1+\kappa(k)^{\eta}\right)\left[\frac{-\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}{n}+(\sigma+\rho)\right], \tag{C.20}
\end{equation*}
$$

where the two loci governing the dynamics are

$$
\dot{n} \geq 0: \quad n \leq n_{\dot{n}=0}(k)=\frac{\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}\left(1+\kappa(k)^{\eta}\right)-\frac{(\rho+\sigma)}{\beta}\right] \beta}{\left[\phi-\frac{(\sigma+\rho)\left(1+\kappa(k)^{\eta}\right)}{\alpha(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}\right] \frac{\beta}{E^{*}}}
$$

and

$$
\dot{k} \geq 0: \quad n \geq n_{\dot{k}=0}(k) \equiv \frac{\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}{(\sigma+\rho)} .
$$

The condition for $L_{Z}>0$ (i.e., $\hat{Z}_{s_{G}=0}>0$) is

$$
\begin{aligned}
& \hat{Z}_{s_{G}=0}=\frac{\left(\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}\right) \frac{1}{n}-\sigma-\rho}{\frac{1}{1+\kappa(k)^{\eta}}}>0 \\
& =>n<\frac{\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}{\sigma+\rho},
\end{aligned}
$$

which identifies the region of phrase space where $\dot{k}<0$. The non-negativity constraint on L_{Z} implies that we have $\dot{k}=0$ whenever

$$
n \geq n_{\hat{Z}_{s_{G=0}}}(k) \equiv \frac{\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha(1+\kappa)^{-\frac{1}{\eta}}\left[1+\kappa(k)^{\eta}\right]^{\frac{1}{\eta}}}{\sigma+\rho}
$$

The $n_{\hat{Z}_{s_{G=0}}}(k)$ locus has intercept,

$$
n_{\hat{Z}_{s_{G=0}}}(0)=\frac{\frac{\theta(\epsilon-1)}{\epsilon} E^{*} \alpha(1+\kappa)^{-\frac{1}{\eta}}}{\sigma+\rho}
$$

The phase diagram we obtained can be distinguished into two main cases:

Case 1: for

$$
\begin{aligned}
& n_{\dot{n}=0}(0) \leq n_{\hat{Z}_{s_{G=0}}}(0): \quad \frac{\left[\frac{1}{\epsilon}-\frac{\theta(\epsilon-1)}{\epsilon}-\frac{(\rho+\sigma)}{\beta}\right]}{\left[\phi-\frac{(\sigma+\rho)}{\alpha(1+\kappa)^{-\frac{1}{\eta}}}\right]} \leq \frac{\frac{\theta(\epsilon-1)}{\epsilon} \alpha(1+\kappa)^{-\frac{1}{\eta}}}{\sigma+\rho} \\
& \quad\left[\frac{1}{\epsilon}-\frac{(\rho+\sigma)}{\beta}\right] \leq \phi \frac{\frac{\theta(\epsilon-1)}{\epsilon} \alpha(1+\kappa)^{-\frac{1}{\eta}}}{\sigma+\rho}
\end{aligned}
$$

all initial conditions $\left(k_{0}, n_{0}\right)$ yield paths that converge to the unique steady state $\left(0, n^{*}\right)$, which is the steady state endogenous growth driven by private $R \& D$ activity of the baseline Schumpeterian model with no government.

Case 2: for

$$
n_{\dot{n}=0}(0)>n_{\hat{Z}_{s_{G=0}}}(0): \quad\left[\frac{1}{\epsilon}-\frac{(\rho+\sigma)}{\beta}\right]>\phi \frac{\frac{\theta(\epsilon-1)}{\epsilon} \alpha(1+\kappa)^{-\frac{1}{\eta}}}{\sigma+\rho}
$$

there is a set of zero growth steady state, the union of the point $\left(\bar{k}^{*}, \bar{n}^{*}\right)$ and the points ($\left.\widetilde{k}^{*}, \bar{n}^{*}\right)$ for $\widetilde{k} \in\left(0, \bar{k}^{*}\right)$. All initial conditions $\left(k_{0}, n_{0}\right)$ yield paths that converge to a point in this set. The value \bar{k}^{*} is uniquely determined by the parameters (we find \bar{k}^{*} and \bar{n}^{*} by solving (C.19) and (C.20) at $\frac{\dot{n}}{n}=\frac{\dot{k}}{k}=0$). In contrast, the value \widetilde{k}^{*} depends on the specific path dictated by the initial condition and the law of motion of the system.

[^0]: ${ }^{1}$ Specifically by substituting $\hat{Z}=0$ into (C.5) yields $\frac{\dot{n}}{n}=\left[\frac{1}{\epsilon} \frac{E^{*}}{n}-\phi\right] \frac{\beta n}{E^{*}}-(\rho+\sigma)$ and solving $\frac{\dot{n}}{n}=0$, we can obtain $\bar{n}^{*}=\left[\frac{1}{\epsilon}-\frac{\rho+\sigma}{\beta}\right] \frac{E^{*}}{\phi}$.

