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Abstract

We test for price discontinuities, or jumps, in a panel of high-frequency intraday stock returns and an equiweighted

index constructed from the same stocks. Using a new test for common jumps that explicitly utilizes the cross-covariance

structure in the returns to identify non-diversifiable jumps, we find strong evidence for many modest-sized, yet highly

significant, cojumps that simply pass through standard jump detection statistics when applied on a stock-by-stock basis.

Our results are further corroborated by a striking within-day pattern in the significant cojumps, with a sharp peak at the

time of regularly scheduled macroeconomic news announcements.
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1. Introduction

We examine the relationship between jumps in individual stocks and jumps in an aggregate market index.
Several studies have recently presented strong non-parametric high-frequency data-based empirical evidence
in favor of jumps in financial asset prices, thus discrediting the classical continuous time paradigm with
continuous sample price paths in favor of one with jump discontinuities.2 The tests that we implement here
further corroborate this evidence for the presence of jumps at both the individual stock and aggregate market
level. Of particular interest, however, are the contrasts between the outcome of tests for jumps conducted at
the level of the individual stocks and the level of the index. Jumps in individual stocks can be generated by
either stock-specific news or common market-level news. Meanwhile, from basic portfolio theory one might
expect that jumps in a well-diversified index should only be generated by market-level news that induces
cojumps across many stocks. Below, we formalize these ideas and develop a new test for cojumps motivated
e front matter r 2008 Published by Elsevier B.V.
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Fig. 1. Price of PG sampled every 30 s on August 3, 2004.
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directly by these observations. As such, the test explicitly reflects all of the cross-covariances within a large
panel of high-frequency returns.

Jumps are clearly of importance for asset allocation and risk management. A risk averse investor might be
expected to shun investments with sharp unforeseeable movements. As an example of a jump, consider Fig. 1,
which depicts the price of Proctor and Gamble (PG) on August 3, 2004 sampled once every 30 s. There is a
sharp discontinuity in the evolution of the prices a little after 11 am, where PG gains about 30 cents over a
period of just 2min. Jumps like that are of great importance for standard arbitrage-based arguments and
derivatives pricing in particular, as the effect cannot readily be hedged by a portfolio of the underlying asset,
cash, and other derivatives.3

Of course, not all jumps are as sharply ex post identifiable as that shown in Fig. 1, so that a formal statistical
methodology for identifying jumps is needed. In the results reported on below, we start with a univariate
analysis of stock-by-stock jump tests based on the seminal work by Barndorff-Nielsen and Shephard (2004)
(BN–S). The BN–S theory provides a convenient non-parametric framework for measuring the relative
contribution of jumps to total return variation and for classifying days on which jumps have or have not
occurred.

Our empirical investigation is based on high-frequency intraday returns for a sample of forty large-cap U.S.
stocks and the corresponding equiweighted index of these same stocks over the 2001–2005 sample period.
Consistent with previous empirical results, we find strong evidence for the presence of jumps in each of the
individual stock price series as well as the aggregate index. Standard computations also indicate about 15–25
large jumps for each of the individual stocks scattered randomly across the five-year sample, with jumps
accounting for 12% of the total variation on average. In contrast, for the aggregate index there are only seven
highly significant large jumps across the whole sample, and jumps as a whole account for just about 9% of the
total return variation. Although these specific numbers obviously rely on our use of the popular
BN–S procedure for identifying jumps, the same basic findings of more frequent and larger sized jumps for
the individual stocks compared to the index is entirely consistent with the limited empirical evidence based on
the univariate threshold-type statistic recently reported in Lee and Mykland (2008).
3More formally, the effect of a jump on the price of a derivative is locally nonlinear and thereby cannot be neutralized by holding an ex

ante-determined portfolio of other assets.
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The fact that the data reveal a less important role for jumps in the index than in each of its components is
not all surprising, since the idiosyncratic jumps should be diversified away in the aggregate portfolio. At the
same time, however, there is at best a very weak positive association between the significant jumps in each
of the individual stocks and the jumps in the index. The BN–S jump detection procedure relies on a daily
z-statistic, with large positive values of the statistic discrediting the null hypothesis of no jumps on that day.
We find the z-statistics for the individual stocks to be essentially uncorrelated with the z-statistics for the index,
despite the fact that most of the individual stocks have b’s close to unity with respect to the index.

As one might conjecture, this low degree of association appears to be due to the large amount of
idiosyncratic noise in individual returns. This noise masks the cojumps, making them nearly undetectable at
the level of the individual return. To circumvent this problem, we develop a new cojump test applicable to
situations involving large panels of high-frequency returns.4 Using this new test statistic we find strong
evidence for many modest-sized common jumps that simply pass through the standard univariate jump
detection statistic, while they appear highly significant in the cross-section based on the new cojump
identification procedure.

As noted by Andersen et al. (2007b), Barndorff-Nielsen and Shephard (2006), Eraker et al. (2003), and
Huang and Tauchen (2005) among others, many, although not all, of the statistically significant jumps in
aggregate stock indexes coincide with macroeconomic news announcements and other ex post readily
identifiable broad-based economic news which similarly impact financial markets in a systematic fashion.5

While macroeconomic events obviously also affect individual firms, individual stock prices are also affected by
sudden unexpected firm-specific information that can force an abrupt revaluation of the firms’ stock.6 Our
results suggest that firm-specific news events are indeed the dominant effect of the two in terms of their
immediate price impact at the individual stock level, and only by properly considering the cross-section of
returns do the non-diversifiable cojumps become visible in a formal statistical sense. These results are further
corroborated by our findings of strong intraday patterns in the importance of jumps across the day, with the
peak in the pattern for the aggregate index closely aligned with the time of the release of regularly scheduled
news announcements.

The rest of the paper proceeds as follows. Section 2 outlines the basic second-moment theory that underlies
most of the recent univariate high-frequency data-based jump detection work, along with the relevant
multivariate large-panel extensions. Section 3 briefly reviews the standard univariate (BN–S) jump test and
develops our new test for cojumps based on the multivariate extensions from the preceding section. Section 4
discusses the high-frequency data and sampling schemes underlying our empirical analysis, with some of the
details relegated to Data Appendix. Section 5 presents our main empirical findings, while Section 6 concludes
with a few final remarks.

