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A Derivations and proofs

To facilitate the reader, all the equations from the text needed for the proofs are replicated in this

document with self-contained numbering.

A.1 Derivation of the return to quality

The usual method of obtaining first-order conditions is to write the Hamiltonian for the optimal

control problem of the firm. This derivation highlights the intuition. The firm undertakes R&D up

to the point where the shadow value of the innovation, qi, is equal to its cost,

1 = qi , Ii > 0. (A.1)

Since the innovation is implemented in-house, its benefits are determined by the marginal profit it

generates. Thus, the return to the innovation must satisfy the arbitrage condition

r =
@Πi
@Zi

1

qi
+
q̇i
qi
. (A.2)

To calculate the marginal profit, observe that the firm’s problem is separable in the price and

investment decisions. Facing the isoelastic demand

Xi =

(
θ

Pi

) 1
1−θ

Zαi Z
κ−α L

N1−σ , (A.3)

and a marginal cost of production equal to one, the firm sets Pi = 1/θ. Substituting this result

into the firm’s cash flow,

Πi =

(
1

θ
− 1
)
θ

2
1−θZαi Z

κ−α L

N1−σ − φZi, (A.4)
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di§erentiating with respect to Zi, substituting into (A.2) and imposing symmetry yields

r =
α

Zi
·
(
1

θ
− 1
)
θ

2
1−θZαi Z

κ−α L

N1−σ
| {z }

(Pi−1)Xi

− φ. (A.5)

A.2 Solution of the baseline model in Section 3

Recall that this economy allocates across its alternative uses – consumption, production of inter-

mediates, quality and variety innovation – final output produced with the technology

Y = θ
2θ
1−θ ·NσZκ · L. (A.6)

The main challenge in studying the dynamics resulting from this allocation is the existence of corner

solutions associated to the non-negativity constraints on vertical and horizontal R&D. It is thus

useful to proceed as follows.

Consider first a situation where n > 0 and the free-entry condition holds. Asset market equi-

librium yields A = NV = N · βZ so that Ȧ/A = n+ z. This result, the household budget,

Ȧ = rA+ wL− C, (A.7)

the equilibrium labor income, wL = (1− θ)Y , and the definitions

x ≡ (1− θ)
θY

NZ
= (1− θ) θ

1+θ
1−θ
Zκ−1L

N1−σ (A.8)

and c ≡ C/Y , yield
Ȧ

A
= r +

wL

A
−
C

A
) n+ z = r +

1

β

x (1− θ − c)
θ (1− θ)

. (A.9)

This is just the economy’s resource constraint written in simple-to-use terms. Equalization of the

returns to quality and variety innovation yields

z (x) =

(
0 φ ≤ x ≤ xZ ≡ β−1

βα−1φ
βα−1
β−1 x− φ x > xZ

. (NA)

The associated expression for the return to innovation is

r (x) =

(
1
β (x− φ) φ ≤ x ≤ xZ
αx− φ x > xZ

. (A.10)

The functions z (x) and r (x) take into account the non-negativity constraint on quality R&D and

they have been derived using the free-entry condition V = βZ, that is, under the assumption n > 0.

Solving the resource constraint (A.9) for n yields

n (x, c) =

8
<

:

1
β

h(
1 + 1

θ

)
x− φ− c

θ(1−θ)x
i
φ ≤ x ≤ xZh

1−α
β−1 +

1
βθ −

c
βθ(1−θ)

i
x x > xZ

. (A.11)
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This equation identifies the locus where n > 0, that is,

n (x, c) > 0() c < c̄ (x) ≡

8
<

:
θ (1− θ)

(
1
θ + 1−

φ
x

)
φ ≤ x ≤ xZ

θ (1− θ)
(
1
θ + β

1−α
β−1

)
x > xZ

.

For values of c ≥ c̄ (x), we have n = 0.
Recall now the Euler equation

r = ρ+ η

 
Ċ

C
− λ

!
.

