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A Appendix

To facilitate the reader, all the equations from the text needed for the proofs are replicated in this

document with self-contained numbering.

A.1 Derivation of the return to quality

The usual method of obtaining first-order conditions is to write the Hamiltonian for the optimal

control problem of the firm. This derivation highlights the intuition. The firm undertakes R&D up

to the point where the shadow value of the innovation, qi, is equal to its cost,

1 = qi ⇔ Ii > 0. (A.1)

Since the innovation is implemented in-house, its benefits are determined by the marginal profit it

generates. Thus, the return to the innovation must satisfy the arbitrage condition

r =
∂Πi

∂Zi

1

qi
+
q̇i
qi
. (A.2)

To calculate the marginal profit, observe that the firm’s problem is separable in the price and

investment decisions. Facing the isoelastic demand

Xi =

(
θ

Pi

) 1
1−θ

Zαi Z
1−αL

γR1−γ

N1−σ (A.3)
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and a marginal cost of production equal to one, the firm sets Pi = 1/θ. Substituting this result

into the expression for the cash flow,

Πi =

[
(Pi − 1)

(
θ

Pi

) 1
1−θ LγR1−γ

N1−σ − φ
]
Zαi Z

1−α, (A.4)

differentiating with respect to Zi, substituting into (A.2) and imposing symmetry yields

r = α
Π

Z
. (A.5)

A.2 Household behavior

The current value Hamiltonian is

CVH = µ logCM + µη logM + (1− µ) logCB + (1− µ) η logB

+λA [rA+ wM + pR− (CMM + CBB)] + λM (B − δM)− λSR,

where the λs denote the shadow value of respectively, financial assets, A, adult population, M , and

the resource stock, S. The first order conditions for the control variables CM , CB, B, R are:

µ

CMM
= λA =

1− µ
CBB

;
(1− µ) η

B
+ λM = λACB; λAp = λS .

The conditions for the state variables A, M , S are:

r +
λ̇A
λA

= ρ;

η + λA (wM − CMM − CBB)

λMM
+

(
λ̇M
λM

+
Ṁ

M

)
= ρ;

λ̇S
λS

= ρ.

Associated to these are the transversality conditions that the value of each state variable times its

shadow value converges to zero as t→∞.
Let C ≡ CMM + CBB be aggregate consumption. The conditions for CM and CB yield

C = CMM +CBB = 1/λA. Next, let the ratio of consumption to final output (consumption ratio)

be c ≡ C/Y , births per adult (birth rate) be b ≡ B/M and the shadow value of adult population

be h ≡ λMM . The result C = 1/λA and the first-order condition for financial wealth, A, yield the

Euler equation for saving

r = ρ+
Ċ

C
= ρ+

ċ

c
+
Ẏ

Y
. (A.6)

The result C = 1/λA and the conditions for fertility, B, financial wealth, A, and adult population

size, M , yield the fertility rule

h =
(1− µ) (1− η)

b
(A.7)
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and, recalling that wM = γ (1− θ)Y , the asset-pricing-like equation

ḣ = ρh− η − wM − C
C

= ρh− η − γ (1− θ)− c
(1− µ) c

that characterizes the evolution of the shadow value of adult population. Using (A.7), this can be

rewritten
ḃ

b
=

[
γ (1− θ)
c (1− η)

− 1

]
b

1− µ − ρ, (A.8)

which is the expression in the text.

Finally, the result C = 1/λA, the first-order conditions for the extraction flow R and the resource

stock S plus the Euler equation (A.6) yield the Hotelling rule

p

C
= λS ⇒

ṗ

p
= ρ+

Ċ

C
= r. (A.9)

A.3 Proof of Lemma 1

Log-differentiate the expression for GDP,

G

M
= θ

2θ
1−θ

[
1− θ2

(
1 +

φ

x

)]
NσZ

(
R

M

)1−γ
, (A.10)

with respect to time and then use the Euler equation (A.6) and the extraction path,

Ṙ

R
=
Ẏ

Y
− ṗ

p
=
Ẏ

Y
− r = −

(
ċ

c
+ ρ

)
, (A.11)

to write:

r = σn+ z + γ

(
m+

ċ

c
+ ρ

)
; (A.12)

g = σn+ z + ξ (x)
ẋ

x
− (1− γ)

(
m+

ċ

c
+ ρ

)
. (A.13)

A.4 Proof of Lemma 2

Recall the expressions for the return to quality, equation (A.5), and to variety,

r =
Π− I
βX

+
Ẋ

X
. (A.14)