2. Generalized quadratic variation theory

2.1. Univariate second-moment variation measures

We start by considering the ith log-price process piðtÞ from a collection of n processes fpiðtÞg
n
i¼1 evolving in

continuous time. We assume that piðtÞ evolves as

dpiðtÞ ¼ miðtÞdtþ siðtÞdwiðtÞ þ dLi;JðtÞ, (1)

where miðtÞ and siðtÞ refer to the drift and local volatility, respectively, wiðtÞ is a standard Brownian motion,
and Li;JðtÞ is a pure jump Lévy process.7 A common modeling assumption for the Lévy process is the
compound Poisson process, or rare jump process, where the jump intensity is constant and the jump sizes are
4Alternative statistical procedures for identifying common jump arrivals in pairs of returns have recently been developed by Jacod and

Todorov (2007) and Gobbi and Mancini (2007).
5Notable examples include the monthly employment report, FED interest rate changes, oil prices, legislative alterations, and security

concerns.
6For instance, lawsuits against a cigarette company, announcements of war for a defense company, or legislation of privacy issues for an

Internet search engine.
7This particular notation is adopted from Basawa and Brockwell (1982).
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independent and identically distributed. Throughout the paper we adopt the timing convention that one time-
unit corresponds to a trading day, so that fpiðt� 1þ sÞgs2½0;1� represents the continuous log-price record over
trading day t, where the integer values t ¼ 1; 2; 3; . . . coincide with the end of the day.

In practice the price process is only available at a finite number of points in time. Let M þ 1 denote the
number of equidistant price observations each day; i.e., piðt� 1Þ; piðt� 1þ 1=MÞ; . . . ; piðtÞ. The jth within-day
return is then defined by

ri;t;j ¼ pi t� 1þ
j

M

� �
� pi t� 1þ

j � 1

M

� �
; j ¼ 1; 2; . . . ;M, (2)

for a total of M returns per day.
As discussed at length in, e.g., Andersen et al. (2008), the realized variance

RVi;t ¼
XM
j¼1

r2i;t;j (3)

provides a natural measure of the daily ex post variation. In particular, it is well known that for increasingly
finer sampling frequencies, or M !1, RVi;t consistently estimates the total variation comprised of the
integrated variance plus the sum of the squared jumps

lim
M!1

RVi;t ¼

Z t

t�1

s2i ðsÞdsþ
XNi;t

k¼1

k2i;t;k, (4)

where Ni;t denotes the number of within-day jumps on day t, and ki;t;k refer to the size of the kth such jump.
In order to separately measure the two components that make up the total variation in (4), Barndorff-

Nielsen and Shephard (2004) and Barndorff-Nielsen et al. (2005) first proposed the so-called bipower variation

measure

BV i;t ¼ m�21

M

M � 1

� �XM
j¼2

jri;t;j�1jjri;t;jj, (5)

where m1 ¼
ffiffiffiffiffiffiffiffi
2=p

p
� 0:7979. Under reasonable assumptions, it follows that

lim
M!1

BV i;t ¼

Z t

t�1

s2i ðsÞds, (6)

so that BV i;t consistently estimates the integrated variance for the ith price process, even in the presence of
jumps. Thus, as such the contribution to the total variation coming from jumps may be estimated by
RVi;t � BV i;t, or the relative jump measure advocated by Huang and Tauchen (2005),8

RJi;t ¼
RVi;t � BV i;t

RVi;t
. (7)

It follows that in the limit as M !1, RJt40 only on days for which there are at least one jump, although for
finite M sampling variation can occasionally result in RJi;to0.

2.2. A portfolio-theoretic multivariate extension

The preceding subsection lays out the by now fairly standard univariate second-moment variation theory.
However, from the point of view of financial economics, and in particular portfolio theory, we are generally
more interested in the behavior of a large ensemble of stock prices and returns. For a particular stock, say the
ith, the realized bipower variation BV i;t in (5) measures the combined common and idiosyncratic components
of the continuous part of the total daily variation, while the realized variance RV i;t in (3) measures this plus the
contributions of both common jumps and idiosyncratic jumps. For a large portfolio that is well diversified in
8An equivalent ratio statistic, �RJi;t, was proposed and studied independently by Barndorff-Nielsen and Shephard (2006).
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the sense of the Arbitrage Pricing Theory, one might expect that the idiosyncratic jumps are diversified away
and only the common, or cojumps remain. This indeed turns out to be the case. For simplicity, we only
consider an equiweighted portfolio, but the arguments below hold with equal force for any well-diversified
portfolio; there would just be the notational nuisance of including the portfolio weights in the proper places in
the formulas.

Consider the jth within-day return on an equiweighted portfolio of n stocks

rEQW;t;j ¼
1

n

Xn

i¼1

ri;t;j.

Extending the arguments for the individual stocks with the same logic underlying equations (4) and (6), the
realized variation for the EQW portfolio must satisfy

RVEQW;t ¼
XM
j¼1

1

n

Xn

i¼1

ri;t;j

 !2

�!
M!1 1

n2

Xn

i¼1

Z t

t�1

s2i ðsÞdsþ
1

n2

Xn

i¼1

Xn

‘¼1;‘ai

Z t

t�1

siðsÞs‘ðsÞds

þ
1

n2

Xn

i¼1

XNi;t

k¼1

k2i;t;k þ
1

n2

Xn

i¼1

Xn

‘¼1;‘ai

XN�t
k¼1

ki;t;kk‘;t;k,

where the last sum only includes the N�t jumps (a random number) that occur simultaneously across all n

stocks. Similarly,

BVEQW;t ¼ m�21

M

M � 1

� �XM
j¼2

1

n

Xn

i¼1

ri;t;j�1

�����
����� � 1n

Xn

i¼1

ri;t;j

�����
�����

�!
M!1 1

n2

Xn

i¼1

Z t

t�1

s2i ðsÞdsþ
1

n2

Xn

i¼1

Xn

‘¼1;‘ai

Z t

t�1

siðsÞs‘ðsÞds.