The reduced-form production function (A.6) yields

r = ρ+ η

 
Ẏ

Y
− λ

!
+ η

 
Ċ

C
−
Ẏ

Y

!
= ρ+ η (κz + σn) + η

ċ

c
. (A.12)

The definition of x in (A.8) and the reduced-form production function (A.6) yield

ẋ

x
= λ+ (κ− 1) z − (1− σ)n. (A.13)

Using the functions derived above, one obtains the dynamical system in (x, c) space that holds for

c < c̄ (x). The steady-state loci are:

ċ = 0 r (x) = ρ+ η [κz (x) + σn (x, c)] ;

ẋ = 0 0 = λ+ (κ− 1) z (x)− (1− σ)n (x, c) .

The expressions just derived provide the ingredients used in the construction of Proposition 1.

To complete the characterization of dynamics, consider now what happens for c ≥ c̄ (x). First
note that by construction values c > c̄ (x) violate the economy’s resource constraint and are thus

unfeasible. Therefore, the no-entry region is actually c = c̄ (x), i.e., the boundary of the unfeasible

region. In the no-entry region assets market equilibrium still requires A = NV but it is no longer

true that V = βZ since by definition the free-entry condition does not hold. However, the relation

r =
Πi − Ii
Vi

+
V̇i
Vi

(A.14)

holds, since it is the arbitrage condition on equity holding that characterizes the value of an existing

firm regardless of how it came into existence in the first place. Imposing symmetry and substituting

(A.4), wL = (1− θ)Y , and (A.14) in the household budget (A.7) yields

V̇

V
=
Π− I
V

+
V̇

V
+
wL

NV
−

C

NV
) 0 = N [(1/θ − 1)X − φZ − I] + (1− θ)Y − C.

This is the resource constraint when investment in entry is zero. One can rewrite this expression

as

z (x, c) =

(
0 φ ≤ x ≤ xZh

1−
(

c
1−θ − 1

)
1
θ

i
x− φ x > xZ

.
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This is the equivalent of the no-arbitrage locus in equation (NA) that holds in the no-entry region.

Next, substituting the return to quality R&D r = αx− φ in the Euler equation yields

αx− φ = ρ+ ηκz (x, c) + η
ċ

c
.

Similarly, rewriting equation (A.13) yields

ẋ

x
= λ+ (κ− 1) z (x, c) .

This equation says that in the no-entry region the growth rate of x is strictly positive so that the

economy will eventually leave it.

The dynamics of the system are as follows. Depending on the relative positions of the stationary

loci derived above, the process can feature either an activation sequence whereby the economy

turns on variety innovation first and quality innovation later, or an activation sequence whereby

the economy turns on quality innovation first and variety innovation later. The paper provides a

taxonomic summary of the possible cases.

A.3 Solution of the alternative specification in Section 5

For expositional purposes, the paper presents the steady-state result in Proposition 2 separately

from the dynamics summarized in Proposition 3-5. In particular, Proposition 2 applies to the CIES

model with η 6= 1 while Propositions apply to the simpler case η = 1 (log utility).

A.3.1 The CIES economy

As mentioned in the text, the analysis of the transitional dynamics in this case is much more

cumbersome because the model looses the nice feature that the ratio C/Y ≡ c is constant at all

times and therefore one needs to study the dynamical system in two dimensions, c and x. The

baseline model of Section 2 shares this property but the fact that under no arbitrage it yields

equations (NA) and (A.10) simplifies things. The main di¢culty in the specification of Section 3

is that the thresholds for activation of vertical innovation become non-linear loci in (x, c) space.

The phase diagram is doable but much more cumbersome to present. The key advantage of the

log-utility specification, therefore, is that it yields a transparent characterization of the dynamics.

To obtain the main claim of Proposition 2, consider a situation where both z and n are positive.