Use the expression for firms size,

x =
X

Z
=
NX

NZ
=
θ2Y

NZ
= θ

2
1−θ

MγR1−γ

N1−σ , (A.15)

both directly and in log-differentiated form to rewrite the returns as:

r = α

((
1

θ
− 1

)
x− φ

)
; (A.16)
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r =
1

β

(
1

θ
− 1− φ+ z

x

)
+
ẋ

x
+ z. (A.17)

Then log-differentiate the definition of x with respect to time and use the Euler equation (A.6) to

obtain from these expressions

ẋ

x
= γm− (1− γ)

(
ċ

c
+ ρ

)
− (1− σ)n. (A.18)

A.5 Proof of Lemma 3

Recall the household budget

Ȧ = rA+ wM + pR− CMM − CBB. (A.19)

Use the definition C ≡ CMM − CBB to rewrite it as

Ȧ = rA+DY + wM + pR− C,

where DY is the flow of dividends paid by the final sector. Under the paper’s assumptions DY = 0

and so omitting it from (A.19) does not change the analysis. However, for the purposes of this

proof it is useful to include it and recognize that it is DY = Y − wM − pR −N · PX (recall that

in equilibrium L = M). Dividing through by A yields

Ȧ

A
= r +

DY + wM + pR− C
A

.

When n = 0 assets market equilibrium requires A = NV but V < βY/N since by definition

the free-entry condition does not hold. Differentiating with respect to time the expression for the

value of the firm,

V (0) =

∫ ∞
0

e−
∫ t
0 r(s)ds [Π(t)− I (t)] dt, (A.20)

and substituting the result in the expression for the budget derived above yields

0 =
Π− I
V

+
Y − wM − pR−N · PX + wM + pR− C

NV
,

which simplifies to

0 =
Π− I
V

+
Y −N · PX − C

NV
.

Using the definition of Π and rearranging terms yields

C = N [(P − 1)X − φZ − I] + (1− θ)Y.

The definitions of c and x, the R&D technology Ż = I, and the fact that NX = θ2Y , then yield

c = θ2

(
1

θ
− 1− φ+ z

x

)
+ 1− θ.
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Finally, set z = 0 in this expression, since it holds for x ≤ xN < xZ , to obtain

c = θ2

(
1

θ
− 1− φ

x

)
+ 1− θ.

This is the top line of the expression in the text.

When n > 0 assets market equilibrium requires A = NV = NβX = βθ2Y , which says that the

wealth ratio A/Y is constant. Using the definition of c and the saving schedule (A.6), rewrite the

budget constraint, after rearranging terms, as

c =

(
ρ+

ċ

c

)
βθ2 + 1− θ.

This unstable differential equation says that c jumps to its steady-state value c∗ = ρβθ2 + 1 − θ,
which is the value in the bottom line of the expression in the text.

A.6 Construction of the dynamical system

Rewrite equation (A.8) as
ḃ

b
=

[
γ (1− θ)
(1− η) c

− 1

]
b

1− µ − ρ,

where

c =

{
θ2
(

1
θ − 1− φ

x

)
+ 1− θ φ/

(
1
θ − 1

)
< x ≤ xN

ρβθ2 + 1− θ x > xN
.

Lemma 2 yields
ẋ

x
= γm− (1− γ) (ċ/c+ ρ)− (1− σ)n. (A.21)

In the region x ≤ xN , since n = 0 we have

ẋ

x
= γ (b− δ)− (1− γ)

(
c′ (x)x

c (x)

ẋ

x
+ ρ

)
⇒ ẋ

x
=
γ (b− δ)− (1− γ) ρ

1 + (1− γ) c
′(x)x
c(x)

.

Noting that
c′ (x)x

c (x)
=

θ2φ/x

1− θ2 (1 + φ/x)
= ξ (x)

yields the expression in the text. In the region x > xN , since c = ρβθ2 + 1− θ we have

ẋ

x
= γ (b− δ)− (1− γ) ρ− (1− σ)n.

Moreover, the fertility rate jumps to its own steady state

b∗ =
ρ (1− µ)
γ(1−θ)

(1−η)(ρβθ2+1−θ)
− 1

.

Finally, integrating the equilibrium extraction path yields

R (t) = R0e
−ρt.
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Substituting this result in the constraint

S0 =

∫ ∞
0

R (t) dt

yields R0 = ρS0. Therefore:

R (t) = ρS0e
−ρt;

S (t) = S0e
−ρt.