Thus, it follows readily that

RVEQW;t � BVEQW;t �!
M!1 1

n2

Xn

i¼1

XNt;i

k¼1

k2i;t;k þ
1

n2

Xn

i¼1

Xn

‘¼1;‘ai

XN�t
k¼1

ki;t;kk‘;t;k

¼
1

n
k2t þ

n� 1

n

XN�t
k¼1

k�;t;kk��;t;k,

where the bars the � and �� in the second term refer to the average over the relevant indices. For n large, the first
term becomes negligible and ðn� 1Þ=n � 1 so that

RVEQW;t � BVEQW;t �
XN�t
k¼1

cot;k, (8)

where cot;k denotes the kth average cojump. In other words, in a large well-diversified portfolio only cojumps
that occur simultaneously across many assets can cause the portfolio to jump; i.e., jumps that pervade the
market.

3. Jump test statistics

3.1. The (univariate) BN– S approach

High-frequency data-based testing for jumps in a particular stock or financial instrument has received a lot
of attention in the recent literature, and several different univariate test procedures exist for possible use. In
this paper, however, we concentrate on the popular BN–S methodology developed in a series of influential
papers starting with Barndorff-Nielsen and Shephard (2004). The BN–S methodology essentially kick-started
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the entire line of inquiry, and it is by far the most developed and widely applied of the different methods. In
addition to the extensive Monte Carlo validation provided in Huang and Tauchen (2005), empirical studies
that have used the approach include the work of Andersen et al. (2007b) and Todorov (2006) among many
others. As such, the BN–S methodology arguably represents the standard approach for non-parametric
univariate jump detection on a day-by-day basis.

All jump test statistics in the BN–S methodology work by forming a measure of the discrepancy
between RVi;t and BV i;t and then studentizing the difference. Of the various asymptotically equivalent
possibilities,9 Barndorff-Nielsen and Shephard (2004) observe that a studentized version of the
relative contribution measure RJi;t in (7) can be expected to perform particularly well, since it largely
mitigates the effects of level shifts in variance associated with time varying stochastic volatility. This conjecture
is corroborated by the Monte Carlo evidence in Huang and Tauchen (2005), which indicates that the
test statistic

zi;t ¼
RJi;tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðnbb � nqqÞ
1

M
max 1;

TPi;t

BV 2
i;t

 !vuut
, (9)

where nqq ¼ 2, nbb ¼ ðp=2Þ
2
þ p� 3 � 2:6090, and the tripower quarticity is defined by

TPi;t ¼ m�34=3M
M

M � 2

� �XM
j¼3

jri;t;j�2j
4=3jri;t;j�1j

4=3jri;t;jj
4=3, (10)

and m4=3 ¼ 22=3Gð76Þ=Gð
1
2Þ � 0:8309, closely approximates a standard normal distribution under the null

hypothesis of no jumps; i.e., zi;t!
D

Nð0; 1Þ.10 Moreover, the statistic also exhibits favorable power properties
and, in general, provides an excellent basis for univariate jump detection.

3.2. The mcp cojump test

The discussion in Section 2.2 above suggests that the empirical results obtained by applying the
BN–S z-statistic on a stock-by-stock basis, as we do farther below, need to be interpreted with caution
in a portfolio context. Of course, there is nothing inherently wrong with the univariate z-statistic; the
issues are more interpretative. Idiosyncratic jumps that cannot carry a risk premium can trigger the
univariate test while, from a systematic risk perspective, we are primarily interested in the all-important
cojumps in Eq. (8). Conversely, the large amount of noise in individual stock returns can potentially mask the
contribution of a modest-sized cojump to a particular stock return, as appears to be the case in our empirical
results below.

Testing for cojumps using high-frequency data is also an area of active interest. In early work, Barndorff-
Nielsen and Shephard (2003) present a very clever way to adapt the univariate bipower approach to test for
cojumps between a pair of returns, but the theory is difficult to implement due to the lack of a tractable way to
estimate the divisor for the studentization in a jump-robust manner as in (9). More recently, Jacod and
Todorov (2007) present a test for cojumps between a pair of returns based on higher order power variation,
while Gobbi and Mancini (2007) propose a strategy to separate out the covariation between the diffusive and
jump components of a pair of returns.

In this paper, however, we are not directly interested in cojumps between a particular pair of returns,
but rather in the cojumps embodied in a large ensemble of returns. The expressions derived in Section 2.2
naturally suggest such a test statistic for cojumps. In particular, motivated by Eq. (8), we consider the
mean cross-product statistic defined by the normalized sum of the individual high-frequency returns for each
9All asymptotic analysis is ‘‘fill-in’’ where the sampling interval goes to zero with the span of the observations held fixed.
10The denominator of the statistic in (9) also incorporates Jensen’s inequality-type adjustment for the (asymptotic) relationship between

TPi;t and BV2
i;t. Other jump-robust estimators for the integrated quarticity based on the summation of adjacent returns raised to powers

less than two where the powers sum to four are also possible; see Barndorff-Nielsen and Shephard (2004). However, the Monte Carlo

evidence in Huang and Tauchen (2005) indicates that the tripower quarticity in (10) performs quite well.
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within-day period:

mcpt;j ¼
2

nðn� 1Þ

Xn�1
i¼1

Xn

‘¼iþ1

ri;t;jr‘;t;j ; j ¼ 1; 2; . . . ;M. (11)

The mcp-statistic provides a direct measure of how closely the stocks move together. It is entirely analogous to
a U-statistic.

For each day in the sample we have a realization fmcpt;jg
M
j¼1 of length M. Summing the mcpt;j statistics across

day t, it follows readily that

mcpt ¼
XM
j¼1

mcpt;j ¼
1

ðn� 1Þ
nRVEQW;t �

1

n

Xn

i¼1

RVi;t

" #
. (12)

Hence, from reasoning much like that underlying the BN–S bipower variation statistic in (5), we can expect
the mcp-statistic to be reasonably insensitive to idiosyncratic jumps in the individual stocks. At the same time,
the statistic is clearly very sensitive to cojumps and it will assume a large positive value whenever the ensemble
of returns takes a large (positive or negative) move together. These characteristics become more apparent if we
use n=ðn� 1Þ � 1, for large n, and re-write Eq. (12) as

mcpt � BVEQW;t þ ðRVEQW;t � BVEQW;tÞ �
1

n
RVt, (13)

where

RVt ¼
1

n

Xn

i¼1

RVi;t.