In steady state c is constant and one can combine the Euler equation (A.12) with the return to

quality (A.22) to obtain

αx− φ = ρ+ η (κz + σn) . (A.15)

The return to entry (A.20), the definition of x in (A.8) and the Euler equation (A.12) yield

n =
x− φ− z
πx

− ρ+ λ+ (1− η) (κz + σn) .
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Solving this expression for n yields

n =
x−φ
πx − ρ+ λ
1− (1− η)σ

+
κ (1− η)− 1/πx
1− (1− η)σ

z.

Substituting this result in (A.15) and solving for z yields

z (x) =
(αx− φ− ρ) [1− (1− η)σ]− ησ

(
x−φ
πx − ρ+ λ

)

η (κ− σ/πx)
.

Substituting this solution back in the expression for n yields

n (x) =
x−φ
πx − ρ+ λ
1− (1− η)σ

+
κ (1− η)− 1/πx
1− (1− η)σ

z (x)

=

(
x− φ
πx

− ρ+ λ
)

κ

κ− σ/πx
+
κ (1− η)− 1/πx
η (κ− σ/πx)

(αx− φ− ρ) .

The main simplification in obtaining these two functions z (x) and n (x) is that the system is in

steady state. To obtain the out-of-steady-state dynamics requires a lot of algebraic work that is

not particularly illuminating.

A.3.2 Proof of Proposition 2

The steady state is the solution of the equation

ẋ

x
= λ+ (κ− 1) z (x)− (1− σ)n (x) = 0.

Using the two functions z (x) and n (x) just derived, some algebra reduces the steady-state condition

to the quadratic form

a1x
2 + a2x+ a3 = 0,

where:

a1 (κ) ≡ (κ− 1)απ − απ
(1− η) (1− σ)

η
;

a2 (κ) ≡ − (1 + φπ) (κ− 1)+
[
(1− σ)

α

η
− (1− σ)− σ (ρ− λ)π + ρπ + (1− σ) (φ+ ρ)π

(
1

η
− 1
)]
;

a3 (κ) ≡ φ (κ− 1)−
[
(1− σ)φ

(
1

η
− 1
)
+ (1− σ) ρ

1

η
+ σλ

]
.

To establish existence of the steady state, thus, one needs to prove that there exist values of κ

such that ∆ (κ) ≡ (a2 (κ))2−4a1 (κ) a3 (κ) > 0 and the quadratic equation has two solutions in the
region x > max {xN , xZ}. Brute force calculation yields

∆ (κ) = b1 (κ− 1)2 + b2 (κ− 1) + b3,

where:

b1 = (1 + φπ)
2 − 4απφ;
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b2 = 4απ
(1− η) (1− σ)

η
φ

+4απ

[
(1− σ)φ

(
1

η
− 1
)
+ (1− σ) ρ

1

η
+ σλ

]

−2
[
(1− σ)

α

η
− (1− σ)− σ (ρ− λ)π + ρπ + (1− σ) (φ+ ρ)π

(
1

η
− 1
)]
(1 + φπ) ;

b3 =

[
(1− σ)

α

η
− (1− σ)− σ (ρ− λ)π + ρπ + (1− σ) (φ+ ρ)π

(
1

η
− 1
)]2

−4απ
(1− η) (1− σ)

η

[
(1− σ)φ

(
1

η
− 1
)
+ (1− σ) ρ

1

η
+ σλ

]
.

With this expression in hand, one can obtain a condition such that ∆ (κ) is always positive so that

the ẋ = 0 equation surely has two real solutions.

Note now that ∆ (1) = b3. Therefore, one can simply look for parameters such that (i) b3 > 0

and (ii) this quadratic equation in κ has negative determinant, that is, for parameters that satisfy

b22 − 4b1b3 < 0. Note also that by construction, ∆ (1) = b3 > 0 is the condition for existence of the
steady state under κ = 1. It would thus make sense to maintain it to study the model’s robustness

to κ > 1. It is nevertheless interesting to consider also the case b3 < 0 to fully understand the

existence argument.