A.7 Proof of Lemma 4

Equation (A.12) and Lemma 1 allow one to rewrite the return to variety innovation in (A.17) as

n =


1
β

(
1
θ − 1− φ+z

x

)
− ρ z > 0

1
β

(
1
θ − 1− φ

x

)
− ρ z = 0

(A.22)

and the return to quality innovation in (A.16) as

z =

{
α
((

1
θ − 1

)
x− φ

)
− σn− γ (m∗ + ρ) n > 0

α
((

1
θ − 1

)
x− φ

)
− γ (m+ ċ/c+ ρ) n = 0

. (A.23)

The threshold xN follows directly from (A.22), which says that when agents anticipate z = 0 entry

is positive for

x > xN ≡
φ

1
θ − 1− ρβ

.

Solving (A.22) and (A.23) for z then yields

z =

[(
1
θ − 1

)
x− φ

] (
α− σ

βx

)
− γ (ρ+m∗) + σρ

1− σ
βx

,

which says that in the region x > xN quality innovation is positive for((
1

θ
− 1

)
x− φ

)(
α− σ

βx

)
> γ (m∗ + ρ)− σρ and 1− σ

βx
.

Under the assumption βx > σ ∀x > φ/
(

1
θ − 1

)
, i.e., βφ/

(
1
θ − 1

)
> σ, these joint conditions say

that there is the unique value

xZ = arg solve

{[(
1

θ
− 1

)
x− φ

](
α− σ

βx

)
< γ (m∗ + ρ)− σρ

}
,

such that z > 0 for x > xZ . (The numerator of the expression for z suggests two zeros, but the one

on the left is ruled out because it occurs at x = ασ/β < σ/β.) The analytical solution for xZ is

xZ =

(
1
θ − 1

)
σ
β + φα+ γ (m∗ + ρ)− σρ+

√[(
1
θ − 1

)
σ
β + φα+ γ (m∗ + ρ)− σρ

]2
− 4

(
1
θ − 1

)
αφσβ

2
(

1
θ − 1

)
α

.
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Finally, xZ > xN if ((
1

θ
− 1

)
xN − φ

)(
α− σ

βxN

)
< γ (m∗ + ρ)− σρ,

which yields

φα
ρβ

1
θ − 1− ρβ

< γ (m∗ + ρ) .

A.8 Proof of Proposition 1

Refer to Figure 1. In the region x ∈
[
φ/
(

1
θ − 1

)
, xN

]
, the ḃ = 0 and ẋ = 0 loci are, respectively:

b =
ρ (1− µ)
γ(1−θ)

(1−η)c(x) − 1
;

b =
(1− γ) ρ

γ
+ δ.

The ḃ = 0 locus is increasing and concave in x. Three cases are possible. (i) The ẋ = 0 locus

is below the ḃ = 0 locus for all x ∈
[
φ/
(

1
θ − 1

)
, xN

]
. (ii) The ẋ = 0 locus intersects the ḃ = 0

locus for some value x̃ ∈
[
φ/
(

1
θ − 1

)
, xN

]
. (iii) The ẋ = 0 locus is above the ḃ = 0 locus for all

x ∈
[
φ/
(

1
θ − 1

)
, xN

]
. Case (i) requires that at x = φ/

(
1
θ − 1

)
the ẋ = 0 locus be lower than the

ḃ = 0 locus, that is,
ρ (1− µ)
γ

1−η − 1
>

(1− γ) ρ

γ
+ δ.

This is condition C1, which ensures that the economy leaves the region x ∈
[
φ/
(

1
θ − 1

)
, xN

]
and

activates horizontal innovation because the only trajectories originating in the no innovation region

that do not violate boundary conditions are those that enter the innovation region.

Note now that, of all the trajectories that enter the innovation region, those that connect with

an explosive trajectory cannot be equilibria because they eventually violate boundary conditions.

Consequently, there exists only one trajectory leaving the no innovation region that satisfies all

boundary conditions: this is the trajectory that connects with smooth pasting with the saddle path

that applies for x > xN . To see this, note two things. First, the ratio of the ḃ and ẋ equations

yields

db (xN )

dx
=

b

xN
[1 + (1− γ) ξ (x)]

[
γ(1−θ)

(1−η)c(xN ) − 1
]

b∗

1−µ − ρ
γ (b∗ − δ)− (1− γ) ρ

= 0.

Second, recall that the economy chooses an initial pair (x0, b0), so that

x0 = θ
2

1−θ
Mγ

0

([∫∞
0 e−ε(t)tdt

]−1
S0

)1−γ

N1−σ
0

,

where

ε (t) ≡ 1

t

∫ t

0
(ċ (s) /c (s) + ρ) ds.
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This choice incorporates the fact that by choosing the initial value of the extraction flow, R0, to

satisfy the lifetime constraint

S0 =

∫ ∞
0

R (t) dt,

the economy in fact chooses the initial value of firm size subject to this constraint.