Thus, mcpt is essentially comprised of the overall continuous variance, BVEQW;t, and the overall jump
contribution, RVEQW;t � BVEQW;t, as defined in (8); everything else is diversified away as n!1. It is
important to keep in mind that it is not possible using just observations on the equiweighted index alone to
estimate directly the bipower and realized variations for EQW on a tick-by-tick basis, or for every j, as
required by the mcp-statistic in (11). The large cross-section of returns is crucial for the implementation of the
new mcp test.

Meanwhile, as is clear from Eq. (13), the cross-correlation among the diffusive components of the returns
implies that the mcp-statistic in (11) does not have mean zero even in the absence of cojumps. Furthermore,
the overall scale of the statistic fluctuates randomly with the general level of stochastic volatility in the market.
We thus studentize the statistic as

zmcp;t;j ¼
mcpt;j �mcpt

smcp;t
; j ¼ 1; 2; . . . ;M, (14)

where

mcpt ¼
1

M
mcpt ¼

1

M

XM
j¼1

mcpt;j

and

smcp;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M � 1

XM
j¼1

ðmcpt;j �mcptÞ
2

vuut .

In practice we find that the mcpt;j realizations are essentially serially uncorrelated for j ¼ 1; 2; . . . ;M. Hence,
we simply standardize each of the within-day mcp-statistics by their corresponding daily sample standard
deviation, smcp;t. The underlying presumption is that the location and scale are approximately constant within-
days, but varies across days, which is consistent with the idea of a slowly varying stochastic return volatility.
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As discussed further below, the presumption can be challenged by the known U-shaped pattern of within-day
equity volatility, but it turns that this does not affect our main findings.

In order to implement the zmcp-statistic in (14) as a test for cojumps, we need its distribution under the null
of no jumps. Since the mcp-statistic in (11) is itself the average of nðn� 1Þ=2 random variables, where n ¼ 40 in
our data set, one might expect the distribution of the zmcp-statistic to be approximately standard Nð0; 1Þ. In
particular, Borovkova et al. (2001) give a central limit theorem for U-statistics for dependent data that would
apply to the zmcp-statistic for n!1 with t and j fixed if the dependence (mixing conditions) among the
individual stocks was sufficiently weak. However, the cross-correlation among stock returns is unlikely to
satisfy these necessary conditions. For instance, it is fairly easy to show that under a simple one-factor
representation for the returns, the mcp-statistic will, for large n, equal m2bw

2ð1Þ, where m2b is the square of the
average (arithmetic) b. The average b is arguably unity, which gives an asymptotic w2ð1Þ representation for the
mcp-statistic. Still, the simple w2ð1Þ representation does not hold in empirically more realistic multi-factor
situations, and as such is of limited practical use. Lacking a viable approximate asymptotic distribution for the
zmcp-statistic, we thus adopt below a straightforward bootstrap procedure to get its distribution under the null
of no jumps.

4. Data

4.1. Date source and sampling

Our original sample consists of all trades on 40 large capitalization stocks over the January 1, 2001 to
December 31, 2005, five-year sample period.11 While the BN–S jump detection scheme is based on the notion
of M !1, or ever finely sampled high-frequency returns, a host of practical market microstructure
complications prevents us from sampling too frequently while maintaining the fundamental semimartingale
assumption underlying equation (1). Ways in which to best deal with these complications and the practical
choice of M are the subject of intensive ongoing research efforts; see, e.g., Ait-Sahalia et al. (2005), Bandi and
Russell (2008), Barndorff-Nielsen et al. (2006), and Hansen and Lunde (2006). In the analysis reported on
below, we simply follow most of the literature in the use of a coarse sampling frequency as a way to strike a
reasonable balance between the desire for as finely sampled observations as possible on the one hand and the
desire not to be overwhelmed by the market microstructure noise on the other hand. The volatility signature
plots advocated by Andersen et al. (2000), as further detailed in the Data Appendix, suggest that a choice of
M ¼ 22, or 17.5min sampling, strikes such a balance and largely mitigates the effect of the ‘‘noise’’ for all of
the 40 stocks in the sample.12

In addition to high-frequency returns for each of the individual stocks, we also construct an equiweighted
portfolio comprised of the same 40 stocks. We will refer to this index as EQW in the sequel. It is noteworthy
that at the 17.5min sampling frequency, the correlation between the return on EQW and the return on the
exchange-traded SPY fund, which tracks the S&P 500, equals 0.93.13 As such, the return on the EQW index
may be thought of as being representative of the return on the aggregate market, and we will sometimes refer
to the EQW index as the market portfolio in the sequel.

4.2. An illustrative look at PG

Before presenting the results for all of the 40 stocks and the EQW index, it is instructive to look at the
different variation measures and the BN–S test for a single stock and a few specific days in the sample. To this
end, Fig. 2 shows the price (adjusted for stock splits) and returns for PG. While the price appears to be steadily
11The criteria used in selecting the 40 stocks are discussed in more detail in the Data Appendix. The specific ticker symbols for each of

the stocks are included in many of the figures.
12For simplicity we decided to maintain the identical sampling frequency across all stocks. However, M ¼ 22 is clearly a conservative

choice for many of the stocks, and we also calculated the same statistics based on finer sampled high-frequency returns. Subsampling

techniques could also be used to further enhance the accuracy of the realized variation measures and test statistics. The results from some

of these additional calculations are briefly discussed below.
13At the 5-min interval the correlation is 0.88.
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Fig. 2. Prices and returns for PG from 2001 to 2005, M ¼ 22.
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increasing over the 1,241 trading days in the 2001–2005 sample, the corresponding 27,302 high-frequency
17.5min returns are all seemingly scattered around zero. At the same time, the return plot clearly indicates the
presence of volatility clustering. This is further underscored by Fig. 3, which plots the RVt and BV t variation
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measures, the relative jump contribution RJt, along with the BN–S z-statistic in Eq. (9). Comparing the BN–S
test statistic in the lower plot to the horizontal reference line for the 99.9% significance level included in the
plot, indicates that PG jumped at least once during the active part of the trading day on 17 days in the sample.