The key to the argument is that restricting the coe¢cients of the quadratic form ∆ (κ) does

not involve κ itself. Therefore, it is always possible to choose values of the other parameters that

yield ∆ (κ) > 0. Specifically, we have that ∆ (κ) > 0 for

1 ≤ κ < 1 +
−b2 +

p
b22 − 4b1b3
2b1

≡ κmax.

Inspecting this expression, allows one to obtain the following pattern.

Note first that b1 > 0 for (1 + φπ)
2 > 4απφ. So, under this condition one can set parameters

such that b22 − 4b1b3 < 0 and ∆ (κ) > 0 because the quadratic equation does not have solutions

in the range κ ≥ 1. If the condition fails so that b1 < 0, then to obtain ∆ (κ) > 0 one must set

parameters such that b22 − 4b1b3 > 0 and the quadratic equation has two solutions.
To understand better the above result, think of two cases. 1) For b1 > 0 we are working with a

convex parabola and ∆ (κ) > 0 for (κ− 1) < r1 and (κ− 1) > r2 where

r1,2 =
−b2 ±

p
b22 − 4b1b3
2b1

.

If the roots do not exist, then ∆ (κ) > 0 for all κ ≥ 1. 2) For b1 < 0 the parabola is concave and
∆ (κ) > 0 for r1 < (κ− 1) < r2.

To summarize: there always exists a finite value κmax > 1 such that for 1 ≤ κ < κmax there

exists a steady state with constant endogenous growth. If in addition (1 + φπ)2 > 4απφ, then there

exists a region of parameter space where κmax !1 and the steady state with constant endogenous

growth exists for all κ ≥ 1.
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A.3.3 Proof of Propositions 3-5

As said, the specification with η = 1 yields tractable dynamics. It is useful to proceed in steps.

Step 1: consumption/saving decision The key to the tractable dynamics is that the equilib-

rium consumption flow is:

C

Y
≡ c =

(
(1− θ)

h
θ
(
1− φ+z

x

)
+ 1
i
n = 0 z ≥ 0

(1− θ) [θ (ρ− λ)π + 1] n > 0 z ≥ 0
. (A.16)

This equation is obtained as follows.

When n > 0 assets market equilibrium requires

A = NV = βθ2Y, (A.17)

which says that the wealth ratio A/Y is constant. This result and the saving schedule

r = ρ− λ+ Ċ/C (A.18)

allow one to rewrite the household budget as the following unstable di§erential equation in c ≡ C/Y :

0 = ρ− λ+
ċ

c
+
1− θ − c
βθ2

.

Accordingly, to satisfy the transversality condition c jumps to the constant value (ρ− λ)βθ2+1−θ.
Using the definition of π yields the bottom line of (A.16).

When n = 0 assets market equilibrium still requires A = NV but it is no longer true that

V = βX since by definition the free-entry condition does not hold. This means that the wealth

ratio A/Y is not constant. However, one can proceed as in the previous case and obtain again

0 = N [(1/θ − 1)X − φZ − I] + (1− θ)Y − C.

The definition of x, the R&D technology

Żi = Ii, (A.19)

and the fact that NX = θ2Y , allow me to rewrite this expression as the top line of (A.16).

Step 2: innovation rates as functions of the state variable We begin with the case xN < xZ
and then deal with the case xN > xZ .

Proposition 3 The ratio c is constant when there is entry, i.e., when n > 0, and in such case

the return to saving (A.18) becomes r = ρ − λ + Ẏ /Y . Therefore, one can use the expression for
the return to entry,

r =
Π− I
βX

+
Ẋ

X
, (A.20)
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(A.4), (A.19) and the definition of x to obtain

n =
x− φ− z
πx

− ρ+ λ, z ≥ 0, (A.21)

which holds for positive values of the right-hand side. The Euler equation (A.18) and the reduced-

form production function (A.6) yield:

r = ρ− λ+ Ẏ /Y

= ρ+ κz + σn.