After the economy leaves to innovation region and starts riding the saddle path b = b∗, what

happens next depends on condition C2. It the condition holds, the economy crosses the threshold

xZ and activates vertical innovation. It then converges to the steady state x∗, which exists and is

positive if:
(1− σ) (1− α)φ

γ (m∗ + ρ)− σρ − 1 > 0;

(1− σ) (1− α)
(

1
θ − 1

)
γ (m∗ + ρ)− σρ − β > 0.

Combining these two inequalities and observing that β
θ(1−θ)φ > 1 yields the existence condition C3:

(1− σ) (1− α)

γ (m∗ + ρ)− σρ >
β

1
θ − 1

>
1

φ
.

Condition C4 ensures that steady-state growth at x = x∗ is positive:

g∗ = α

((
1

θ
− 1

)
x∗ − φ

)
−m∗ − ρ > 0⇒ α

φβ −
(

1
θ − 1

)
(1−σ)(1−α)
γ(m∗+ρ)−σρ

(
1
θ − 1

)
− β

> m∗ + ρ.

Finally, observe that
d (ẋ/x)

dx
> 0

follows from the fact that, from the phase diagram,

db (x)

dx
> 0,

that is the saddle path is upward sloping, and ξ′ (x) < 0 since as firm size grows static economies

of scale are gradually exhausted.

A.9 The transition: analytical details

Condition C1 is the restriction on the parameters that ensures that the economy crosses the thresh-

old xN and activates Schumpeterian innovation. Using the rates of innovation in Lemma 4, the law

of motion of firm size becomes

ẋ

x
=

 γ (m∗ + ρ)− σρ− (1− σ) 1
β

(
1
θ − 1− φ

x

)
xN < x ≤ xZ

γ (m∗ + ρ)− σρ− (1− σ)
(1−α)(( 1θ−1)x−φ)−ρβx+γ(m∗+ρ)

βx−σ x > xZ
. (A.24)

Let:

ν̄ ≡ (1− σ)
1
θ − 1

β
− γ (m∗ + ρ) + σρ; x̄∗ ≡ φ

1
θ − 1− γ(m∗+ρ)−σρ

1−σ β
.
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The first line of (A.24) can be written ẋ = ν̄ · (x̄∗ − x). Let TN be the date when x = xN . Solving

this linear differential equation and then integrating between time TN and time t yields

x (t) = xNe
−ν̄(TN−t) + x̄∗

(
1− e−ν̄(TN−t)

)
.

There thus exists a value TZ such that

x (TZ) = xNe
−ν̄(TN−TZ) + x̄∗

(
1− e−ν̄(TN−TZ)

)
= xZ ,

which yields the date when the economy turns on quality growth:

TZ = TN +
1

ν̄
log

(
x̄∗ − xN
x̄∗ − xZ

)
. (A.25)

This date is finite if and only if x̄∗ > xZ . Using the definitions of x̄∗ and xZ yields condition C2,

which, intuitively, says that the parameters are such that z (x̄∗) > 0. An equivalent interpretation

of the condition is that the parameters are such that ẋ (xZ) > 0, that is, that firm size is strictly

increasing in the whole range [xN , xZ ]. Thereafter the economy follows the nonlinear differential

equation in the second line of (A.24) and converges to x∗. Condition C3 ensures that this value

exists.

Under the mild approximation discussed in Peretto (2015), one can characterize the dynamics

of the last phase as a linear process. Let:

ν ≡ (1− σ)
(1− α)

(
1
θ − 1

)
− ρβ

β
− γ (m∗ + ρ) + σρ; x∗ ≡ (1− α)φ− γ (m∗ + ρ)

(1− α)
(

1
θ − 1

)
− ρβ − γ(m∗+ρ)−σρ

1−σ β
.

The second line of (A.24) can be written ẋ = ν · (x∗ − x). Solving this linear differential equation

and then integrating between time TZ and time t yields

x (t) = xZe
−ν(TZ−t) + x∗

(
1− e−ν(TZ−t)

)
.

The main advantage of this simplification is that the in the second and third phases the dynamics of

firm size follow a piece-wise linear differential equation. Accordingly, the model yields a closed-form

solution for all endogenous variables as functions of time, t. This is not essential to the point made

in the paper but it is a nice property to have in mind for future applications of the approach.

I have tried to develop a similar analytical characterization of the dynamics in the first phase.

While the saddle path identifies a well-defined function b (x), all attempts to obtain its analytical

expression have failed.
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