To further illustrate the working of the jump detection scheme, Fig. 4 shows the intraday prices and returns
for PG on March 26 and 27, 2001. At a first glance it appears as if the price evolves rather smoothly on the
26th, while it shows a rather sharp increase just before noon on the 27th. Nonetheless, the corresponding
BN–S z-statistics equal to 3.63 and �0:20 for each of the two days, respectively, suggest at least one highly
significant jump on the 26th and no jumps on the 27th. Importantly, the jump test statistic depends on both
the magnitude of the largest price change(s) over the day and the overall level of the volatility for the day. As
such, relatively small price changes may be classified as jumps on otherwise calm days, while apparent
discontinuities may be entirely compatible with a continuous sample path process in a statistical sense on very
volatility days. Indeed, looking at the plot of the returns in the lower panel, the overall level of the volatility
was clearly much higher on the 27th than on the 26th, with the BV t estimate for the continuous sample path
variation for each of the two days equal to 5.11 and 1.04, respectively. Thus, while some of the statistically
significant jumps identified by the BN–S test can rather easily be spotted by ex post visual inspection of the
intraday prices that is not necessarily always the case.

5. Jumps and cojumps

5.1. Univariate analysis

We start with a univariate analysis using the standard BN–S approach applied to the index and each of the
individual stocks on a stock-by-stock basis. Fig. 5 shows the number days over the 2001–2005 sample period
on which the BN–S z-statistics indicate that the EQW index and each of the 40 stocks comprising the index
jumped. A day is classified as containing at least one jump if the z-statistic exceeds the critical value of the
Gaussian distribution at the 0.001 significance level. From the figure, the index is seen to jump on far fewer



A
R
TIC

LE
IN

PR
ES

S

EQWABT AIG AXP BAC BLS BMY C DNAFNM GE GS HD IBM JNJ JPM KO LLYLOWMCDMDTMERMMMMO MOTMRKNOKPEP PFE PG SLB TGT TXN TYC UPS UTX VZ WB WFCWMTXOM
0

5

10

15

20

25

30

35

N
um

be
r o

f J
um

p 
D

ay
s 

at
 0

.0
01

 L
ev

el

Mean estimated jump days
per stock = 22.1 days

Fig. 5. Number of flagged jump days for EQW and the 40 individual stocks from 2001 to 2005.

T
.

B
o

llerslev
et

a
l.

/
J

o
u

rn
a

l
o

f
E

co
n

o
m

etrics
1

4
4

(
2

0
0

8
)

2
3

4
–

2
5

6
2
4
4



ARTICLE IN PRESS

Table 1

Jump counts at different sampling frequencies

Frequency Jump count Ratios

Minutes M EQW SPY STK EQW/STK SPY/STK

0.001 level 38.5 10 2 4 9.0 0.22 0.44

35.0 11 5 7 11.7 0.43 0.60

27.5 14 9 8 15.8 0.57 0.51

17.5 22 7 11 22.1 0.32 0.50

11.0 35 16 12 26.1 0.61 0.46

7.0 55 33 24 31.5 1.05 0.76

5.5 70 27 19 34.7 0.78 0.55

5.0 77 32 38 36.7 0.87 1.04

3.5 110 46 80 53.9 0.85 1.48

2.5 154 46 100 87.2 0.53 1.15

1.0 385 100 445 513.1 0.19 0.87

0.01 level 38.5 10 48 35 63.0 0.76 0.56

35.0 11 47 47 66.2 0.71 0.71

27.5 14 53 43 68.7 0.77 0.63

17.5 22 38 45 71.8 0.53 0.63

11.0 35 58 55 88.7 0.65 0.62

7.0 55 77 78 90.6 0.85 0.86

5.5 70 83 88 96.7 0.86 0.91

5.0 77 112 123 101.1 1.11 1.22

3.5 110 122 170 133.7 0.91 1.27

2.5 154 136 219 192.0 0.71 1.14

1.0 385 205 591 717.1 0.29 0.82

0.05 level 38.5 10 137 132 177.5 0.77 0.74

35.0 11 156 158 180.6 0.86 0.87

27.5 14 129 131 174.8 0.74 0.75

17.5 22 110 121 175.5 0.63 0.69

11.0 35 172 154 186.1 0.92 0.83

7.0 55 202 208 204.0 0.99 1.02

5.5 70 208 215 214.3 0.97 1.00

5.0 77 255 250 220.2 1.16 1.14

3.5 110 267 329 272.6 0.98 1.21

2.5 154 290 398 355.8 0.82 1.12

1.0 385 342 755 903.0 0.38 0.84
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days than its components; the count for EQW is seven days while there are 22 jump days on average for the
individual stocks. This finding is a simple consequence of diversification as discussed in Section 2.2.

As a further robustness check, and to guard against non-synchronous trading effects in the EQW portfolio
returns, Table 1 shows the number of detected jumps in the EQW index, the SPY cash index, and the average
over the 40 stocks for a wide range of different sampling frequencies (M ranging from 10 to 385) and three
significance levels (0.001, 0.01, and 0.05). There is obviously a fairly close agreement between the number of
jumps detected in the EQW index and the SPY down to the 5-min level, after which microstructure effects
appear to cause a divergence. Our finding that the index jumps less than its components on average is also
robust, as the ratio between the number of jumps in the index to the average number of jumps in the individual
stocks systematically remains below one for most sampling frequencies and significance levels. Again, this
holds true for the EQW index as well as the exchange-traded SPY fund.

The natural question is how jumps detected in the index relate to jumps in its components. The top panel of
Fig. 6 shows the estimated b on EQW for each of the 40 stocks. The b’s are all fairly close to unity, which is
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not surprising for large-cap stocks. The b’s suggest that the returns on each stock moves approximately one-
for-one with the index return, apart from the idiosyncratic component. In particular, large movements, or
jumps, in the index should show up as large movements or jumps in the stock prices. On the basis of the
estimated b’s, one might expect a reasonably high correlation between a measure of the likelihood of a jump in
the index and a jump in the individual stock prices. The BN–S z-statistic (9) is such a measure. The middle
panel of Fig. 6 shows the 40 regression slope coefficients while the bottom panel shows the 40 estimated
correlations between the stock z-statistics and the EQW z-statistic. Interestingly, the correlations are
exceedingly low: rarely above 0.05 and frequently lower than 0.01, while the regression slope coefficients are
similarly small and insignificant.