Combining this expression with the return to quality

r = αx− φ (A.22)

yields

αx− φ = ρ+ κz + σn.

Combining this expression with the rate of entry in (A.21) and solving for z yields

z =
αx− φ− σ x−φπx − [ρ− σ (ρ− λ)]

κ− σ
πx

.

Substituting this result back into (A.21) yields

n =
x− φ− z
πx

− ρ+ λ

=
x− φ
πx

−
z

πx
− ρ+ λ

=
(κ− α)x− (κ− 1)φ+ [ρ− σ (ρ− λ)]

κπx− σ
− ρ+ λ.

Consider now the thresholds. Suppose xN < xZ . Then n (x) > 0 for

x− φ
πx

− ρ+ λ > 0,

since z = 0, which yields

x > xN ≡
φ

1− π (ρ− λ)
.

On the other hand, z (x) > 0 for

αx− φ− σ
x− φ
πx

− [ρ− σ (ρ− λ)] > 0,

because entry is already active, which yields

x > xZ ≡ arg solve
{
αx− φ− σ

x− φ
πx

= ρ− σ (ρ− λ)
}
.
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This equation has two roots, one less than φ and one larger than φ. Only the latter is admissible.

Hence,

xZ ≡
φ+ ρ (1− σ) + σλ+ σ

π +
q[
φ+ ρ (1− σ) + σλ+ σ

π

]2 − 4ασφπ
2α

.

The inequality

z (xN ) =
αxN − φ− σ xN−φπxN

− [ρ− σ (ρ− λ)]
κ− σ

πxN

< 0

identifies the region of parameter space such that xN < xZ .

Combining all of these results, one can write:

z (x) =

8
>><

>>:

0 φ ≤ x ≤ xN
0 xN < x ≤ xZ

αx−φ−σ x−φ
πx

−[ρ−σ(ρ−λ)]
κ− σ

πx
xz < x <1

;

n (x) =

8
><

>:

0 φ ≤ x ≤ xN
x−φ
πx − ρ+ λ xN < x ≤ xZ

(κ−α)x−(κ−1)φ+[ρ−σ(ρ−λ)]
κπx−σ − ρ+ λ xz < x <1

,

where:

xN ≡
φ

1− π (ρ− λ)
;

xZ ≡ arg solve
{
ακx− φ− σ

x− φ
πx

= ρ− σ (ρ− λ)
}
.

Proposition 4 As before, over the range φ ≤ x ≤ xZ the function c (x) is given by (A.16)

evaluated at z = 0. To characterize it over the range xZ < x ≤ xN , set the rate of return to vertical
innovation equal to the reservation rate of return of savers to obtain:

ρ− λ+
ċ

c
+ κz + λ = αx− φ.

Solving the household budget constraint for z, yields

z = x− φ−
x

θ

(
c

1− θ
− 1
)
.

Combining these two expressions yields

ċ

c
= (κ− α)x− (κ− 1)φ+ κ

x

θ

(
c

1− θ
− 1
)
− (ρ− λ)− λ.

The ċ ≥ 0 locus is thus

c ≥ (1− θ)
[
1 + θ

ρ− (κ− α)x+ (κ− 1)φ
κx

]
.
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In this region, the law of motion of x is

ẋ

x
= λ+ (κ− 1) z

= λ+ (κ− 1)
[
x− φ−

x

θ

(
c

1− θ
− 1
)]
.

Recall, however, that z ≥ 0 so that ẋ/x is strictly positive. There is then a unique equilibrium

trajectory: the economy jumps on the saddle path in (x, c) space that converges to (x∗, c∗) with

smooth pasting. Writing

ċ

ẋ
=
dc

dx
=
c

x

(κ− α)x− (κ− 1)φ− ρ+ κxθ
(

c
1−θ − 1

)

λ+ (κ− 1)
h
x− φ− x

θ

(
c
1−θ − 1

)i

yields a partial di§erential equation that doesn’t have a closed-form solution. However, one can

show that the function c̃ (x) that solves it has the same derivative from the left and the right at

x = xZ and approaches the value c∗ with zero derivative at x = xN :

dc
(
x−Z
)

dx
=

dc
(
x+Z
)

dx
;

dc (xN )

dx
= 0.