The low correlation between the jump-test z-statistics at the level of the individual stocks and the z-statistics
for the EQW portfolio is further illustrated in Fig. 7. The figure shows a scatter plot of the average
BN–S z-statistics for the 40 individual stocks against the z-statistic for EQW for each of the 1,241 days in the
sample. The relationship is obviously very weak.14
5.2. Extracting evidence on cojumps from the cross-section

The outcomes of the standard univariate BN–S jump tests discussed immediately above should be
interpreted with caution. In particular, as previously noted in Section 2.2, the tests for the individual stocks
might not pick up systematic, or cojumps, due to the presence of much larger idiosyncratic jumps and
potentially a low signal-to-noise ratio in the individual stock returns. We thus turn to the studentized mean

cross-product statistic, zmcp, in (14).
To implement the statistic, we bootstrap its null distribution under the assumption of no jumps. To do so,

we computed values of the mcp-statistic in (11) along realizations of a 40� 1 diffusion with zero drift
and covariance matrix determined by the unconditional covariance matrix of the within-day returns.
We simulated realizations of length equal to the sample size (22 steps per day for 1,241 days) replicated 1,000
14For those days on which the z-statistic for EQW is statistically significant at the 0:001 level, the average z-statistic across the 40 stocks

is just about 1.0. Of course, as pointed out by Roel Oomen, under the null hypothesis of no jumps in any of the 40 stocks the distribution

of the average of the individual z-statistics will not be standard normal, but rather normally distributed with a mean of zero and a variance

of 1
40
. Thus, a value for the average in excess of 0.489 may reasonably be deemed significant at the 0.001 level when interpreted as a test for

no jumps in any of the 40 stocks.
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times. This scheme generates just over 27.3 million simulated values under the null of no jumps. The top panel
of Fig. 8 shows the resulting bootstrapped probability density of the zmcp-statistic. The distribution is evidently
highly non-Gaussian with a strong right skew.15 The 99.9% quantile, or critical value for a 0.001 level test for
no cojumps, equals 4.145.

As a check on the sensitivity of this critical value to the covariance structure of the returns, the number of
stocks, and the number of within-day returns, we recomputed the bootstrap distribution using equicorrelated
returns based on different values of r, n and M. The results displayed in Table 2 reveal that the critical value is
quite insensitive to the level of correlation among the returns and to the number of stocks. It is, however,
somewhat sensitive to the number of within-day returns, M. Intuitively, using the daily sample mean and
standard deviation in studentizing the zmcp-statistic in place of the population quantities, causes the
distribution of the statistic to become more concentrated around zero.16 All together, however, it appears as if
the bootstrap distribution shown in the top panel of Fig. 8 accurately captures the distribution of the zmcp-
statistic in the absence of jumps for the actual high-frequency panel analyzed here.

The Q–Q plot in the bottom panel of Fig. 8, which depicts the quantiles of the empirical distribution versus
the quantiles of the bootstrap distribution, reveals quite striking evidence for cojumps. The empirical
distribution of the zmcp-statistic is sharply right-shifted relative to the null distribution, and many of the sample
zmcp-statistics would be judged as statistically significant at most any commonly used significance level.

This strong empirical evidence for a significant number of cojumps is further corroborated by Fig. 9,
which displays a scatter plot of the return on the EQW index against the zcp-statistics. There are a total of
15It has much the appearance of an affine transformation of a w2ð1Þ which would be expected under a one factor model.
16If the returns were perfectly correlated, the mcp-statistic would be distributed as ½w2ð1Þ � 1�=

ffiffiffi
2
p

if population quantities were used to

studentize; the 0:001 critical value would be 6:949. On the other hand, if r ¼ 0:995, M ¼ 22, and sample values are used to studentize, the

bootstrap critical value equals just 4.266. Of course, for r ¼ 0:995 and larger values of M the bootstrap critical value is much closer to the

limiting value of 6.949.
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Table 2

99.9% quantile of the bootstrapped zcp distribution

Average correlation r Quantile Q0:999

Data based

n ¼ 40, M ¼ 22 0.35 4.15

Equicorrelated

n ¼ 40, M ¼ 22 0.00 4.12

0.10 4.14

0.50 4.15

0.80 4.15

n ¼ 20, M ¼ 22 0.00 4.09

0.10 4.14

0.50 4.15

0.80 4.15

n ¼ 40, M ¼ 78 0.00 5.83

0.10 5.89

0.50 5.89

0.80 5.89

n ¼ 20, M ¼ 78 0.00 5.76

0.10 5.87

0.50 5.89

0.80 5.89
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1; 241� 22 ¼ 27; 302 points in the figure. As noted above, the 99.9% bootstrap quantile of the distribution of
the zcp-statistic equals 4.145, and so we should expect only about 32 points in Fig. 9 to lie to the right of this
cutoff. There are, however, far many more points than that to the right of the cutoff, although in many
instances the associated return on the EQW index is only moderately large in magnitude. In other words, it
appears that many modest-sized cojumps simply go undetected by the jump test statistic when applied to
returns individually.

We believe the above conclusions concerning the presence of many modest-sized non-diversifiable cojumps
to be quite persuasive. To buttress the empirical findings, we next discuss how the high-frequency data also
reveal the existence of a strong intraday pattern in the occurrence of cojumps. We then present the results from
additional Monte Carlo simulations designed to assess the performance of the mcp-test vis-a-vis a univariate
analysis in situations with cojumps.

5.3. Intraday patterns

There is a long history dating back at least to Wood et al. (1985) and Harris (1986) documenting the
existence of a distinct U-shaped pattern in equity return volatility over the trading day; i.e., volatility tend to
be high at the open and close of trading and low in the middle of the day. This same general pattern, albeit
more tilted towards the open, is also apparent from Fig. 10 and the plot of the unconditional variance and
bipower variation for the EQW returns over the trading day.

Specifically, we compute the unconditional realized variance for tick j as

1

T

XT

t¼1

r2EQW;t;j ; j ¼ 1; . . . ;M,

while the unconditional bipower variation centered at the jth tick is computed as

1

T

XT

t¼1

jrEQW;t;j�1j
1=2jrEQW;t;jjjrEQW;t;jþ1j

1=2; j ¼ 2; . . . ;M � 1.
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Fig. 10 shows these unconditional variance measures at three increasingly finer sampling frequencies:
M ¼ 22; 77, and 385, corresponding to 17.5, 5, and 1min, respectively.17 The unconditional realized variance
systematically lies above the unconditional bipower variation over the entire day, thus reflecting the existence
of jumps across the day. Interestingly, however, the plot also reveals a sharp rise in the realized variation
relative to the bipower variation at 10 am EST, corresponding to the time of the release of several regularly
scheduled macroeconomic news announcements.18 This therefore indirectly suggests that some of the cojumps
may be associated with these types of systematic news. This is also consistent with the work of Andersen et al.
(2003, 2007a) among others, which document a significant response in high-frequency financial market prices
to surprises in macroeconomic announcement immediately after the release of the news. Moreover, Andersen
and Bollerslev (1998) among others have previously noted a sharp increase in the average total intraday
volatility at the exact time of important macroeconomic news announcements. What is particularly
noteworthy is the much less dramatic increase in the average within-day bipower variation measure, in turn
attributing most of the variation at that specific time-of-day to jumps.

Instead of averaging all of the individual returns before calculating the intraday variation measures as in
Fig. 10, Fig. 11 shows a similar plot in which the two variation measures are first computed on a stock-by-
stock basis and then averaged across all of the 40 stocks in the panel. This explicitly excludes the effect of
diversification, and as a result the vertical scale of Fig. 11 is much larger than that of Fig. 10. More
importantly, however, comparing the general shape between the two sets of pictures, the increase in the within-
day variation at 10 am is much less apparent for the individual stock averages. The relative importance of
jumps also appears to be much more evenly distributed across the entire day, and as such lend further credence
to our hypothesis of the cojumps drowning in the firm-specific variation inherent in the individual stock
returns.

The zmcp-statistic in (14) that we used in testing for cojumps was based on the assumption of constant scale
within the day. The average within-day patterns in Fig. 11 clearly seem to violate this assumption. There is no
obvious right way to adjust the individual returns for the intraday volatility patterns, as the relative
importance of the jump variation to the total variation may be changing over the day. Fortunately, that does
not seem to matter much for our main conclusions. The cojump statistics depicted in Fig. 9 were based on the
raw unadjusted returns ignoring the intraday pattern. As a robustness check we redid the same calculations in
which we scaled the return for the ith stock over the jth time-interval by the reciprocal of the square root of the
corresponding unconditional bipower variation for that particular stock and time-interval. This adjustment is
extreme, in that it deflates returns near the beginning and the end of the day while inflating returns in the
middle of the day under the implicit presumption that the share of the jump variance remains constant
over the day. Nonetheless, the resulting Fig. 12 depicting the returns on the EQW index against the adjusted
zcp-statistics, is so similar to the original Fig. 9 that we conjecture any reasonable adjustment for the intraday
pattern would result in the same basic conclusions.
5.4. Power

Our main conclusions hinge on the argument that the zmcp-statistic is more sensitive to modest-sized
cojumps than the BN–S z-statistic applied stock-by-stock because it explicitly utilizes the cross-sectional
information. To investigate this hypothesis further, we use another bootstrap-type procedure where we take
the observed data set as given, sprinkle in additional simulated jumps, and then recompute the jump test
statistics. Importantly, this circumvents the need to specify a complete data generating process for the full
40-dimensional vector return process, as would be required by a more traditional simulation-based procedure.

Specifically, for idiosyncratic jumps we simulated 40 independent Gaussian compound Poisson processes
with intensity li and magnitude Nð0;s2J ;iÞ, while for the common jumps we simulated one Gaussian compound
Poisson process with intensity l and magnitude Nð0;s2JÞ. The idiosyncratic jumps are then added to the
actually observed within-day 17.5min returns for each of the individual stocks as are the common jumps
17For visual comparisons, we extended the bipower variation directly to the left for j ¼ 1 and to the right for j ¼M.
18There is also a smaller less pronounced peak at 1:15 pm. However, other computations by Peter Van Tassel, not shown here, suggest

that this early afternoon peak is more fragile. Also, the pattern in Fig. 10 for the EQW portfolio essentially mirrors that for the SPY.
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multiplied by the stock’s estimated b. This in turn yields 40 new returns series with the additional simulated
jumps scattered throughout the sample. From these new series, we then recompute the EQW returns, the
BN–S z-statistics, and the zmcp-statistics. This whole process is replicated 1,000 times and the outcomes
averaged across the replications. Since the baseline observed data already contains jumps, the simulations
reveal the incremental strength, or power, of the tests to the different types of added jumps.
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The findings for different jump sizes holding the intensities constant are readily described and intuitively
plausible. In the absence of any common jumps, as the idiosyncratic jump sizes increase from 0% to 1.50%,
the jump detection rate of the BN–S z-statistic applied to the individual stocks gradually increases. However, it
remains unchanged when applied to the EQW return, as does the detection rate of the zmcp-statistic. The
idiosyncratic jumps are effectively diversified away. On the other hand, if the idiosyncratic jumps are left out
while the size of the common jump increases from 0% to 1.50%, the detection rates of both the BN–S
z-statistics and zmcp-statistics increase, with the zmcp-statistic being slightly more sensitive to larger jump sizes.
Still, the contrasts between the two tests appear rather small, as they both fairly easily detect the occasional
rare common jump.

The most revealing contrasts across the statistics are obtained by considering their ability to detect a
relatively small common jump. Specifically, Fig. 13 shows the jump detection rates for a simulation experiment
in which the idiosyncratic jumps are left out, the common jump size is set to 0.25%, and the intensity l of the
common jumps increases from zero to 200 per year. For the zmcp-statistic, there are M ¼ 22 within-day values,
so any day on which the statistic is statistically significant is classified as a jump day; in the observed data set,
there are no days on which more than one statistically significant zmcp-statistic occurs. For the BN–S
z-statistic, the figure shows the number of detected jumps using the BN–S z-statistic applied to the EQW
returns as well as the average number of jumps detected from applying it one-by-one across the panel of 40
stocks. Note that for l ¼ 0 there are more jumps detected than the nominal size of the tests because the
baseline data itself contains jumps. Nonetheless, as clearly seen from the figure, the detection rate of the
zmcp-statistic increases more sharply with l than do the detection rates based on the BN–S statistic applied
stock-by-stock. This directly confirms the intuition that utilizing the cross-covariance structure is important
for reliably identifying the non-diversifiable cojumps.
6. Conclusion

Using popular high-frequency data-based jump detection procedures we document distinct differences in
the number of significant jumps in a large panel of high-frequency individual stock returns and aggregate
index returns. Jumps occur more than three times as often at the individual stock level. The fact that the index
jumped less, on average, than the individual stocks is a simple reflection of diversification of idiosyncratic
jumps. We also find, however, that the values of the jump test statistics for the individual stocks are largely
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uncorrelated with the values of the test statistic for an index constructed from the very same stocks. This lack
of correlation is interesting in view of the fact that all of the stocks have a b of about unity with respect to the
index. Apparently, the high level of idiosyncratic noise in the individual stock returns masks many of the
cojumps that cause the index to jump. To more effectively detect cojumps, we develop a new cross-product

statistic, termed the mcp-statistic, that is motivated by portfolio theory and directly uses the cross-covariation
structure of the high-frequency returns. Employing this statistic we successfully detect many modest-sized
cojumps embodied in the panel of returns.