In other words, it is increasing, concave and has no kinks. The associated expression for z is

z̃ (x) = x

[
1−

1

θ

(
c̃ (x)

1− θ
− 1
)]
− φ.

Once again, one can show that z̃ (x) starts out at x = xZ with zero derivative and approaches the

line that holds for x > xN with positive derivative:

dz (xZ)

dx
= 1−

1

θ

(
c (xZ)

1− θ
− 1
)
−
xZ
θ

dc (xZ) /dx

1− θ
= 0;

dz (xN )

dx
= 1−

1

θ

(
c (xN )

1− θ
− 1
)
−
xN
θ

dc (xN ) /dx

1− θ
> 0.

The function z̃ (x) exhibits a kink at x = xN because when entry begins quality innovation attracts

only a fraction of the economy’s saving flow, which is now a constant fraction of final output.

Combining all of these results, one can write:

z (x) =

8
>><

>>:

0 φ ≤ x ≤ xZ
z̃ (x) xZ < x ≤ xN

αx−φ−σ x−φ
πx

−[ρ−σ(ρ−λ)]
κ− σ

πx
xz < x <1

;

n (x) =

8
><

>:

0 φ ≤ x ≤ xZ
0 xZ < x ≤ xN

(κ−α)x−(κ−1)φ+[ρ−σ(ρ−λ)]
κπx−σ − ρ+ λ xN < x <1

,
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where:

z̃ (x) = x

[
1−

1

θ

(
c̃ (x)

1− θ
− 1
)]
− φ

and c̃ (x) is the solution of the partial di§erential equation

dc

dx
=
κc

x

x
θ

(
c
1−θ − 1

)
− ρ

κ − (1− α)x

λ+ (κ− 1)
h
x− φ− x

θ

(
c
1−θ − 1

)i .

The thresholds are:

xN ≡ arg solve
{
(κ− α)x− (κ− 1)φ+ [ρ− σ (ρ− λ)]

κπx− σ
= ρ− λ

}
;

xZ ≡ arg solve
{
x

[
1−

1

θ

(
c̃ (x)

1− θ
− 1
)]

= φ

}
.

The function z (x) has zero derivative at x = xZ , is increasing and has positive derivative at xN .

According to these results, the only di§erence between the two cases is the middle region. With

the functions z (x) and n (x) in hand, I can now prove the main result.

Step 3: Existence After some algebra, the equation

ẋ

x
= λ+ (κ− 1) z (x)− (1− σ)n (x) = 0

yields

a1x
2 + a2x+ a3 = 0,

where:

a1 (κ) ≡ (κ− 1)απ;

a2 (κ) ≡ − (1 + φπ) (κ− 1)− (1− σ) (1− α) + [(1− σ) ρ+ σλ]π;

a3 (κ) ≡ φ (κ− 1)− [(1− σ) ρ+ σλ] .

It is immediate to check that these are in fact the coe¢cients of Proposition 2 with η = 1. It follows

that existence of the steady state is already established.

Step 4: Stability Figures 6-7 in the text illustrate the dynamics. Consider first the case xN <

xZ , in which the economy activates first variety innovation. For x ≤ xN < xZ the growth rate

of profitability is ẋ/x = λ and the economy crosses the threshold for entry in finite time. For

xN < x < xZ the growth rate is

ẋ

x
= λ− (1− σ)

(
x− φ
πx

− ρ+ λ
)
.

This expression identifies a steady-state value

x∗N ≡ arg solve
{
(1− σ)

x− φ
πx

= ρ− σ (ρ− λ)
}
=

φ

1− ρ(1−σ)+σλ
1−σ π

.
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The condition for xZ < x∗N is thus

φ+ ρ (1− σ) + σλ+ σ
π +

q[
φ+ ρ (1− σ) + σλ+ σ

π

]2 − 4ασφπ
2α

<
φ

1− ρ(1−σ)+σλ
1−σ π

.