We also find new evidence for an important intraday pattern in the arrival of cojumps. The stocks in our
panel show a strong tendency to move sharply together, i.e., cojump, around 10 am Eastern time,
corresponding to the regularly scheduled release-time for many macroeconomic news announcements. This
newly documented within-day shift in the relative importance of cojumps is overlaid on top of the usual
distinct U-shaped pattern in equity return volatility over the trading day along with the secular longer-run
day-to-day movements in the overall level of the volatility.

Documenting the presence of cojumps and understanding their economic determinants and dynamics are
crucial from a risk measurement and management perspective. Basic portfolio theory implies that the only
kind of jumps that can carry a risk premium are a non-diversifiable cojumps. Measuring the risk premium on
cojumps is far beyond the scope of the present paper. However, using index-level data Todorov (2006) makes
progress towards separating the aggregate jump risk premium from the continuous volatility risk premium
and understanding its dynamics. The ideas and techniques developed here may prove especially useful in
future work along these lines.
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Appendix A. Data appendix

We initially selected the 50 most actively traded stocks on the New York Stock Exchange (NYSE) according
to their 10-day trading volume (number of shares) at the beginning of June 2006. Of these 50 stocks, we were
able to successfully download reliable high-frequency prices for 40. The ticker symbols for these 40 stocks are
included in many of the figures.

A.1. Data source and cleaning

Data on all completed trades were obtained from the Trade and Quote Database (TAQ) available via the
Wharton Research Data Services (WRDS). This includes trades from all North American exchanges as well as
over-the-counter trades. Each exchange has its own distinct market structure which might affect the structure
of observed prices. Hence, to homogenize the data, we decided to only consider trades on the NYSE. The
NYSE also accounts for the majority of the trades for all of the stocks in the sample.

Our sample covers the period from January 1st 2001 to December 31st 2005. Trading frequency increased
significantly in the late 1990s, and by the end of 2001 all NYSE listed stocks had moved from fractional to
decimalized trading, in turn allowing for the extraction of highly reliable high-frequency prices. Illogical data
values such as time stamp errors (e.g., hour #25, minute #78, month #43 and year #3001) and negative prices
are removed from the data. All-in-all, these errors represent a relatively small number of data points. We also
exclude trades that occur outside of 9.30 am and 4 pm, as well as days with only partial trading. Examples of
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such days are September 11, 2001, and certain holidays when the NYSE is only open for part of the day.
A listing of all of these dates is available on the NYSE web-site.

Because of the unusual activity associated with trading at the beginning of each day, we start our intraday
sampling at 9.35 am, 5-min after the market officially opens. This ensures a more homogenous trading and
information gathering mechanism for all of the prices. The price series are sampled every 30-s using a slightly
modified version of the previous tick method from Dacorogna et al. (2001). The previous tick method simply
fixes the time where prices are ideally sampled at regular intervals and selects a completed trade prior to the
time should there be no trade at that particular time. For instance, a trade completed at 9:34:58 is used in place
of 9:35:00 when there is no actual trade at 9:35:00. In this case, there is therefore a 2-s backtrack, as defined by
the time difference between the ideal sampling time and the actual sampling time. The first trade of the day is
used if there are no prior trades on that day. With 30-s sampling from 9.35 am to 4.00 pm this leaves us with
771 prices per day. Also, the sample period from January 1st 2001 through December 31st 2005 consists of
1,241 normal trading days, for a total of close to a million transaction prices for each of the 40 individual
stocks.

The raw high-frequency prices invariable contains a number of mis-recordings and other data errors. In
some cases these errors are obvious by visual inspection of time series plots of the data, sometimes they are
not. Thus, in addition to manually inspecting and correcting the data, we also employed a threshold filter of
1.5%, which appears to work well for removing and cleaning the remaining data errors at the 30-s sampling
interval.

A.2. Sampling frequency

The statistics used in the paper formally becomes more accurate as the sampling frequency increases.
However, as noted in the main text of the paper, there is a limit to how finely we can sample the price process
while maintaining the basic underlying semimartingale assumption as a host of market microstructure
influences start to materially affect the observed price changes; most importantly features having to do with
specifics of the trading mechanism, Black (1976) and Amihud and Mendelson (1987), and discreteness of the
data (Harris, 1990, 1991). As discussed at length in Hansen and Lunde (2006), the design of new procedures
and ‘‘optimal’’ ways in which to deal with these complications is currently the focus of extensive research
efforts. Rather than employing any of these more advanced procedures, in the analysis reported on here, we
simply rely on the volatility signature plots proposed by Andersen et al. (2000) as an easy-to-implement
procedure for choosing the highest possible sampling frequency so that the realized variation measures remain
unbiased for the unconditional daily variance.

The corresponding plots for each of the 40 stocks (available upon request) suggest that by sampling M ¼ 22
times per day, or equivalently by using 17.5min returns, the market microstructure influences have essentially
ceased and the plots for the realized variation measures become flat. Of course, for many of the stocks we
could safely sample more frequently, but for simplicity we decided to maintain the identical sampling
frequency across all 40 stocks throughout the entire sample. Importantly, the choice of M ¼ 22 also involves
relatively little interpolation in the construction of the equidistant 17.5min returns. The median backtrack
from the previous tick method for each of the 40 stocks is just about 6.5 s, and for none of the stocks does the
median backtrack exceed 12 s.
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