Interestingly, this condition does not depend on κ, since we are looking for parameter combinations

that boost incentives to variety growth when quality growth is still zero. The intuition for this

condition is that it prevents premature market saturation.

The case where xN < xZ features an acceleration of the rate of growth of profitability at x = xZ
so that the economy crosses the threshold xN in finite time. One concludes, therefore, that the

condition stated in the proposition is su¢cient for convergence to the steady state x∗ for any initial

condition x (0) 2 (φ, x̄).

B An extension: di¢culty index

It is often argued that to match the evidence models of endogenous innovation must allow for rising

di¢culty of innovation. To address such claims, it is useful to generalize the model by allowing for

a richer cost structure in innovation.

Specifically, recall that Ii is the firm’s total expenditure on purchasing the inputs required to

support a growth rate (a.k.a. rate of innovation) zi, while φZi is the firm’s total expenditure on

purchasing the inputs required to stay in operation (a.k.a. fixed operating costs or, equivalently,

management costs). In both cases, total expenditure is the product of the price/cost per unit of

the input times the number of units purchased to carry out the activity. It is then natural to think

that the unit cost is the same if we think of R&D and management as activities using the same

inputs. As one looks at the expressions, it is also natural to think that there is no compelling reason

why the unit cost should exhibit any particular returns to scale. It follows that one can think of a

generic function common to the two activities. As written, the model extends naturally to:

unit cost in R&D = Zi ·D (Zi;Z,N) ;

unit cost in management = Zi ·D (Zi;Z,N) .

These expressions say that the unit cost consists of an internal (firm-specific) component due to Zi
and an external component due to Z and N .

It is useful to be more specific and write:

unit cost in R&D and management = Zi ·D (Zi;Z,N) = Zi · Zδ1i Z
δ2N δ3 .

The parameters δ1, δ2 and δ3 are unrestricted for now. Proceeding as in the previous analysis, the

typical firm’s Hamiltonian is:

CV Hi =

(
1

θ
− 1
)
θ

2
1−θZαi Z

κ−α L

N1−σ − φZiD (Zi;Z,N)− Ii + qiIi
1

D (Zi;Z,N)
.
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This yields:

r =
@Πi
@Zi

1

qi
−
@D (Zi;Z,N)

@Zi

Zi
D (Zi;Z,N)

Ii
ZiD (Zi;Z,N)

+
q̇i
qi
, qi = D (Zi;Z,N) ,

where

@Πi
@Zi

=
@ (Zαi Z

κ−α) /@Zi
Zαi Z

κ−α ·
(
1

θ
− 1
)
θ

2
1−θZαi Z

κ−α L

N1−σ
| {z }

(Pi−1)Xi

−φ
(
D (Zi;Z,N) + Zi

@D (Zi;Z,N)

@Zi

)

= α
(Pi − 1)Xi

Zi
− φ

(
D (Zi;Z,N) + Zi

@D (Zi;Z,N)

@Zi

)
.

With the functional form

D (Zi;Z,N) = Z
δ1
i Z

δ2N δ3

I have:

r = ακ
(Pi − 1)Xi
D (Zi;Z,N)

− δ1zi − φ (1 + δ1) +
q̇i
qi
, qi = D (Zi;Z,N) ;

r =
(Pi − 1)Xi − φZiD (Zi;Z,N)− Ii

Vi
+
V̇i
Vi
, Vi =

βY

N
.

The price-dividend ratio in the return to entry can be written:

(Pi − 1)Xi − φZiD (Zi;Z,N)− Ii
Vi

=

(Pi−1)Xi
ZiD(Zi;Z,N)

− Fi+Ii
ZiD(Zi;Z,N)

βY
N

ZiD (Zi;Z,N)

=

(Pi−1)Xi
ZiD(Zi;Z,N)

− φ− zi
βY
N

ZiD (Zi;Z,N) .

Imposing symmetry and recalling that NPX = θY yields:

r = α
(P − 1)X
ZD (Z;Z,N)

− δ1z − φ (1 + δ1) +
q̇

q
, q = D (Z;Z,N) = Zδ1+δ2N δ3 ;

r =

2

41− φ+ z
(P−1)X

ZD(Z;Z,N)

3

5 θ (P − 1)
βP

+
V̇

V
, V =

βY

N
.

These show that we have the same mechanism as the basic model with the only di§erence that we

now define

x ≡
(P − 1)X
ZD (Z;Z,N)

=
(P − 1)X
Zδ1+δ2N δ3

.

Concavity of the revenue function holds for

@2

@Z2i

[(
1

θ
− 1
)
θ

2
1−θ
LZκ−α

N1−σ · Zαi − φZ
δ2N δ3 · Z1+δ1i

]
< 0,

13



that is, for
(
1

θ
− 1
)
θ

2
1−θ
LZκ−α

N1−σ · α (α− 1)Zα−2i − φZδ2N δ3 · (1 + δ1) δ1Zδ1−1i < 0.

We thus get the su¢cient condition:

α ≤ 1.

Quasi-convexity of the innovation plus management cost component holds for δ1 ≥ 0. Nothing else
is needed.

We can now focus on the expressions for the rates of return to innovation in the symmetric

equilibrium:

r = ακ
(P − 1)X
ZD (Z;Z,N)

− δ1z − φ (1 + δ1) +
q̇

q
, q = D (Z;Z,N) ;

r =

2

41− φ+ z
(P−1)X

ZD(Z;Z,N)

3

5 θ (P − 1)
βP

+
V̇

V
, V =

βY

N
.

Inspecting these expressions, it is evident that we have the same mechanism as the basic model

with the only di§erence that we now define

x ≡
(P − 1)X
ZD (Z;Z,N)

.

With the functional form posited above, this becomes:

x ≡
(P − 1)X
Z1+δ1+δ2N δ3

.

Endogenous growth is now possible for κ ≥ 1+δ1+δ2, that is, if social increasing returns to quality
in final production more than compensate for the rising di¢culty of innovation, which occurs for

δ1 > 0 and/or δ2 > 0. Accordingly, the relevant region of parameter space where steady-state

exponential endogenous growth is feasible is 1 + δ1 + δ2 ≤ κ ≤ κmax. Note that for δ3 > 0, the

restriction σ < 1 needed to ensure the dominant market share e§ect is relaxed.

An interesting aspect of the structure proposed here is that nothing dictates that both δ1
and δ2 be positive so that one is free to believe in the di¢culty of innovation rising in the firm’s

own knowledge Zi but decreasing in average knowledge Z. Alternatively one can believe that the

di¢culty of innovation rises in both Zi and Z. Or one can believe that both Zi and Z reduce the

cost of innovation. The core mechanism is robust to all such alternatives.

The only di§erence of substance between this extension and the basic model developed in the

paper is that the analysis of the dynamics in this case is considerably more algebra-intensive. The

reason is that we no longer work with q = 1 but with q = D (Z;Z,N) = Zδ1+δ2N δ3 since to allow

for rising di¢culty of innovation we sacrifice the transparency and tractability of the one-sector

structure. The mechanism and the core insight concerning the conditions under which endogenous

growth is a robust proposition, however, do not change. From the perspective of this paper,

therefore, one can reasonably argue that extensions such as this are expensive – in the sense that

14



they cost a ton of extra calculations – while they add next to nothing to the main point of the

analysis. Under the one-sector structure of the basic model, in fact, a rising cost of innovation

that makes endogenous growth unfeasible can be captured in a straightforward manner by setting

κ < 1. There is no need to complicate matters by pursuing such a property in the roundabout

fashion inherent to the di¢culty of innovation index.
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